1. Elastin-derived peptides favor type 2 innate lymphoid cells in chronic obstructive pulmonary disease.
- Author
-
Lahire S, Fichel C, Rubaszewski O, Lerévérend C, Audonnet S, Visneux V, Perotin JM, Deslée G, Le Jan S, Potteaux S, Le Naour R, and Pommier A
- Subjects
- Humans, Female, Male, Aged, Middle Aged, Interleukin-5 metabolism, Interleukin-5 immunology, Macrophages immunology, Macrophages metabolism, Peptides pharmacology, Peptides immunology, Pulmonary Disease, Chronic Obstructive immunology, Pulmonary Disease, Chronic Obstructive pathology, Elastin metabolism, Elastin immunology, Immunity, Innate, Lymphocytes immunology, Lymphocytes metabolism, Lymphocytes drug effects
- Abstract
Chronic obstructive pulmonary disease (COPD) is a condition characterized by chronic airway inflammation and obstruction, primarily caused by tobacco smoking. Although the involvement of immune cells in COPD pathogenesis is well established, the contribution of innate lymphoid cells (ILCs) remains poorly understood. ILCs are a type of innate immune cells that participate in tissue remodeling processes, but their specific role in COPD has not been fully elucidated. During COPD, the breakdown of pulmonary elastin generates elastin peptides that elicit biological activities on immune cells. This study aimed to investigate the presence of ILC in patients with COPD and examine the impact of elastin peptides on their functionality. Our findings revealed an elevated proportion of ILC2 in the peripheral blood of patients with COPD, and a general activation of ILC as indicated by an increase in their cytokine secretion capacity. Notably, our study demonstrated that serum from patients with COPD promotes ILC2 phenotype, likely due to the elevated concentration of IL-5, a cytokine known to favor ILC2 activation. Furthermore, we uncovered that this increase in IL-5 secretion is partially attributed to its secretion by macrophages upon stimulation by elastin peptides, suggesting an indirect role of elastin peptides on ILC in COPD. These findings shed light on the involvement of ILC in COPD and provide insights into the potential interplay between elastin breakdown, immune cells, and disease progression. Further understanding of the mechanisms underlying ILC activation and their interaction with elastin peptides could contribute to the development of novel therapeutic strategies for COPD management. NEW & NOTEWORTHY Elastin-derived peptides, generated following alveolar degradation during emphysema in patients with COPD, are able to influence the response of type 2 innate lymphoid cells. We show that the orientation of innate lymphoid cells in patients with COPD is shifted toward a type 2 profile and that elastin peptides are indirectly participating in that shift through their influence of macrophages, which in turn impact innate lymphoid cells.
- Published
- 2024
- Full Text
- View/download PDF