Barytherium sp. EXAMINED MATERIAL. — FSAC Bouj-380a, 380b, and 380c, dental fragments. REMARKS Zouhri et al. (2018) mentioned fragmentary dental remains of undetermined proboscideans in Gueran fauna (Laazri locality). Combining light and SEM microscopy, we here studied these dental fragments (FSAC Bouj-380a, 380b, and 380c) to describe the enamel microstructure and propose a systematic assignment. Following the protocol detailed in Tabuce et al. (2017), we realized and analyzed a vertical section for the three specimens, which reveal a similar enamel microstructure. From the enamel dentine junction (EDJ) to the outer enamel surface (OES), the specimens present a one-layered Schmelzmuster [the three-dimensional arrangement of the different enamel types in one tooth (Koenigswald & Sander, 1997)] formed by thick bundles of prisms that decussate in all directions; this enamel type is the so-called 3D enamel, a structure known only in proboscideans. In some zones of the outer part of the enamel layer, the vertical component of the decussation is attenuated, evoking Hunter-Schreger bands (HSB). 3D enamel is documented in several Paleogene proboscidean species: Numidotherium koholense Jaeger, 1986 (sampled from the early Eocene of El Kohol, Algeria, Bertrand 1988 and Tabuce et al. 2007), Numidotherium sp. (sampled from the late Eocene of Ad-Dakhla, Morocco, Adnet et al. 2010), Arcanotherium savagei (Court, 1995) (Court 1995; sampled from the?late Eocene of Dur At-Talah Escarpment, Libya, Tabuce et al. 2007), Barytherium grave Andrews, 1901 (sampled from Dur At-Talah Escarpment, Libya, Bertrand 1988), and Omanitherium dhofarensis Seiffert, Nasir, Al-Harthy, Groenke, Kraatz, Stevens & Al-Sayigh, 2012 (sampled from the earliest Oligocene of Thaytiniti 2, Oman; Tabuce unpublished data). Among these five species, only Arcanotherium savagei differs from the proboscidean from Laazri by a three-layered Schmelzmuster with 3D enamel only limited to the inner zone, overlain by HSB then radial enamel in the outer zone. Such a complex Schmelzmuster also characterizes all Neogene elephantoids (mammutids, gomphotheres, stegodonts, and elephants) and in a lesser degree Palaeomastodon beadnelli Andrews, 1901 which developed slightly irregular HSB in the inner zone, evoking 3D enamel (Koenigswald et al. 1993). As a result, similar to the proboscidean from Laazri, only Numidotherium koholense, Numidotherium sp. from Ad-Dakhla, Barytherium grave, and Omanitherium dhofarensis present a one-layered Schmelzmuster formed by 3D enamel. In addition, the HSB-like structures that occur in places in the outer part of the enamel the proboscidean from Laazri were only mentioned in Numidotherium koholense and Numidotherium sp. from Ad-Dakhla (Tabuce et al. 2007; Adnet et al. 2010). However, the supposed lack of such HSB-like structures in Barytherium grave must be taken with caution due to the unique published macroscopic analysis (no SEM data available) for this species (Bertrand 1988). Interestingly, in his unpublished Ph.D. thesis, Bertrand (1989: pl. 18D) figured a view of the outer part of the enamel of Barytherium grave in which HSB-like structures are clearly visible. To conclude, Barytherium and Numidotherium present the same enamel microstructure as the proboscidean from Laazri. To complete the observations, we measured the molar enamel thickness in Barytherium Andrews, 1901, Numidotherium Jaeger, 1986, and Omanitherium Seiffert, Nasir, Al-Harthy, Groenke, Kraatz, Stevens, Al-Sayigh, 2012. Comparison with the proboscidean remains from Laazri reveals interesting results. The great enamel thickness of FSAC Bouj-380a (± 3.4 to 4.6mm), Bouj-380b (± 2.6 to 2.9 mm) and Bouj- 380c (± 3.1 to 4.2 mm) approaches the rare available data for Barytherium grave (± 2 mm, ± 3.1 mm, ± 2.5 mm; plate 18A-C in Bertrand 1989). Conversely, molars of Numidotherium sp. from Ad-Dakhla and Omanitherium dhofarensis have thinner enamel thickness (± 1 mm and ± 0.7 mm, respectively). Molars of Numidotherium koholense have also thinner enamel thickness (± 2.4 to 3.1 mm for the M3, the largest molar). To conclude, enamel microstructure and thickness strongly favor an assignment to Barytherium for the proboscidean from Laazri. The presence of Barytherium in the Aridal Formationat of Gueran, if confirmed, would indicate that this genus occurred as early as the Bartonian. So far, this genus was only known by its type species, Barytherium grave, originally described from the late Eocene (Priabonian) of the Fayum depression and then from the Dur At-Talah Escarpment, a locality which is still poorly constrained in age between Bartonian to Priabonian (Tabuce et al. 2012; Sallam & Seiffert 2016; Longrich 2017). Interestingly also, Gingerich & Cappetta (2014) mentioned a possible Barytherium -sized proboscidean from the early middle Eocene (Lutetian) of Togo., Published as part of Zouhri, Samir, Gingerich, Philip D., Khalloufi, Bouziane, Bourdon, Estelle, Adnet, Sylvain, Jouve, Stéphane, Elboudali, Najia, Amane, Ayoub, Rage, Jean-Claude & Tabuce, Rodolphe, 2021, Middle Eocene vertebrate fauna from the Aridal Formation, Sabkha of Gueran, southwestern Morocco, pp. 121-150 in Geodiversitas 43 (5) on pages 141-143, DOI: 10.5252/geodiversitas2021v43a5, http://zenodo.org/record/4605963, {"references":["ZOUHRI S., GINGERICH P. D., ADNET S., BOURDON B., JOUVE S., KHALLOUFI B., AMANE A., ELBOUDALI N. S., RAGE J. - C., LAP- PARENT DE BROIN F. DE, KAOUKAYA A. & SEBTI S. 2018. - Middle Eocene vertebrates from the sabkha of Gueran, Atlantic coastal basin, Saharan Morocco, and their peri-African correlations, Comptes Rendus Geosciences 350: 310 - 318. https: // doi. org / 10.1016 / j. crte. 2018.06.006","TABUCE R., SEIFFERT E. R., GHEERBRANT E., ALLOING- SEGUIER L. & KOENIGSWALD W. V. 2017. - Tooth enamel microstructure of living and extinct hyracoids reveals unique enamel types among mammals. Journal of Mammalian Evolution 24 (1): 91 - 110. https: // doi. org / 10.1007 / s 10914 - 015 - 9317 - 6","KOENIGSWALD W. V. & SANDER P. M. 1997. - Schmelzmuster differentiation in leading and trailing edges, a specific biomechanical adaptation in rodents, in KOENIGSWALD W. V. & SANDER P. M. (eds), Tooth Enamel Microstructure. Balkema, Rotterdam: 259 - 266.","BERTRAND P. 1988. - Evolution de la structure de l'email chez les Proboscidea primitifs: Aspects phylogenetique et fonctionnel, in RUSSELL D. E., SANTORO J. P. & SIGOGNEAU- RUSSELL D. (eds), Teeth Revisited: Proceedings of the 7 th International Symposium on Dental Morphology. Museum national d'Histoire naturelle, Paris: 109 - 124 (Memoires du Museum national d'Histoire naturelle, Ser. C - Sciences de la Terre; 53).","TABUCE R., DELMER C. & GHEERBRANT E. 2007. - Evolution of the tooth enamel microstructure in the earliest proboscideans (Mammalia). Zoological Journal of the Linnean Society 149 (4): 611 - 628. https: // doi. org / 10.1111 / j. 1096 - 3642.2007.00272. x","ADNET S., CAPPETTA H. & TABUCE R. 2010. - A middle-late Eocene vertebrate fauna (marine fish and mammals) from southwestern Morocco preliminary report: age and palaeobiogeographical implications. Geological Magazine 147: 860 - 870. https: // doi. org / 10.1017 / s 0016756810000348","COURT N. 1995. - A new species of Numidotherium (Mammalia: Proboscidea) from the Eocene of Libya and the early phylogeny of the Proboscidea. Journal of Vertebrate Paleontology 15: 650 - 671. https: // doi. org / 10.1080 / 02724634.1995.10011254","ANDREWS C. W. 1901. - Preliminary note on some recently discovered extinct vertebrates from Egypt. Geological Magazine 4: 436 - 444. https: // doi. org / 10.1017 / S 0016756800179750","KOENIGSWALD W. V., MARTIN T. & PFRETZSCHNER H. U. 1993. - Phylogenetic interpretation of enamel structures in mammalian teeth: possibilities and problems, in SZALAY F. S., NOVACEK M. J., MCKENNA M. C. (eds), Mammal Phylogeny Placentals. Springer-Verlag, New York: 303 - 314.","BERTRAND P. 1989. - Structure de l'email dentaire et phylogenie chez les tethytheres. Unpublished PhD thesis, Universite Paris 6, 524 p.","TABUCE R., JAEGER J. - J., MARIVAUX L., SALEM M., BILAL A. A., BENAMMI M., CHAIMANEE Y., COSTER P., MARANDAT B., VAL- ENTIN X. & BRUNET M. 2012. - New stem elephant-shrews (Mammalia, Macroscelidea) from the Eocene of Dur at-Talah, Libya. Palaeontology 55: 945 - 955. https: // doi. org / 10.1111 / j. 1475 - 4983.2012.01163. x","SALLAM H. M. & SEIFFERT E. R. 2016. - New phiomorph rodents from the latest Eocene of Egypt, and the impact of Bayesian \" clock \" based phylogenetic methods on estimates of basal hystricognath relationships and biochronology. PeerJ 4: e 1717. https: // doi. org / 10.7717 / peerj. 1717","LONGRICH N. R. 2017. - A stem lepidosireniform lungfish (Sarcopterygia: Dipnoi) from the upper Eocene of Libya, North Africa and implications for Cenozoic lungfish evolution. Gondwana Research 42: 140 - 150. https: // doi. org / 10.1016 / j. gr. 2016.09.007","GINGERICH P. D. & CAPPETTA H. 2014. - A new archaeocete and other marine mammals (Cetacea and Sirenia) from lower middle Eocene phosphate deposits of Togo. Journal of Paleontology 88, 109 e 129. https: // doi. org / 10.1666 / 13 - 040"]}