1. Benchmarking semiempirical, Hartree-Fock, DFT, and MP2 methods against the ionization energies and electron affinities of short- through long-chain [ n]acenes and [ n]phenacenes.
- Author
-
Rayne, Sierra and Forest, Kaya
- Subjects
- *
IONIZATION energy , *ELECTRON affinity , *ACENES , *DENSITY functionals , *HETEROCHAIN polymers - Abstract
Vertical and adiabatic ionization energies (IEs) and electron affinities (EAs) were calculated for the n = 1-10 [ n]acenes using a wide range of semiempirical, Hartree-Fock, density functional, and second-order Moller-Plesset perturbation theory model chemistries. None of the model chemistries examined was able to accurately predict the IEs or EAs for both short- through long-chain [ n]acenes, as well as for extrapolations to the polymeric limit, when compared to available experimental and benchmark theoretical data. Except for 6-31G(d), the choice of the basis set does not affect B3LYP results significantly. Analogous calculations using a suite of eight modern and (or) popular density functionals for the n = 1-10 [ n]phenacenes revealed similar problems in estimating the IEs and EAs of these compounds, with the sole exception of the M062X functional for adiabatic IEs and potentially the APFD, B3LYP, and MN12SX functionals for adiabatic EAs. The poor IE/EA prediction performance for the parent [ n]acenes and [ n]phenacenes may extend to their substituted derivatives and heteroatom-substituted analogs. Consequently, caution should be exercised in the application of non-high-level calculations for estimating the IE/EA of these important classes of materials. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF