8 results on '"Ehud Almog"'
Search Results
2. Twin boundary migration in an individual platinum nanocrystal during catalytic CO oxidation
- Author
-
Jérôme Carnis, Aseem Rajan Kshirsagar, Longfei Wu, Maxime Dupraz, Stéphane Labat, Michaël Texier, Luc Favre, Lu Gao, Freddy E. Oropeza, Nimrod Gazit, Ehud Almog, Andrea Campos, Jean-Sébastien Micha, Emiel J. M. Hensen, Steven J. Leake, Tobias U. Schülli, Eugen Rabkin, Olivier Thomas, Roberta Poloni, Jan P. Hofmann, and Marie-Ingrid Richard
- Subjects
Science - Abstract
At the nanoscale, elastic strain and crystal defects largely influence the properties and functionalities of materials. Here, the authors report an unusual twin boundary migration process in a single platinum nanoparticle during carbon monoxide oxidation using Bragg coherent diffraction imaging.
- Published
- 2021
- Full Text
- View/download PDF
3. A convolutional neural network for defect classification in Bragg coherent X-ray diffraction
- Author
-
Bruce Lim, Ewen Bellec, Maxime Dupraz, Steven Leake, Andrea Resta, Alessandro Coati, Michael Sprung, Ehud Almog, Eugen Rabkin, Tobias Schulli, and Marie-Ingrid Richard
- Subjects
Materials of engineering and construction. Mechanics of materials ,TA401-492 ,Computer software ,QA76.75-76.765 - Abstract
Abstract Coherent diffraction imaging enables the imaging of individual defects, such as dislocations or stacking faults, in materials. These defects and their surrounding elastic strain fields have a critical influence on the macroscopic properties and functionality of materials. However, their identification in Bragg coherent diffraction imaging remains a challenge and requires significant data mining. The ability to identify defects from the diffraction pattern alone would be a significant advantage when targeting specific defect types and accelerates experiment design and execution. Here, we exploit a computational tool based on a three-dimensional (3D) parametric atomistic model and a convolutional neural network to predict dislocations in a crystal from its 3D coherent diffraction pattern. Simulated diffraction patterns from several thousands of relaxed atomistic configurations of nanocrystals are used to train the neural network and to predict the presence or absence of dislocations as well as their type (screw or edge). Our study paves the way for defect-recognition in 3D coherent diffraction patterns for material science.
- Published
- 2021
- Full Text
- View/download PDF
4. Continuous scanning for Bragg coherent X-ray imaging
- Author
-
Ni Li, Maxime Dupraz, Longfei Wu, Steven J. Leake, Andrea Resta, Jérôme Carnis, Stéphane Labat, Ehud Almog, Eugen Rabkin, Vincent Favre-Nicolin, Frédéric-Emmanuel Picca, Felisa Berenguer, Rim van de Poll, Jan P. Hofmann, Alina Vlad, Olivier Thomas, Yves Garreau, Alessandro Coati, and Marie-Ingrid Richard
- Subjects
Medicine ,Science - Abstract
Abstract We explore the use of continuous scanning during data acquisition for Bragg coherent diffraction imaging, i.e., where the sample is in continuous motion. The fidelity of continuous scanning Bragg coherent diffraction imaging is demonstrated on a single Pt nanoparticle in a flow reactor at $$400\,^\circ \hbox {C}$$ 400 ∘ C in an Ar-based gas flowed at 50 ml/min. We show a reduction of 30% in total scan time compared to conventional step-by-step scanning. The reconstructed Bragg electron density, phase, displacement and strain fields are in excellent agreement with the results obtained from conventional step-by-step scanning. Continuous scanning will allow to minimise sample instability under the beam and will become increasingly important at diffraction-limited storage ring light sources.
- Published
- 2020
- Full Text
- View/download PDF
5. Author Correction: Continuous scanning for Bragg coherent X-ray imaging
- Author
-
Frédéric Emmanuel Picca, Eugen Rabkin, Yves Garreau, Steven J. Leake, Felisa Berenguer, Ehud Almog, Alessandro Coati, Maxime Dupraz, Marie Ingrid Richard, Rim van de Poll, Longfei Wu, Stéphane Labat, Alina Vlad, Ni Li, Andrea Resta, Vincent Favre-Nicolin, Olivier P. Thomas, Jan P. Hofmann, and Jerome Carnis
- Subjects
Physics ,Multidisciplinary ,Scale (ratio) ,business.industry ,lcsh:R ,X-ray ,lcsh:Medicine ,Continuous scanning ,Optics ,Position (vector) ,lcsh:Q ,business ,lcsh:Science ,Author Correction - Abstract
We explore the use of continuous scanning during data acquisition for Bragg coherent diffraction imaging, i.e., where the sample is in continuous motion. The fidelity of continuous scanning Bragg coherent diffraction imaging is demonstrated on a single Pt nanoparticle in a flow reactor at [Formula: see text] in an Ar-based gas flowed at 50 ml/min. We show a reduction of 30% in total scan time compared to conventional step-by-step scanning. The reconstructed Bragg electron density, phase, displacement and strain fields are in excellent agreement with the results obtained from conventional step-by-step scanning. Continuous scanning will allow to minimise sample instability under the beam and will become increasingly important at diffraction-limited storage ring light sources.
- Published
- 2020
6. Continuous scanning for Bragg coherent X-ray imaging
- Author
-
Ehud Almog, Olivier P. Thomas, Alessandro Coati, Alina Vlad, Ni Li, Maxime Dupraz, Jerome Carnis, Yves Garreau, Longfei Wu, Jan P. Hofmann, Rim van de Poll, Andrea Resta, Steven J. Leake, Felisa Berenguer, Vincent Favre-Nicolin, Marie Ingrid Richard, Eugen Rabkin, Stéphane Labat, Frédéric Emmanuel Picca, Nanostructures et Rayonnement Synchrotron (NRS ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), European Synchrotron Radiation Facility (ESRF), Institut des Matériaux, de Microélectronique et des Nanosciences de Provence (IM2NP), Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Deutsches Elektronen-Synchrotron [Hamburg] (DESY), Technion - Israel Institute of Technology [Haifa], Eindhoven University of Technology [Eindhoven] (TU/e), Laboratoire Matériaux et Phénomènes Quantiques (MPQ (UMR_7162)), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), ANR-18-ERC1-0010,CHARLINE - TERC,Diffraction cohérente pour l'étude des nanostructures vers l'échelle atomique : catalyse et interface(2018), European Project: 818823,CARINE, European Synchroton Radiation Facility [Grenoble] (ESRF), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), and Inorganic Materials & Catalysis
- Subjects
0301 basic medicine ,STRAIN ,Electron density ,Materials science ,Science ,PHASE ,Physics::Medical Physics ,Phase (waves) ,Physics::Optics ,Imaging techniques ,02 engineering and technology ,Instability ,Article ,Displacement (vector) ,03 medical and health sciences ,Optics ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Condensed-matter physics ,ComputingMilieux_MISCELLANEOUS ,[PHYS]Physics [physics] ,Multidisciplinary ,business.industry ,CRYSTALLOGRAPHY ,X-ray ,MICROSCOPY ,021001 nanoscience & nanotechnology ,Coherent diffraction imaging ,3. Good health ,030104 developmental biology ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Medicine ,0210 nano-technology ,business ,ddc:600 ,Storage ring ,Beam (structure) ,Materials for energy and catalysis - Abstract
We explore the use of continuous scanning during data acquisition for Bragg coherent diffraction imaging, i.e., where the sample is in continuous motion. The fidelity of continuous scanning Bragg coherent diffraction imaging is demonstrated on a single Pt nanoparticle in a flow reactor at $$400\,^\circ \hbox {C}$$ 400 ∘ C in an Ar-based gas flowed at 50 ml/min. We show a reduction of 30% in total scan time compared to conventional step-by-step scanning. The reconstructed Bragg electron density, phase, displacement and strain fields are in excellent agreement with the results obtained from conventional step-by-step scanning. Continuous scanning will allow to minimise sample instability under the beam and will become increasingly important at diffraction-limited storage ring light sources.
- Published
- 2020
- Full Text
- View/download PDF
7. Hybrid hierarchical nanolattices with porous platinum coating
- Author
-
Ehud Almog, Amit Sharma, Yuanshen Qi, Jonathan Zimmerman, and Eugen Rabkin
- Subjects
Polymers and Plastics ,Metals and Alloys ,Ceramics and Composites ,Electronic, Optical and Magnetic Materials - Published
- 2022
- Full Text
- View/download PDF
8. Twin boundary migration in an individual platinum nanocrystal during catalytic CO oxidation
- Author
-
Luc Favre, Maxime Dupraz, Emiel J. M. Hensen, Olivier P. Thomas, Ehud Almog, Tobias U. Schülli, Aseem Rajan Kshirsagar, Jan P. Hofmann, Jerome Carnis, Marie-Ingrid Richard, Nimrod Gazit, Lu Gao, Steven J. Leake, Freddy E. Oropeza, Andrea Campos, Michael Texier, Jean Sébastien Micha, Longfei Wu, Stéphane Labat, Eugen Rabkin, Roberta Poloni, Inorganic Materials & Catalysis, EIRES Chem. for Sustainable Energy Systems, European Synchroton Radiation Facility [Grenoble] (ESRF), Deutsches Elektronen-Synchrotron [Hamburg] (DESY), Institut des Matériaux, de Microélectronique et des Nanosciences de Provence (IM2NP), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Science et Ingénierie des Matériaux et Procédés (SIMaP), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Eindhoven University of Technology [Eindhoven] (TU/e), Technion - Israel Institute of Technology [Haifa], Centre Pluridisciplinaire de Microscopie Electronique et de Microanalyse (AMU CP2M), Aix Marseille Université (AMU), Darmstadt University of Technology [Darmstadt], Nanostructures et Rayonnement Synchrotron (NRS ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), ANR-16-CE07-0028,CHARLINE,Diffraction cohérente pour sonder la structure interne des nanostructures : catalyse et interface(2016), and Technion Israel Inst Technol, Dept Mat Sci & Engn, IL-32000 Haifa, Israel
- Subjects
Materials science ,Science ,General Physics and Astronomy ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,Platinum nanoparticles ,01 natural sciences ,General Biochemistry, Genetics and Molecular Biology ,Catalysis ,Multidisciplinary ,General Chemistry ,[CHIM.CATA]Chemical Sciences/Catalysis ,021001 nanoscience & nanotechnology ,Crystallographic defect ,Coherent diffraction imaging ,0104 chemical sciences ,chemistry ,Nanocrystal ,Chemical physics ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Density functional theory ,0210 nano-technology ,Platinum ,Crystal twinning - Abstract
At the nanoscale, elastic strain and crystal defects largely influence the properties and functionalities of materials. The ability to predict the structural evolution of catalytic nanocrystals during the reaction is of primary importance for catalyst design. However, to date, imaging and characterising the structure of defects inside a nanocrystal in three-dimensions and in situ during reaction has remained a challenge. We report here an unusual twin boundary migration process in a single platinum nanoparticle during CO oxidation using Bragg coherent diffraction imaging as the characterisation tool. Density functional theory calculations show that twin migration can be correlated with the relative change in the interfacial energies of the free surfaces exposed to CO. The x-ray technique also reveals particle reshaping during the reaction. In situ and non-invasive structural characterisation of defects during reaction opens new avenues for understanding defect behaviour in confined crystals and paves the way for strain and defect engineering. At the nanoscale, elastic strain and crystal defects largely influence the properties and functionalities of materials. Here, the authors report an unusual twin boundary migration process in a single platinum nanoparticle during carbon monoxide oxidation using Bragg coherent diffraction imaging.
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.