114 results on '"Ehrhart F"'
Search Results
2. Revealing of Medical and Biological Relevant Cellular Processes by Automated Time Lapse Microscopy
- Author
-
Gepp, M. M., Sébastien, I., Groeber, F. K., Schulz, J. C., Ehrhart, F., Zimmermann, Heiko, Magjarevic, Ratko, Dössel, Olaf, editor, and Schlegel, Wolfgang C., editor
- Published
- 2010
- Full Text
- View/download PDF
3. Quantitative 3D High Speed Video Analysis of Capsule Formation during Encapsulation Processes
- Author
-
Meiser, I., Müller, S. C., Zimmermann, H., Ehrhart, F., Magjarevic, Ratko, Dössel, Olaf, editor, and Schlegel, Wolfgang C., editor
- Published
- 2010
- Full Text
- View/download PDF
4. Methods for Encapsulation and Storage of Human Stem Cells in Three Dimensional Alginate Aggregates
- Author
-
Schulz, J. C., Groeber, F. K., Beier, A. F. J., Meiser, I., Ehrhart, F., Zimmermann, U., Zimmermann, H., Magjarevic, Ratko, Dössel, Olaf, editor, and Schlegel, Wolfgang C., editor
- Published
- 2010
- Full Text
- View/download PDF
5. Quantitative High Speed Video Analysis of Biopolymer Encapsulated Cells while Capsule Formation
- Author
-
Meiser, I., Müller, S. C., Gepp, M. M., Zimmermann, H., Ehrhart, F., Magjarevic, R., editor, Nagel, J. H., editor, Vander Sloten, Jos, editor, Verdonck, Pascal, editor, Nyssen, Marc, editor, and Haueisen, Jens, editor
- Published
- 2009
- Full Text
- View/download PDF
6. A Novel Microfluidic Based Technique for Encapsulation of Langerhans´ Islets Using High Viscosity Alginate and BaSO4 Nanoparticles
- Author
-
Ehrhart, F., Stumpf, Patrick, Wiedemeier, S., Weyand, E., Danzebrink, R., Weber, M. M., Metze, J., Sukhorukov, V., Zimmermann, U., Zimmermann, H., Magjarevic, Ratko, editor, Dössel, Olaf, editor, and Schlegel, Wolfgang C., editor
- Published
- 2010
- Full Text
- View/download PDF
7. Integration of omics data and database knowledge reveals downstream pathways of MECP2 in Rett syndrome
- Author
-
Ehrhart, F., Coort, S. L., Eijssen, L., Bahram-Sangani, N., Smeets, E., Evelo, C. T., and Curfs, L. M. G.
- Published
- 2017
8. Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen
- Author
-
Menden M, Wang D, Mason M, Szalai B, Bulusu K, Guan Y, Yu T, Kang J, Jeon M, Wolfinger R, Nguyen T, Zaslavskiy M, Jang I, Ghazoui Z, Ahsen M, Vogel R, Neto E, Norman T, Tang E, Garnett M, Di Veroli G, Fawell S, Stolovitzky G, Guinney J, Dry J, Saez-Rodriguez J, Abante J, Abecassis B, Aben N, Aghamirzaie D, Aittokallio T, Akhtari F, Al-lazikani B, Alam T, Allam A, Allen C, de Almeida M, Altarawy D, Alves V, Amadoz A, Anchang B, Antolin A, Ash J, Aznar V, Ba-alawi W, Bagheri M, Bajic V, Ball G, Ballester P, Baptista D, Bare C, Bateson M, Bender A, Bertrand D, Wijayawardena B, Boroevich K, Bosdriesz E, Bougouffa S, Bounova G, Brouwer T, Bryant B, Calaza M, Calderone A, Calza S, Capuzzi S, Carbonell-Caballero J, Carlin D, Carter H, Castagnoli L, Celebi R, Cesareni G, Chang H, Chen G, Chen H, Cheng L, Chernomoretz A, Chicco D, Cho K, Cho S, Choi D, Choi J, Choi K, Choi M, De Cock M, Coker E, Cortes-Ciriano I, Cserzo M, Cubuk C, Curtis C, Van Daele D, Dang C, Dijkstra T, Dopazo J, Draghici S, Drosou A, Dumontier M, Ehrhart F, Eid F, ElHefnawi M, Elmarakeby H, van Engelen B, Engin H, de Esch I, Evelo C, Falcao A, Farag S, Fernandez-Lozano C, Fisch K, Flobak A, Fornari C, Foroushani A, Fotso D, Fourches D, Friend S, Frigessi A, Gao F, Gao X, Gerold J, Gestraud P, Ghosh S, Gillberg J, Godoy-Lorite A, Godynyuk L, Godzik A, Goldenberg A, Gomez-Cabrero D, Gonen M, de Graaf C, Gray H, Grechkin M, Guimera R, Guney E, Haibe-Kains B, Han Y, Hase T, He D, He L, Heath L, Hellton K, Helmer-Citterich M, Hidalgo M, Hidru D, Hill S, Hochreiter S, Hong S, Hovig E, Hsueh Y, Hu Z, Huang J, Huang R, Hunyady L, Hwang J, Hwang T, Hwang W, Hwang Y, Isayev O, Walk O, Jack J, Jahandideh S, Ji J, Jo Y, Kamola P, Kanev G, Karacosta L, Karimi M, Kaski S, Kazanov M, Khamis A, Khan S, Kiani N, Kim A, Kim J, Kim K, Kim S, Kim Y, Kirk P, Kitano H, Klambauer G, Knowles D, Ko M, Kohn-Luque A, Kooistra A, Kuenemann M, Kuiper M, Kurz C, Kwon M, van Laarhoven T, Laegreid A, Lederer S, Lee H, Lee J, Lee Y, Leppaho E, Lewis R, Li J, Li L, Liley J, Lim W, Lin C, Liu Y, Lopez Y, Low J, Lysenko A, Machado D, Madhukar N, De Maeyer D, Malpartida A, Mamitsuka H, Marabita F, Marchal K, Marttinen P, Mason D, Mazaheri A, Mehmood A, Mehreen A, Michaut M, Miller R, Mitsopoulos C, Modos D, Van Moerbeke M, Moo K, Motsinger-Reif A, Movva R, Muraru S, Muratov E, Mushthofa M, Nagarajan N, Nakken S, Nath A, Neuvial P, Newton R, Ning Z, De Niz C, Oliva B, Olsen C, Palmeri A, Panesar B, Papadopoulos S, Park J, Park S, Pawitan Y, Peluso D, Pendyala S, Peng J, Perfetto L, Pirro S, Plevritis S, Politi R, Poon H, Porta E, Prellner I, Preuer K, Pujana M, Ramnarine R, Reid J, Reyal F, Richardson S, Ricketts C, Rieswijk L, Rocha M, Rodriguez-Gonzalvez C, Roell K, Rotroff D, de Ruiter J, Rukawa P, Sadacca B, Safikhani Z, Safitri F, Sales-Pardo M, Sauer S, Schlichting M, Seoane J, Serra J, Shang M, Sharma A, Sharma H, Shen Y, Shiga M, Shin M, Shkedy Z, Shopsowitz K, Sinai S, Skola D, Smirnov P, Soerensen I, Soerensen P, Song J, Song S, Soufan O, Spitzmueller A, Steipe B, Suphavilai C, Tamayo S, Tamborero D, Tang J, Tanoli Z, Tarres-Deulofeu M, Tegner J, Thommesen L, Tonekaboni S, Tran H, De Troyer E, Truong A, Tsunoda T, Turu G, Tzeng G, Verbeke L, Videla S, Vis D, Voronkov A, Votis K, Wang A, Wang H, Wang P, Wang S, Wang W, Wang X, Wennerberg K, Wernisch L, Wessels L, van Westen G, Westerman B, White S, Willighagen E, Wurdinger T, Xie L, Xie S, Xu H, Yadav B, Yau C, Yeerna H, Yin J, Yu M, Yun S, Zakharov A, Zamichos A, Zanin M, Zeng L, Zenil H, Zhang F, Zhang P, Zhang W, Zhao H, Zhao L, Zheng W, Zoufir A, Zucknick M, AstraZeneca-Sanger Drug Combinatio, Ege Üniversitesi, Gönen, Mehmet (ORCID 0000-0002-2483-075X & YÖK ID 237468), Menden, Michael P., Wang, Dennis, Mason, Mike J., Szalai, Bence, Bulusu, Krishna C., Guan, Yuanfang, Yu, Thomas, Kang, Jaewoo, Jeon, Minji, Wolfinger, Russ, Nguyen, Tin, Zaslavskiy, Mikhail, Jang, In Sock, Ghazoui, Zara, Ahsen, Mehmet Eren, Vogel, Robert, Neto, Elias Chaibub, Norman, Thea, Tang, Eric K. Y., Garnett, Mathew J., Di Veroli, Giovanni Y., Fawell, Stephen, Stolovitzky, Gustavo, Guinney, Justin, Dry, Jonathan R., Saez-Rodriguez, Julio, Abante, Jordi, Abecassis, Barbara Schmitz, Aben, Nanne, Aghamirzaie, Delasa, Aittokallio, Tero, Akhtari, Farida S., Al-lazikani, Bissan, Alam, Tanvir, Allam, Amin, Allen, Chad, de Almeida, Mariana Pelicano, Altarawy, Doaa, Alves, Vinicius, Amadoz, Alicia, Anchang, Benedict, Antolin, Albert A., Ash, Jeremy R., Romeo Aznar, Victoria, Ba-alawi, Wail, Bagheri, Moeen, Bajic, Vladimir, Ball, Gordon, Ballester, Pedro J., Baptista, Delora, Bare, Christopher, Bateson, Mathilde, Bender, Andreas, Bertrand, Denis, Wijayawardena, Bhagya, Boroevich, Keith A., Bosdriesz, Evert, Bougouffa, Salim, Bounova, Gergana, Brouwer, Thomas, Bryant, Barbara, Calaza, Manuel, Calderone, Alberto, Calza, Stefano, Capuzzi, Stephen, Carbonell-Caballero, Jose, Carlin, Daniel, Carter, Hannah, Castagnoli, Luisa, Celebi, Remzi, Cesareni, Gianni, Chang, Hyeokyoon, Chen, Guocai, Chen, Haoran, Chen, Huiyuan, Cheng, Lijun, Chernomoretz, Ariel, Chicco, Davide, Cho, Kwang-Hyun, Cho, Sunghwan, Choi, Daeseon, Choi, Jaejoon, Choi, Kwanghun, Choi, Minsoo, De Cock, Martine, Coker, Elizabeth, Cortes-Ciriano, Isidro, Cserzo, Miklos, Cubuk, Cankut, Curtis, Christina, Van Daele, Dries, Dang, Cuong C., Dijkstra, Tjeerd, Dopazo, Joaquin, Draghici, Sorin, Drosou, Anastasios, Dumontier, Michel, Ehrhart, Friederike, Eid, Fatma-Elzahraa, ElHefnawi, Mahmoud, Elmarakeby, Haitham, van Engelen, Bo, Engin, Hatice Billur, de Esch, Iwan, Evelo, Chris, Falcao, Andre O., Farag, Sherif, Fernandez-Lozano, Carlos, Fisch, Kathleen, Flobak, Asmund, Fornari, Chiara, Foroushani, Amir B. K., Fotso, Donatien Chedom, Fourches, Denis, Friend, Stephen, Frigessi, Arnoldo, Gao, Feng, Gao, Xiaoting, Gerold, Jeffrey M., Gestraud, Pierre, Ghosh, Samik, Gillberg, Jussi, Godoy-Lorite, Antonia, Godynyuk, Lizzy, Godzik, Adam, Goldenberg, Anna, Gomez-Cabrero, David, de Graaf, Chris, Gray, Harry, Grechkin, Maxim, Guimera, Roger, Guney, Emre, Haibe-Kains, Benjamin, Han, Younghyun, Hase, Takeshi, He, Di, He, Liye, Heath, Lenwood S., Hellton, Kristoffer H., Helmer-Citterich, Manuela, Hidalgo, Marta R., Hidru, Daniel, Hill, Steven M., Hochreiter, Sepp, Hong, Seungpyo, Hovig, Eivind, Hsueh, Ya-Chih, Hu, Zhiyuan, Huang, Justin K., Huang, R. Stephanie, Hunyady, Laszlo, Hwang, Jinseub, Hwang, Tae Hyun, Hwang, Woochang, Hwang, Yongdeuk, Isayev, Olexandr, Walk, Oliver Bear Don't, Jack, John, Jahandideh, Samad, Ji, Jiadong, Jo, Yousang, Kamola, Piotr J., Kanev, Georgi K., Karacosta, Loukia, Karimi, Mostafa, Kaski, Samuel, Kazanov, Marat, Khamis, Abdullah M., Khan, Suleiman Ali, Kiani, Narsis A., Kim, Allen, Kim, Jinhan, Kim, Juntae, Kim, Kiseong, Kim, Kyung, Kim, Sunkyu, Kim, Yongsoo, Kim, Yunseong, Kirk, Paul D. W., Kitano, Hiroaki, Klambauer, Gunter, Knowles, David, Ko, Melissa, Kohn-Luque, Alvaro, Kooistra, Albert J., Kuenemann, Melaine A., Kuiper, Martin, Kurz, Christoph, Kwon, Mijin, van Laarhoven, Twan, Laegreid, Astrid, Lederer, Simone, Lee, Heewon, Lee, Jeon, Lee, Yun Woo, Leppaho, Eemeli, Lewis, Richard, Li, Jing, Li, Lang, Liley, James, Lim, Weng Khong, Lin, Chieh, Liu, Yiyi, Lopez, Yosvany, Low, Joshua, Lysenko, Artem, Machado, Daniel, Madhukar, Neel, De Maeyer, Dries, Malpartida, Ana Belen, Mamitsuka, Hiroshi, Marabita, Francesco, Marchal, Kathleen, Marttinen, Pekka, Mason, Daniel, Mazaheri, Alireza, Mehmood, Arfa, Mehreen, Ali, Michaut, Magali, Miller, Ryan A., Mitsopoulos, Costas, Modos, Dezso, Van Moerbeke, Marijke, Moo, Keagan, Motsinger-Reif, Alison, Movva, Rajiv, Muraru, Sebastian, Muratov, Eugene, Mushthofa, Mushthofa, Nagarajan, Niranjan, Nakken, Sigve, Nath, Aritro, Neuvial, Pierre, Newton, Richard, Ning, Zheng, De Niz, Carlos, Oliva, Baldo, Olsen, Catharina, Palmeri, Antonio, Panesar, Bhawan, Papadopoulos, Stavros, Park, Jaesub, Park, Seonyeong, Park, Sungjoon, Pawitan, Yudi, Peluso, Daniele, Pendyala, Sriram, Peng, Jian, Perfetto, Livia, Pirro, Stefano, Plevritis, Sylvia, Politi, Regina, Poon, Hoifung, Porta, Eduard, Prellner, Isak, Preuer, Kristina, Angel Pujana, Miguel, Ramnarine, Ricardo, Reid, John E., Reyal, Fabien, Richardson, Sylvia, Ricketts, Camir, Rieswijk, Linda, Rocha, Miguel, Rodriguez-Gonzalvez, Carmen, Roell, Kyle, Rotroff, Daniel, de Ruiter, Julian R., Rukawa, Ploy, Sadacca, Benjamin, Safikhani, Zhaleh, Safitri, Fita, Sales-Pardo, Marta, Sauer, Sebastian, Schlichting, Moritz, Seoane, Jose A., Serra, Jordi, Shang, Ming-Mei, Sharma, Alok, Sharma, Hari, Shen, Yang, Shiga, Motoki, Shin, Moonshik, Shkedy, Ziv, Shopsowitz, Kevin, Sinai, Sam, Skola, Dylan, Smirnov, Petr, Soerensen, Izel Fourie, Soerensen, Peter, Song, Je-Hoon, Song, Sang Ok, Soufan, Othman, Spitzmueller, Andreas, Steipe, Boris, Suphavilai, Chayaporn, Tamayo, Sergio Pulido, Tamborero, David, Tang, Jing, Tanoli, Zia-ur-Rehman, Tarres-Deulofeu, Marc, Tegner, Jesper, Thommesen, Liv, Tonekaboni, Seyed Ali Madani, Tran, Hong, De Troyer, Ewoud, Truong, Amy, Tsunoda, Tatsuhiko, Turu, Gabor, Tzeng, Guang-Yo, Verbeke, Lieven, Videla, Santiago, Vis, Daniel, Voronkov, Andrey, Votis, Konstantinos, Wang, Ashley, Wang, Hong-Qiang Horace, Wang, Po-Wei, Wang, Sheng, Wang, Wei, Wang, Xiaochen, Wang, Xin, Wennerberg, Krister, Wernisch, Lorenz, Wessels, Lodewyk, van Westen, Gerard J. P., Westerman, Bart A., White, Simon Richard, Willighagen, Egon, Wurdinger, Tom, Xie, Lei, Xie, Shuilian, Xu, Hua, Yadav, Bhagwan, Yau, Christopher, Yeerna, Huwate, Yin, Jia Wei, Yu, Michael, Yu, MinHwan, Yun, So Jeong, Zakharov, Alexey, Zamichos, Alexandros, Zanin, Massimiliano, Zeng, Li, Zenil, Hector, Zhang, Frederick, Zhang, Pengyue, Zhang, Wei, Zhao, Hongyu, Zhao, Lan, Zheng, Wenjin, Zoufir, Azedine, Zucknick, Manuela, College of Engineering, Department of Industrial Engineering, Institute of Data Science, RS: FSE DACS IDS, Bioinformatica, RS: NUTRIM - R1 - Obesity, diabetes and cardiovascular health, RS: FHML MaCSBio, Promovendi NTM, Tero Aittokallio / Principal Investigator, Bioinformatics, Institute for Molecular Medicine Finland, Hu, Z, Fotso, DC, Menden, M, Wang, D, Mason, M, Szalai, B, Bulusu, K, Guan, Y, Yu, T, Kang, J, Jeon, M, Wolfinger, R, Nguyen, T, Zaslavskiy, M, Abante, J, Abecassis, B, Aben, N, Aghamirzaie, D, Aittokallio, T, Akhtari, F, Al-lazikani, B, Alam, T, Allam, A, Allen, C, de Almeida, M, Altarawy, D, Alves, V, Amadoz, A, Anchang, B, Antolin, A, Ash, J, Aznar, V, Ba-alawi, W, Bagheri, M, Bajic, V, Ball, G, Ballester, P, Baptista, D, Bare, C, Bateson, M, Bender, A, Bertrand, D, Wijayawardena, B, Boroevich, K, Bosdriesz, E, Bougouffa, S, Bounova, G, Brouwer, T, Bryant, B, Calaza, M, Calderone, A, Calza, S, Capuzzi, S, Carbonell-Caballero, J, Carlin, D, Carter, H, Castagnoli, L, Celebi, R, Cesareni, G, Chang, H, Chen, G, Chen, H, Cheng, L, Chernomoretz, A, Chicco, D, Cho, K, Cho, S, Choi, D, Choi, J, Choi, K, Choi, M, Cock, M, Coker, E, Cortes-Ciriano, I, Cserzo, M, Cubuk, C, Curtis, C, Daele, D, Dang, C, Dijkstra, T, Dopazo, J, Draghici, S, Drosou, A, Dumontier, M, Ehrhart, F, Eid, F, Elhefnawi, M, Elmarakeby, H, van Engelen, B, Engin, H, de Esch, I, Evelo, C, Falcao, A, Farag, S, Fernandez-Lozano, C, Fisch, K, Flobak, A, Fornari, C, Foroushani, A, Fotso, D, Fourches, D, Friend, S, Frigessi, A, Gao, F, Gao, X, Gerold, J, Gestraud, P, Ghosh, S, Gillberg, J, Godoy-Lorite, A, Godynyuk, L, Godzik, A, Goldenberg, A, Gomez-Cabrero, D, Gonen, M, de Graaf, C, Gray, H, Grechkin, M, Guimera, R, Guney, E, Haibe-Kains, B, Han, Y, Hase, T, He, D, He, L, Heath, L, Hellton, K, Helmer-Citterich, M, Hidalgo, M, Hidru, D, Hill, S, Hochreiter, S, Hong, S, Hovig, E, Hsueh, Y, Huang, J, Huang, R, Hunyady, L, Hwang, J, Hwang, T, Hwang, W, Hwang, Y, Isayev, O, Don't Walk, O, Jack, J, Jahandideh, S, Ji, J, Jo, Y, Kamola, P, Kanev, G, Karacosta, L, Karimi, M, Kaski, S, Kazanov, M, Khamis, A, Khan, S, Kiani, N, Kim, A, Kim, J, Kim, K, Kim, S, Kim, Y, Kirk, P, Kitano, H, Klambauer, G, Knowles, D, Ko, M, Kohn-Luque, A, Kooistra, A, Kuenemann, M, Kuiper, M, Kurz, C, Kwon, M, van Laarhoven, T, Laegreid, A, Lederer, S, Lee, H, Lee, J, Lee, Y, Lepp_aho, E, Lewis, R, Li, J, Li, L, Liley, J, Lim, W, Lin, C, Liu, Y, Lopez, Y, Low, J, Lysenko, A, Machado, D, Madhukar, N, Maeyer, D, Malpartida, A, Mamitsuka, H, Marabita, F, Marchal, K, Marttinen, P, Mason, D, Mazaheri, A, Mehmood, A, Mehreen, A, Michaut, M, Miller, R, Mitsopoulos, C, Modos, D, Moerbeke, M, Moo, K, Motsinger-Reif, A, Movva, R, Muraru, S, Muratov, E, Mushthofa, M, Nagarajan, N, Nakken, S, Nath, A, Neuvial, P, Newton, R, Ning, Z, Niz, C, Oliva, B, Olsen, C, Palmeri, A, Panesar, B, Papadopoulos, S, Park, J, Park, S, Pawitan, Y, Peluso, D, Pendyala, S, Peng, J, Perfetto, L, Pirro, S, Plevritis, S, Politi, R, Poon, H, Porta, E, Prellner, I, Preuer, K, Pujana, M, Ramnarine, R, Reid, J, Reyal, F, Richardson, S, Ricketts, C, Rieswijk, L, Rocha, M, Rodriguez-Gonzalvez, C, Roell, K, Rotroff, D, de Ruiter, J, Rukawa, P, Sadacca, B, Safikhani, Z, Safitri, F, Sales-Pardo, M, Sauer, S, Schlichting, M, Seoane, J, Serra, J, Shang, M, Sharma, A, Sharma, H, Shen, Y, Shiga, M, Shin, M, Shkedy, Z, Shopsowitz, K, Sinai, S, Skola, D, Smirnov, P, Soerensen, I, Soerensen, P, Song, J, Song, S, Soufan, O, Spitzmueller, A, Steipe, B, Suphavilai, C, Tamayo, S, Tamborero, D, Tang, J, Tanoli, Z, Tarres-Deulofeu, M, Tegner, J, Thommesen, L, Tonekaboni, S, Tran, H, Troyer, E, Truong, A, Tsunoda, T, Turu, G, Tzeng, G, Verbeke, L, Videla, S, Vis, D, Voronkov, A, Votis, K, Wang, A, Wang, H, Wang, P, Wang, S, Wang, W, Wang, X, Wennerberg, K, Wernisch, L, Wessels, L, van Westen, G, Westerman, B, White, S, Willighagen, E, Wurdinger, T, Xie, L, Xie, S, Xu, H, Yadav, B, Yau, C, Yeerna, H, Yin, J, Yu, M, Yun, S, Zakharov, A, Zamichos, A, Zanin, M, Zeng, L, Zenil, H, Zhang, F, Zhang, P, Zhang, W, Zhao, H, Zhao, L, Zheng, W, Zoufir, A, Zucknick, M, Jang, I, Ghazoui, Z, Ahsen, M, Vogel, R, Neto, E, Norman, T, Tang, E, Garnett, M, Veroli, G, Fawell, S, Stolovitzky, G, Guinney, J, Dry, J, Saez-Rodriguez, J, Menden, Michael P. [0000-0003-0267-5792], Mason, Mike J. [0000-0002-5652-7739], Yu, Thomas [0000-0002-5841-0198], Kang, Jaewoo [0000-0001-6798-9106], Nguyen, Tin [0000-0001-8001-9470], Ahsen, Mehmet Eren [0000-0002-4907-0427], Stolovitzky, Gustavo [0000-0002-9618-2819], Guinney, Justin [0000-0003-1477-1888], Saez-Rodriguez, Julio [0000-0002-8552-8976], Apollo - University of Cambridge Repository, Menden, Michael P [0000-0003-0267-5792], Mason, Mike J [0000-0002-5652-7739], Pathology, CCA - Cancer biology and immunology, Medical oncology laboratory, Neurosurgery, Chemistry and Pharmaceutical Sciences, AIMMS, Medicinal chemistry, Universidade do Minho, Department of Computer Science, Professorship Marttinen P., Aalto-yliopisto, and Aalto University
- Subjects
Drug Resistance ,02 engineering and technology ,13 ,PATHWAY ,Antineoplastic Combined Chemotherapy Protocols ,Molecular Targeted Therapy ,Càncer ,lcsh:Science ,media_common ,Cancer ,Tumor ,Settore BIO/18 ,Settore BIO/11 ,Drug combinations ,High-throughput screening ,Drug Synergism ,purl.org/becyt/ford/1.2 [https] ,Genomics ,Machine Learning ,predictions ,3. Good health ,ddc ,Technologie de l'environnement, contrôle de la pollution ,Benchmarking ,5.1 Pharmaceuticals ,Cancer treatment ,Farmacogenètica ,Science & Technology - Other Topics ,Development of treatments and therapeutic interventions ,0210 nano-technology ,Human ,Drug ,media_common.quotation_subject ,Science ,49/23 ,ADAM17 Protein ,General Biochemistry, Genetics and Molecular Biology ,03 medical and health sciences ,SDG 3 - Good Health and Well-being ,RESOURCE ,Machine learning ,Genetics ,Chimie ,Humans ,BREAST-CANCER ,CELL ,49/98 ,Science & Technology ,Antineoplastic Combined Chemotherapy Protocol ,45 ,MUTATIONS ,Computational Biology ,Androgen receptor ,Breast-cancer ,Gene ,Cell ,Inhibition ,Resistance ,Pathway ,Mutations ,Landscape ,Resource ,631/114/1305 ,medicine.disease ,Drug synergy ,49 ,030104 developmental biology ,Pharmacogenetics ,Mutation ,Ciências Médicas::Biotecnologia Médica ,lcsh:Q ,631/154/1435/2163 ,Biomarkers ,RESISTANCE ,0301 basic medicine ,ING-INF/06 - BIOINGEGNERIA ELETTRONICA E INFORMATICA ,Statistical methods ,Computer science ,General Physics and Astronomy ,Datasets as Topic ,Drug resistance ,purl.org/becyt/ford/1 [https] ,Phosphatidylinositol 3-Kinases ,Biotecnologia Médica [Ciências Médicas] ,Neoplasms ,Science and technology ,Phosphoinositide-3 Kinase Inhibitors ,Multidisciplinary ,Biomarkers, Tumor ,Cell Line, Tumor ,Drug Antagonism ,Drug Resistance, Neoplasm ,Treatment Outcome ,Pharmacogenetic ,article ,ANDROGEN RECEPTOR ,49/39 ,631/114/2415 ,021001 nanoscience & nanotechnology ,692/4028/67 ,Multidisciplinary Sciences ,317 Pharmacy ,Patient Safety ,Systems biology ,3122 Cancers ,INHIBITION ,Computational biology ,Cell Line ,medicine ,LANDSCAPE ,Physique ,Human Genome ,Data Science ,General Chemistry ,AstraZeneca-Sanger Drug Combination DREAM Consortium ,Astronomie ,GENE ,Good Health and Well Being ,Pharmacogenomics ,Genomic ,Neoplasm ,631/553 ,Phosphatidylinositol 3-Kinase - Abstract
PubMed: 31209238, The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca’s large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells. © 2019, The Author(s)., National Institute for Health Research, NIHR Wellcome Trust, WT: 102696, 206194 Magyar Tudományos Akadémia, MTA Bayer 668858 PrECISE AstraZeneca, We thank the Genomics of Drug Sensitivity in Cancer and COSMIC teams at the Wellcome Trust Sanger Institute for help with the preparation of the molecular data, Denes Turei for help with Omnipath, and Katjusa Koler for help with matching drug names across combination screens. We thank AstraZeneca for funding and provision of data to the DREAM Consortium to run the challenge, and funding from the European Union Horizon 2020 research (under grant agreement No 668858 PrECISE to J.S.R.), the Joint Research Center for Computational Biomedicine (which is partially funded by Bayer AG) to J.S.R., National Institute for Health Research (NIHR) Sheffield Biomedical Research Center, Premium Postdoctoral Fellowship Program of the Hungarian Academy of Sciences. M.G lab is supported by Wellcome Trust (102696 and 206194)., Competing interests: K.C.B., Z.G., G.Y.D., E.K.Y.T., S.F., and J.R.D. are AstraZeneca employees. K.C.B., Z.G., E.K.Y.T., S.F., and J.R.D. are AstraZeneca shareholders. Y.G. receives personal compensation from Eli Lilly and Company, is a shareholder of Cleerly, Inc., and Ann Arbor Algorithms, Inc. M.G. receives research funding from AstraZeneca and has performed consultancy for Sanofi. The remaining authors declare no competing interests.
- Published
- 2019
9. Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen
- Author
-
Menden, M, Wang, D, Mason, M, Szalai, B, Bulusu, K, Guan, Y, Yu, T, Kang, J, Jeon, M, Wolfinger, R, Nguyen, T, Zaslavskiy, M, Abante, J, Abecassis, B, Aben, N, Aghamirzaie, D, Aittokallio, T, Akhtari, F, Al-lazikani, B, Alam, T, Allam, A, Allen, C, de Almeida, M, Altarawy, D, Alves, V, Amadoz, A, Anchang, B, Antolin, A, Ash, J, Aznar, V, Ba-alawi, W, Bagheri, M, Bajic, V, Ball, G, Ballester, P, Baptista, D, Bare, C, Bateson, M, Bender, A, Bertrand, D, Wijayawardena, B, Boroevich, K, Bosdriesz, E, Bougouffa, S, Bounova, G, Brouwer, T, Bryant, B, Calaza, M, Calderone, A, Calza, S, Capuzzi, S, Carbonell-Caballero, J, Carlin, D, Carter, H, Castagnoli, L, Celebi, R, Cesareni, G, Chang, H, Chen, G, Chen, H, Cheng, L, Chernomoretz, A, Chicco, D, Cho, K, Cho, S, Choi, D, Choi, J, Choi, K, Choi, M, Cock, M, Coker, E, Cortes-Ciriano, I, Cserzo, M, Cubuk, C, Curtis, C, Daele, D, Dang, C, Dijkstra, T, Dopazo, J, Draghici, S, Drosou, A, Dumontier, M, Ehrhart, F, Eid, F, Elhefnawi, M, Elmarakeby, H, van Engelen, B, Engin, H, de Esch, I, Evelo, C, Falcao, A, Farag, S, Fernandez-Lozano, C, Fisch, K, Flobak, A, Fornari, C, Foroushani, A, Fotso, D, Fourches, D, Friend, S, Frigessi, A, Gao, F, Gao, X, Gerold, J, Gestraud, P, Ghosh, S, Gillberg, J, Godoy-Lorite, A, Godynyuk, L, Godzik, A, Goldenberg, A, Gomez-Cabrero, D, Gonen, M, de Graaf, C, Gray, H, Grechkin, M, Guimera, R, Guney, E, Haibe-Kains, B, Han, Y, Hase, T, He, D, He, L, Heath, L, Hellton, K, Helmer-Citterich, M, Hidalgo, M, Hidru, D, Hill, S, Hochreiter, S, Hong, S, Hovig, E, Hsueh, Y, Hu, Z, Huang, J, Huang, R, Hunyady, L, Hwang, J, Hwang, T, Hwang, W, Hwang, Y, Isayev, O, Don't Walk, O, Jack, J, Jahandideh, S, Ji, J, Jo, Y, Kamola, P, Kanev, G, Karacosta, L, Karimi, M, Kaski, S, Kazanov, M, Khamis, A, Khan, S, Kiani, N, Kim, A, Kim, J, Kim, K, Kim, S, Kim, Y, Kirk, P, Kitano, H, Klambauer, G, Knowles, D, Ko, M, Kohn-Luque, A, Kooistra, A, Kuenemann, M, Kuiper, M, Kurz, C, Kwon, M, van Laarhoven, T, Laegreid, A, Lederer, S, Lee, H, Lee, J, Lee, Y, Lepp_aho, E, Lewis, R, Li, J, Li, L, Liley, J, Lim, W, Lin, C, Liu, Y, Lopez, Y, Low, J, Lysenko, A, Machado, D, Madhukar, N, Maeyer, D, Malpartida, A, Mamitsuka, H, Marabita, F, Marchal, K, Marttinen, P, Mason, D, Mazaheri, A, Mehmood, A, Mehreen, A, Michaut, M, Miller, R, Mitsopoulos, C, Modos, D, Moerbeke, M, Moo, K, Motsinger-Reif, A, Movva, R, Muraru, S, Muratov, E, Mushthofa, M, Nagarajan, N, Nakken, S, Nath, A, Neuvial, P, Newton, R, Ning, Z, Niz, C, Oliva, B, Olsen, C, Palmeri, A, Panesar, B, Papadopoulos, S, Park, J, Park, S, Pawitan, Y, Peluso, D, Pendyala, S, Peng, J, Perfetto, L, Pirro, S, Plevritis, S, Politi, R, Poon, H, Porta, E, Prellner, I, Preuer, K, Pujana, M, Ramnarine, R, Reid, J, Reyal, F, Richardson, S, Ricketts, C, Rieswijk, L, Rocha, M, Rodriguez-Gonzalvez, C, Roell, K, Rotroff, D, de Ruiter, J, Rukawa, P, Sadacca, B, Safikhani, Z, Safitri, F, Sales-Pardo, M, Sauer, S, Schlichting, M, Seoane, J, Serra, J, Shang, M, Sharma, A, Sharma, H, Shen, Y, Shiga, M, Shin, M, Shkedy, Z, Shopsowitz, K, Sinai, S, Skola, D, Smirnov, P, Soerensen, I, Soerensen, P, Song, J, Song, S, Soufan, O, Spitzmueller, A, Steipe, B, Suphavilai, C, Tamayo, S, Tamborero, D, Tang, J, Tanoli, Z, Tarres-Deulofeu, M, Tegner, J, Thommesen, L, Tonekaboni, S, Tran, H, Troyer, E, Truong, A, Tsunoda, T, Turu, G, Tzeng, G, Verbeke, L, Videla, S, Vis, D, Voronkov, A, Votis, K, Wang, A, Wang, H, Wang, P, Wang, S, Wang, W, Wang, X, Wennerberg, K, Wernisch, L, Wessels, L, van Westen, G, Westerman, B, White, S, Willighagen, E, Wurdinger, T, Xie, L, Xie, S, Xu, H, Yadav, B, Yau, C, Yeerna, H, Yin, J, Yu, M, Yun, S, Zakharov, A, Zamichos, A, Zanin, M, Zeng, L, Zenil, H, Zhang, F, Zhang, P, Zhang, W, Zhao, H, Zhao, L, Zheng, W, Zoufir, A, Zucknick, M, Jang, I, Ghazoui, Z, Ahsen, M, Vogel, R, Neto, E, Norman, T, Tang, E, Garnett, M, Veroli, G, Fawell, S, Stolovitzky, G, Guinney, J, Dry, J, Saez-Rodriguez, J, Menden M. P., Wang D., Mason M. J., Szalai B., Bulusu K. C., Guan Y., Yu T., Kang J., Jeon M., Wolfinger R., Nguyen T., Zaslavskiy M., Abante J., Abecassis B. S., Aben N., Aghamirzaie D., Aittokallio T., Akhtari F. S., Al-lazikani B., Alam T., Allam A., Allen C., de Almeida M. P., Altarawy D., Alves V., Amadoz A., Anchang B., Antolin A. A., Ash J. R., Aznar V. R., Ba-alawi W., Bagheri M., Bajic V., Ball G., Ballester P. J., Baptista D., Bare C., Bateson M., Bender A., Bertrand D., Wijayawardena B., Boroevich K. A., Bosdriesz E., Bougouffa S., Bounova G., Brouwer T., Bryant B., Calaza M., Calderone A., Calza S., Capuzzi S., Carbonell-Caballero J., Carlin D., Carter H., Castagnoli L., Celebi R., Cesareni G., Chang H., Chen G., Chen H., Cheng L., Chernomoretz A., Chicco D., Cho K. -H., Cho S., Choi D., Choi J., Choi K., Choi M., Cock M. D., Coker E., Cortes-Ciriano I., Cserzo M., Cubuk C., Curtis C., Daele D. V., Dang C. C., Dijkstra T., Dopazo J., Draghici S., Drosou A., Dumontier M., Ehrhart F., Eid F. -E., ElHefnawi M., Elmarakeby H., van Engelen B., Engin H. B., de Esch I., Evelo C., Falcao A. O., Farag S., Fernandez-Lozano C., Fisch K., Flobak A., Fornari C., Foroushani A. B. K., Fotso D. C., Fourches D., Friend S., Frigessi A., Gao F., Gao X., Gerold J. M., Gestraud P., Ghosh S., Gillberg J., Godoy-Lorite A., Godynyuk L., Godzik A., Goldenberg A., Gomez-Cabrero D., Gonen M., de Graaf C., Gray H., Grechkin M., Guimera R., Guney E., Haibe-Kains B., Han Y., Hase T., He D., He L., Heath L. S., Hellton K. H., Helmer-Citterich M., Hidalgo M. R., Hidru D., Hill S. M., Hochreiter S., Hong S., Hovig E., Hsueh Y. -C., Hu Z., Huang J. K., Huang R. S., Hunyady L., Hwang J., Hwang T. H., Hwang W., Hwang Y., Isayev O., Don't Walk O. B., Jack J., Jahandideh S., Ji J., Jo Y., Kamola P. J., Kanev G. K., Karacosta L., Karimi M., Kaski S., Kazanov M., Khamis A. M., Khan S. A., Kiani N. A., Kim A., Kim J., Kim K., Kim S., Kim Y., Kirk P. D. W., Kitano H., Klambauer G., Knowles D., Ko M., Kohn-Luque A., Kooistra A. J., Kuenemann M. A., Kuiper M., Kurz C., Kwon M., van Laarhoven T., Laegreid A., Lederer S., Lee H., Lee J., Lee Y. W., Lepp_aho E., Lewis R., Li J., Li L., Liley J., Lim W. K., Lin C., Liu Y., Lopez Y., Low J., Lysenko A., Machado D., Madhukar N., Maeyer D. D., Malpartida A. B., Mamitsuka H., Marabita F., Marchal K., Marttinen P., Mason D., Mazaheri A., Mehmood A., Mehreen A., Michaut M., Miller R. A., Mitsopoulos C., Modos D., Moerbeke M. V., Moo K., Motsinger-Reif A., Movva R., Muraru S., Muratov E., Mushthofa M., Nagarajan N., Nakken S., Nath A., Neuvial P., Newton R., Ning Z., Niz C. D., Oliva B., Olsen C., Palmeri A., Panesar B., Papadopoulos S., Park J., Park S., Pawitan Y., Peluso D., Pendyala S., Peng J., Perfetto L., Pirro S., Plevritis S., Politi R., Poon H., Porta E., Prellner I., Preuer K., Pujana M. A., Ramnarine R., Reid J. E., Reyal F., Richardson S., Ricketts C., Rieswijk L., Rocha M., Rodriguez-Gonzalvez C., Roell K., Rotroff D., de Ruiter J. R., Rukawa P., Sadacca B., Safikhani Z., Safitri F., Sales-Pardo M., Sauer S., Schlichting M., Seoane J. A., Serra J., Shang M. -M., Sharma A., Sharma H., Shen Y., Shiga M., Shin M., Shkedy Z., Shopsowitz K., Sinai S., Skola D., Smirnov P., Soerensen I. F., Soerensen P., Song J. -H., Song S. O., Soufan O., Spitzmueller A., Steipe B., Suphavilai C., Tamayo S. P., Tamborero D., Tang J., Tanoli Z. -U. -R., Tarres-Deulofeu M., Tegner J., Thommesen L., Tonekaboni S. A. M., Tran H., Troyer E. D., Truong A., Tsunoda T., Turu G., Tzeng G. -Y., Verbeke L., Videla S., Vis D., Voronkov A., Votis K., Wang A., Wang H. -Q. H., Wang P. -W., Wang S., Wang W., Wang X., Wennerberg K., Wernisch L., Wessels L., van Westen G. J. P., Westerman B. A., White S. R., Willighagen E., Wurdinger T., Xie L., Xie S., Xu H., Yadav B., Yau C., Yeerna H., Yin J. W., Yu M., Yu M. H., Yun S. J., Zakharov A., Zamichos A., Zanin M., Zeng L., Zenil H., Zhang F., Zhang P., Zhang W., Zhao H., Zhao L., Zheng W., Zoufir A., Zucknick M., Jang I. S., Ghazoui Z., Ahsen M. E., Vogel R., Neto E. C., Norman T., Tang E. K. Y., Garnett M. J., Veroli G. Y. D., Fawell S., Stolovitzky G., Guinney J., Dry J. R., Saez-Rodriguez J., Menden, M, Wang, D, Mason, M, Szalai, B, Bulusu, K, Guan, Y, Yu, T, Kang, J, Jeon, M, Wolfinger, R, Nguyen, T, Zaslavskiy, M, Abante, J, Abecassis, B, Aben, N, Aghamirzaie, D, Aittokallio, T, Akhtari, F, Al-lazikani, B, Alam, T, Allam, A, Allen, C, de Almeida, M, Altarawy, D, Alves, V, Amadoz, A, Anchang, B, Antolin, A, Ash, J, Aznar, V, Ba-alawi, W, Bagheri, M, Bajic, V, Ball, G, Ballester, P, Baptista, D, Bare, C, Bateson, M, Bender, A, Bertrand, D, Wijayawardena, B, Boroevich, K, Bosdriesz, E, Bougouffa, S, Bounova, G, Brouwer, T, Bryant, B, Calaza, M, Calderone, A, Calza, S, Capuzzi, S, Carbonell-Caballero, J, Carlin, D, Carter, H, Castagnoli, L, Celebi, R, Cesareni, G, Chang, H, Chen, G, Chen, H, Cheng, L, Chernomoretz, A, Chicco, D, Cho, K, Cho, S, Choi, D, Choi, J, Choi, K, Choi, M, Cock, M, Coker, E, Cortes-Ciriano, I, Cserzo, M, Cubuk, C, Curtis, C, Daele, D, Dang, C, Dijkstra, T, Dopazo, J, Draghici, S, Drosou, A, Dumontier, M, Ehrhart, F, Eid, F, Elhefnawi, M, Elmarakeby, H, van Engelen, B, Engin, H, de Esch, I, Evelo, C, Falcao, A, Farag, S, Fernandez-Lozano, C, Fisch, K, Flobak, A, Fornari, C, Foroushani, A, Fotso, D, Fourches, D, Friend, S, Frigessi, A, Gao, F, Gao, X, Gerold, J, Gestraud, P, Ghosh, S, Gillberg, J, Godoy-Lorite, A, Godynyuk, L, Godzik, A, Goldenberg, A, Gomez-Cabrero, D, Gonen, M, de Graaf, C, Gray, H, Grechkin, M, Guimera, R, Guney, E, Haibe-Kains, B, Han, Y, Hase, T, He, D, He, L, Heath, L, Hellton, K, Helmer-Citterich, M, Hidalgo, M, Hidru, D, Hill, S, Hochreiter, S, Hong, S, Hovig, E, Hsueh, Y, Hu, Z, Huang, J, Huang, R, Hunyady, L, Hwang, J, Hwang, T, Hwang, W, Hwang, Y, Isayev, O, Don't Walk, O, Jack, J, Jahandideh, S, Ji, J, Jo, Y, Kamola, P, Kanev, G, Karacosta, L, Karimi, M, Kaski, S, Kazanov, M, Khamis, A, Khan, S, Kiani, N, Kim, A, Kim, J, Kim, K, Kim, S, Kim, Y, Kirk, P, Kitano, H, Klambauer, G, Knowles, D, Ko, M, Kohn-Luque, A, Kooistra, A, Kuenemann, M, Kuiper, M, Kurz, C, Kwon, M, van Laarhoven, T, Laegreid, A, Lederer, S, Lee, H, Lee, J, Lee, Y, Lepp_aho, E, Lewis, R, Li, J, Li, L, Liley, J, Lim, W, Lin, C, Liu, Y, Lopez, Y, Low, J, Lysenko, A, Machado, D, Madhukar, N, Maeyer, D, Malpartida, A, Mamitsuka, H, Marabita, F, Marchal, K, Marttinen, P, Mason, D, Mazaheri, A, Mehmood, A, Mehreen, A, Michaut, M, Miller, R, Mitsopoulos, C, Modos, D, Moerbeke, M, Moo, K, Motsinger-Reif, A, Movva, R, Muraru, S, Muratov, E, Mushthofa, M, Nagarajan, N, Nakken, S, Nath, A, Neuvial, P, Newton, R, Ning, Z, Niz, C, Oliva, B, Olsen, C, Palmeri, A, Panesar, B, Papadopoulos, S, Park, J, Park, S, Pawitan, Y, Peluso, D, Pendyala, S, Peng, J, Perfetto, L, Pirro, S, Plevritis, S, Politi, R, Poon, H, Porta, E, Prellner, I, Preuer, K, Pujana, M, Ramnarine, R, Reid, J, Reyal, F, Richardson, S, Ricketts, C, Rieswijk, L, Rocha, M, Rodriguez-Gonzalvez, C, Roell, K, Rotroff, D, de Ruiter, J, Rukawa, P, Sadacca, B, Safikhani, Z, Safitri, F, Sales-Pardo, M, Sauer, S, Schlichting, M, Seoane, J, Serra, J, Shang, M, Sharma, A, Sharma, H, Shen, Y, Shiga, M, Shin, M, Shkedy, Z, Shopsowitz, K, Sinai, S, Skola, D, Smirnov, P, Soerensen, I, Soerensen, P, Song, J, Song, S, Soufan, O, Spitzmueller, A, Steipe, B, Suphavilai, C, Tamayo, S, Tamborero, D, Tang, J, Tanoli, Z, Tarres-Deulofeu, M, Tegner, J, Thommesen, L, Tonekaboni, S, Tran, H, Troyer, E, Truong, A, Tsunoda, T, Turu, G, Tzeng, G, Verbeke, L, Videla, S, Vis, D, Voronkov, A, Votis, K, Wang, A, Wang, H, Wang, P, Wang, S, Wang, W, Wang, X, Wennerberg, K, Wernisch, L, Wessels, L, van Westen, G, Westerman, B, White, S, Willighagen, E, Wurdinger, T, Xie, L, Xie, S, Xu, H, Yadav, B, Yau, C, Yeerna, H, Yin, J, Yu, M, Yun, S, Zakharov, A, Zamichos, A, Zanin, M, Zeng, L, Zenil, H, Zhang, F, Zhang, P, Zhang, W, Zhao, H, Zhao, L, Zheng, W, Zoufir, A, Zucknick, M, Jang, I, Ghazoui, Z, Ahsen, M, Vogel, R, Neto, E, Norman, T, Tang, E, Garnett, M, Veroli, G, Fawell, S, Stolovitzky, G, Guinney, J, Dry, J, Saez-Rodriguez, J, Menden M. P., Wang D., Mason M. J., Szalai B., Bulusu K. C., Guan Y., Yu T., Kang J., Jeon M., Wolfinger R., Nguyen T., Zaslavskiy M., Abante J., Abecassis B. S., Aben N., Aghamirzaie D., Aittokallio T., Akhtari F. S., Al-lazikani B., Alam T., Allam A., Allen C., de Almeida M. P., Altarawy D., Alves V., Amadoz A., Anchang B., Antolin A. A., Ash J. R., Aznar V. R., Ba-alawi W., Bagheri M., Bajic V., Ball G., Ballester P. J., Baptista D., Bare C., Bateson M., Bender A., Bertrand D., Wijayawardena B., Boroevich K. A., Bosdriesz E., Bougouffa S., Bounova G., Brouwer T., Bryant B., Calaza M., Calderone A., Calza S., Capuzzi S., Carbonell-Caballero J., Carlin D., Carter H., Castagnoli L., Celebi R., Cesareni G., Chang H., Chen G., Chen H., Cheng L., Chernomoretz A., Chicco D., Cho K. -H., Cho S., Choi D., Choi J., Choi K., Choi M., Cock M. D., Coker E., Cortes-Ciriano I., Cserzo M., Cubuk C., Curtis C., Daele D. V., Dang C. C., Dijkstra T., Dopazo J., Draghici S., Drosou A., Dumontier M., Ehrhart F., Eid F. -E., ElHefnawi M., Elmarakeby H., van Engelen B., Engin H. B., de Esch I., Evelo C., Falcao A. O., Farag S., Fernandez-Lozano C., Fisch K., Flobak A., Fornari C., Foroushani A. B. K., Fotso D. C., Fourches D., Friend S., Frigessi A., Gao F., Gao X., Gerold J. M., Gestraud P., Ghosh S., Gillberg J., Godoy-Lorite A., Godynyuk L., Godzik A., Goldenberg A., Gomez-Cabrero D., Gonen M., de Graaf C., Gray H., Grechkin M., Guimera R., Guney E., Haibe-Kains B., Han Y., Hase T., He D., He L., Heath L. S., Hellton K. H., Helmer-Citterich M., Hidalgo M. R., Hidru D., Hill S. M., Hochreiter S., Hong S., Hovig E., Hsueh Y. -C., Hu Z., Huang J. K., Huang R. S., Hunyady L., Hwang J., Hwang T. H., Hwang W., Hwang Y., Isayev O., Don't Walk O. B., Jack J., Jahandideh S., Ji J., Jo Y., Kamola P. J., Kanev G. K., Karacosta L., Karimi M., Kaski S., Kazanov M., Khamis A. M., Khan S. A., Kiani N. A., Kim A., Kim J., Kim K., Kim S., Kim Y., Kirk P. D. W., Kitano H., Klambauer G., Knowles D., Ko M., Kohn-Luque A., Kooistra A. J., Kuenemann M. A., Kuiper M., Kurz C., Kwon M., van Laarhoven T., Laegreid A., Lederer S., Lee H., Lee J., Lee Y. W., Lepp_aho E., Lewis R., Li J., Li L., Liley J., Lim W. K., Lin C., Liu Y., Lopez Y., Low J., Lysenko A., Machado D., Madhukar N., Maeyer D. D., Malpartida A. B., Mamitsuka H., Marabita F., Marchal K., Marttinen P., Mason D., Mazaheri A., Mehmood A., Mehreen A., Michaut M., Miller R. A., Mitsopoulos C., Modos D., Moerbeke M. V., Moo K., Motsinger-Reif A., Movva R., Muraru S., Muratov E., Mushthofa M., Nagarajan N., Nakken S., Nath A., Neuvial P., Newton R., Ning Z., Niz C. D., Oliva B., Olsen C., Palmeri A., Panesar B., Papadopoulos S., Park J., Park S., Pawitan Y., Peluso D., Pendyala S., Peng J., Perfetto L., Pirro S., Plevritis S., Politi R., Poon H., Porta E., Prellner I., Preuer K., Pujana M. A., Ramnarine R., Reid J. E., Reyal F., Richardson S., Ricketts C., Rieswijk L., Rocha M., Rodriguez-Gonzalvez C., Roell K., Rotroff D., de Ruiter J. R., Rukawa P., Sadacca B., Safikhani Z., Safitri F., Sales-Pardo M., Sauer S., Schlichting M., Seoane J. A., Serra J., Shang M. -M., Sharma A., Sharma H., Shen Y., Shiga M., Shin M., Shkedy Z., Shopsowitz K., Sinai S., Skola D., Smirnov P., Soerensen I. F., Soerensen P., Song J. -H., Song S. O., Soufan O., Spitzmueller A., Steipe B., Suphavilai C., Tamayo S. P., Tamborero D., Tang J., Tanoli Z. -U. -R., Tarres-Deulofeu M., Tegner J., Thommesen L., Tonekaboni S. A. M., Tran H., Troyer E. D., Truong A., Tsunoda T., Turu G., Tzeng G. -Y., Verbeke L., Videla S., Vis D., Voronkov A., Votis K., Wang A., Wang H. -Q. H., Wang P. -W., Wang S., Wang W., Wang X., Wennerberg K., Wernisch L., Wessels L., van Westen G. J. P., Westerman B. A., White S. R., Willighagen E., Wurdinger T., Xie L., Xie S., Xu H., Yadav B., Yau C., Yeerna H., Yin J. W., Yu M., Yu M. H., Yun S. J., Zakharov A., Zamichos A., Zanin M., Zeng L., Zenil H., Zhang F., Zhang P., Zhang W., Zhao H., Zhao L., Zheng W., Zoufir A., Zucknick M., Jang I. S., Ghazoui Z., Ahsen M. E., Vogel R., Neto E. C., Norman T., Tang E. K. Y., Garnett M. J., Veroli G. Y. D., Fawell S., Stolovitzky G., Guinney J., Dry J. R., and Saez-Rodriguez J.
- Abstract
The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca’s large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells.
- Published
- 2019
10. A comparative study of freezing single cells and spheroids: Towards a new model system for optimizing freezing protocols for cryobanking of human tumours
- Author
-
Ehrhart, F., Schulz, J.C., Katsen-Globa, A., Shirley, S.G., Reuter, D., Bach, F., Zimmermann, U., and Zimmermann, H.
- Published
- 2009
- Full Text
- View/download PDF
11. COVID-19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms (vol 17, e10387, 2021)
- Author
-
Ostaszewski, M, Niarakis, A, Mazein, A, Kuperstein, I, Phair, R, Orta-Resendiz, A, Singh, V, Aghamiri, S, Acencio, M, Glaab, E, Ruepp, A, Fobo, G, Montrone, C, Brauner, B, Frishman, G, Gomez, L, Somers, J, Hoch, M, Gupta, S, Scheel, J, Borlinghaus, H, Czauderna, T, Schreiber, F, Montagud, A, de Leon, M, Funahashi, A, Hiki, Y, Hiroi, N, Yamada, T, Drager, A, Renz, A, Naveez, M, Bocskei, Z, Messina, F, Bornigen, D, Fergusson, L, Conti, M, Rameil, M, Nakonecnij, V, Vanhoefer, J, Schmiester, L, Wang, M, Ackerman, E, Shoemaker, J, Zucker, J, Oxford, K, Teuton, J, Kocakaya, E, Summak, G, Hanspers, K, Kutmon, M, Coort, S, Eijssen, L, Ehrhart, F, Rex, D, Slenter, D, Martens, M, Pham, N, Haw, R, Jassal, B, Matthews, L, Orlic-Milacic, M, Senff-Ribeiro, A, Rothfels, K, Shamovsky, V, Stephan, R, Sevilla, C, Varusai, T, Ravel, J, Fraser, R, Ortseifen, V, Marchesi, S, Gawron, P, Smula, E, Heirendt, L, Satagopam, V, Gm, W, Riutta, A, Golebiewski, M, Owen, S, Goble, C, Xm, H, Overall, R, Maier, D, Bauch, A, Gyori, B, Bachman, J, Vega, C, Groues, V, Vazquez, M, Porras, P, Licata, L, Iannuccelli, M, Sacco, F, Nesterova, A, Yuryev, A, de Waard, A, Turei, D, Luna, A, Babur, O, Soliman, S, Valdeolivas, A, Esteban-Medina, M, Pena-Chilet, M, Rian, K, Helikar, T, Puniya, B, Modos, D, Treveil, A, Olbei, M, De Meulder, B, Ballereau, S, Dugourd, A, Naldi, A, Noel, V, Calzone, L, Sander, C, Demir, E, Korcsmaros, T, Freeman, T, Auge, F, Beckmann, J, Hasenauer, J, Wolkenhauer, O, Willighagen, E, Pico, A, Evelo, C, Gillespie, M, Stein, L, Hermjakob, H, D'Eustachio, P, Saez-Rodriguez, J, Dopazo, J, Valencia, A, Kitano, H, Barillot, E, Auffray, C, Balling, R, and Schneider, R
- Subjects
Settore BIO/18 ,Settore BIO/11 - Published
- 2021
12. 2303P Protein functional interpretation of gene variants observed in clinical next-generation sequencing (NGS) for pleural mesothelioma
- Author
-
Cerciello, F.W.F., Marchal, P., Bürgi, L., Samarasinghe, K., Martens, M., Ehrhart, F., Evelo, C.T., and Lane, L.
- Published
- 2023
- Full Text
- View/download PDF
13. Hydrogel-based encapsulation of biological, functional tissue: fundamentals, technologies and applications
- Author
-
Zimmermann, H., Ehrhart, F., Zimmermann, D., Müller, K., Katsen-Globa, A., Behringer, M., Feilen, P.J., Gessner, P., Zimmermann, G., Shirley, S.G., Weber, M.M., Metze, J., and Zimmermann, U.
- Published
- 2007
- Full Text
- View/download PDF
14. Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation
- Author
-
Zimmermann, H., Zimmermann, D., Reuss, R., Feilen, P. J., Manz, B., Katsen, A., Weber, M., Ihmig, F. R., Ehrhart, F., Geßner, P., Behringer, M., Steinbach, A., Wegner, L. H., Sukhorukov, V. L., Vásquez, J. A., Schneider, S., Weber, M. M., Volke, F., Wolf, R., and Zimmermann, U.
- Published
- 2005
- Full Text
- View/download PDF
15. Intracellular Delivery of Carbohydrates into Mammalian Cells through Swelling-activated Pathways
- Author
-
Reuss, R., Ludwig, J., Shirakashi, R., Ehrhart, F., Zimmermann, H., Schneider, S., Weber, M.M., Zimmermann, U., Schneider, H., and Sukhorukov, V.L.
- Published
- 2004
- Full Text
- View/download PDF
16. Revealing of Medical and Biological Relevant Cellular Processes by Automated Time Lapse Microscopy
- Author
-
Gepp, M. M., primary, Sébastien, I., additional, Groeber, F. K., additional, Schulz, J. C., additional, Ehrhart, F., additional, and Zimmermann, Heiko, additional
- Published
- 2009
- Full Text
- View/download PDF
17. A Novel Microfluidic Based Technique for Encapsulation of Langerhans´ Islets Using High Viscosity Alginate and BaSO4 Nanoparticles
- Author
-
Ehrhart, F., primary, Stumpf, Patrick, additional, Wiedemeier, S., additional, Weyand, E., additional, Danzebrink, R., additional, Weber, M. M., additional, Metze, J., additional, Sukhorukov, V., additional, Zimmermann, U., additional, and Zimmermann, H., additional
- Published
- 2009
- Full Text
- View/download PDF
18. Quantitative 3D High Speed Video Analysis of Capsule Formation during Encapsulation Processes
- Author
-
Meiser, I., primary, Müller, S. C., additional, Zimmermann, H., additional, and Ehrhart, F., additional
- Published
- 2009
- Full Text
- View/download PDF
19. Methods for Encapsulation and Storage of Human Stem Cells in Three Dimensional Alginate Aggregates
- Author
-
Schulz, J. C., primary, Groeber, F. K., additional, Beier, A. F. J., additional, Meiser, I., additional, Ehrhart, F., additional, Zimmermann, U., additional, and Zimmermann, H., additional
- Published
- 2009
- Full Text
- View/download PDF
20. Real-time 3-D dark-field microscopy for the validation of the cross-linking process of alginate microcapsules
- Author
-
Wolf, R., Zimmermann, D., Weber, M., Feilen, P., Ehrhart, F., Salinas Jungjohann, M., Katsen, A., Behringer, M., Geßner, P., Pließ, L., Steinbach, A., Spitz, J., Vásquez, J.A., Schneider, S., Bamberg, E., Weber, M.M., Zimmermann, U., and Zimmermann, H.
- Published
- 2005
- Full Text
- View/download PDF
21. Lage melatoninespiegel bij moeder vergroot risico op autisme bij haar kind
- Author
-
Braam, W.J., Ehrhart, F., Maas, A.P.H.M., Smits, M.G., and Curfs, L.M.G.
- Subjects
Behavioural Science Institute - Abstract
Item does not contain fulltext Autisme spectrum stoornis (ASS) wordt veroorzaakt door een combinatie van genetische en omgevingsfactoren. Bij 70% van de mensen met ASS is tevens sprake van een verstandelijke beperking (VB). Er zijn inmiddels ruim 800 genetische variaties gevonden als potentiële veroorzakers, maar niet een daarvan is verantwoordelijk voor meer dan 1% van de gevallen van ASS. Lage melatonine spiegels worden vaak bij ASS gevonden en vertonen een omgekeerde correlatie met de ernst van de stoornis. Melatonine speelt een belangrijke rol bij de ontwikkeling van de hersenen en beschermt DNA effectief tegen oxidatieve schade. Omdat de foetus geen melatonine kan maken, zouden lage maternale melatonine spiegels een rol kunnen spelen bij het ontstaan van ASS. Methode: Bepalen van 6-sulfatoxymelatonine (6-SM) uitscheiding in urine bij 60 moeders met een kind met ASS en controles. Resultaten: De actuele 6-SM spiegels waren bij ASS moeders significant lager dan bij controles (p = 0,012), evenals de herberekende 6-SM spiegels (p = 0,002). Bij moeders met twee ASS kinderen waren de 6-SM spiegels lager dan bij moeders met één ASS kind, maar dit verschil was net niet significant (p = 0,058). Conclusie: Een lage melatonine spiegel zou een belangrijke bijdrage kunnen leveren aan het ontstaan van ASS en mogelijk ook van een VB. Onze bevindingen dienen op een grotere schaal herhaald te worden. Indien onze hypothese klopt biedt dit mogelijkheden tot het opsporen van moeders met een verhoogd risico op ASS en strategieën voor preventie. 5 p.
- Published
- 2018
22. Low maternal melatonin level increases autism spectrum disorder risk in children
- Author
-
Braam, W.J., Ehrhart, F., Maas, A.P.H.M., Smits, M.G., Curfs, L.M.G., Braam, W.J., Ehrhart, F., Maas, A.P.H.M., Smits, M.G., and Curfs, L.M.G.
- Abstract
Item does not contain fulltext, Background: It is assumed that autism spectrum disorder (ASD) is caused by a combination of de novo inherited variation and common variation as well as environmental factors. It often co-occurs with intellectual disability (ID). Almost eight hundred potential causative genetic variations have been found in ASD patients. However, not one of them is responsible for more than 1% of ASD cases. Low melatonin levels are a frequent finding in ASD patients. Melatonin levels are negatively correlated with severity of autistic impairments, it is important for normal neurodevelopment and is highly effective in protecting DNA from oxidative damage. Melatonin deficiency could be a major factor, and well a common heritable variation, that increases the susceptibility to environmental risk factors for ASD. ASD is already present at birth. As the fetus does not produce melatonin, low maternal melatonin levels may be involved. Methods: We measured 6-sulfatoxymelatonin in urine of 60 mothers of a child with ASD and controls. Results: 6-sulfatoxymelatonin levels were significantly lower in mothers with an ASD child than in controls (p = 0.012). Conclusions: Low parental melatonin levels could be one of the contributors to ASD and possibly ID etiology. Our findings need to be duplicated on a larger scale. If our hypothesis is correct, this could lead to policies to detect future parents who are at risk and to treatment strategies to ASD and intellectual disability risk.
- Published
- 2018
23. Trattinick's Briefwechsel (Fortsetzung)
- Author
-
von Heufler, Ludwig and Ehrhart, F.
- Published
- 1851
24. Poloxamer 188 as a Supplement to Barium Cross-Linked Ultra-High Viscosity Alginate for Immunoisolation of Transplanted Islet Cells
- Author
-
Ehrhart F, Hansen T, Heiko Zimmermann, M Weber, Ulrich Zimmermann, E. Mettler, and Publica
- Subjects
geography ,geography.geographical_feature_category ,Biocompatibility ,business.industry ,Islets of langerhans ,Nanotechnology ,Diabetic mouse ,Poloxamer ,Islet ,Poloxamer 188 ,Transplantation ,Immune system ,Islet cells ,diabetes mellitus ,microencapsulation ,alginate ,Medicine ,Islet transplantation ,Implant ,Xenogeneic transplantation ,business ,Biomedical engineering - Abstract
Transplantation of Langerhans islets is a potential cure for diabetes mellitus. The main problem for routine clinical use remains the prevention of rejection without drastic side effects. Immuno-isolation is an experimental strategy to prevent graft rejection by separating the transplanted cells from the host immune system using a barrier device. The aim of the current study was to improve the physical features of encapsulated islets in a barium cross-linked ultra-high viscosity alginate by adding Poloxamer 188 (P188). Empty alginate capsules, and especially encapsulated islets, could be easily generated using UHV-P188 alginate because of its anti-foaming properties. Diabetic mice were used for evaluation of biocompatibility and graft function. Biocompatibility testing with empty cap sules showed no inflammatory reaction or fibrotic overgrowth. The capsules remained intact in the intraperitoneal and intramuscular implant sites over a period of 4 weeks. Transplantation of encapsulated islets, however, led to a strong systemic inflammatory response with fibrotic overgrowth of the islet-containing capsules but no graft failure. This finding likely reflected the complement activating property of P188. Our results clearly showed that the complex interaction of additives, xenogeneic tissue, and alginate with the host immune system could not be predicted by the behavior of the individual components. Furthermore, the mouse model described herein was an excellent tool to evaluate the physico-chemical properties and the in vivo biocompatibility and functionality of various additives. Our results will improve the biomaterials used for alginate microbeads in a clinical setting in the future.
- Published
- 2015
25. eNanoMapper – A database and ontology framework for design and safety assessment of nanomaterials
- Author
-
Kilic, G., primary, Fadeel, B., additional, Farcal, L., additional, Sarimveis, H., additional, Doganis, P., additional, Drakakis, G., additional, Tsiliki, G., additional, Chomenidis, C., additional, Helma, C., additional, Rautenberg, M., additional, Gebele, D., additional, Jeliazkova, N., additional, Kochev, N., additional, Owen, G., additional, Chang, J., additional, Willighagen, E.L., additional, Ehrhart, F., additional, Rieswijk, L., additional, Hongisto, V., additional, Nymark, P., additional, Kohonen, P., additional, Grafström, R., additional, and Hardy, B., additional
- Published
- 2016
- Full Text
- View/download PDF
26. Magnetic separation of encapsulated islet cells labeled with superparamagnetic iron oxide nano particles
- Author
-
Mettler, E., Trenkler, A., Feilen, P.J., Wiegand, F., Fottner, C., Ehrhart, F., Zimmermann, H., Hwang, Y.H., Lee, D.Y., Fischer, S., Schreiber, L.M., Weber, M.M., and Publica
- Abstract
Islet cell transplantation is a promising option for the restoration of normal glucose homeostasis in patients with type 1 diabetes. Because graft volume is a crucial issue in islet transplantations for patients with diabetes, we evaluated a new method for increasing functional tissue yield in xenogeneic grafts of encapsulated islets. Islets were labeled with three different superparamagnetic iron oxide nano particles (SPIONs; dextran-coated SPION, siloxane-coated SPION, and heparin-coated SPION). Magnetic separation was performed to separate encapsulated islets from the empty capsules, and cell viability and function were tested. Islets labeled with 1000 g Fe/ml dextran-coated SPIONs experienced a 69.9% reduction in graft volume, with a 33.2% loss of islet-containing capsules. Islets labeled with 100 g Fe/ml heparin-coated SPIONs showed a 46.4% reduction in graft volume, with a 4.5% loss of capsules containing islets. No purification could be achieved using siloxane-coated SPIONs due to its toxicity to the primary islets. SPION labeling of islets is useful for transplant purification during islet separation as well as in vivo imaging after transplantation. Furthermore, purification of encapsulated islets can also reduce the volume of the encapsulated islets without impairing their function by removing empty capsules.
- Published
- 2013
27. The individual-cell-based cryo-chip for the cryopreservation, manipulation and observation of spatially identifiable cells. Tl.I: Methodology
- Author
-
Deutsch, M., Afrimzon, E., Namer, Y., Shafran, Y., Sobolev, M., Zurgil, N., Deutsch, A., Howitz, S., Greuner, M., Thaele, M., Zimmermann, H., Meiser, I., Ehrhart, F., and Publica
- Abstract
Background Cryopreservation is the only widely applicable method of storing vital cells for nearly unlimited periods of time. Successful cryopreservation is essential for reproductive medicine, stem cell research, cord blood storage and related biomedical areas. The methods currently used to retrieve a specific cell or a group of individual cells with specific biological properties after cryopreservation are quite complicated and inefficient. Results The present study suggests a new approach in cryopreservation, utilizing the Individual Cell-based Cryo-Chip (i3C). The i3C is made of materials having appropriate durability for cryopreservation conditions. The core of this approach is an array of picowells, each picowell designed to maintain an individual cell during the severe conditions of the freezing - thawing cycle and accompanying treatments. More than 97% of cells were found to retain their position in the picowells throughout the entire freezing - thawing cycle and medium exchange. Thus the comparison between pre-freezing and post-thawing data can be achieved at an individual cell resolution. The intactness of cells undergoing slow freezing and thawing, while residing in the i3C, was found to be similar to that obtained with micro-vials. However, in a fast freezing protocol, the i3C was found to be far superior. Conclusions The results of the present study offer new opportunities for cryopreservation. Using the present methodology, the cryopreservation of individual identifiable cells, and their observation and retrieval, at an individual cell resolution become possible for the first time. This approach facilitates the correlation between cell characteristics before and after the freezing - thawing cycle. Thus, it is expected to significantly enhance current cryopreservation procedures for successful regenerative and reproductive medicine.
- Published
- 2010
28. Optimierung von Cochlea Implantaten – Hydrogele als Scaffold für wachstumsfaktor-produzierende Zellen
- Author
-
Scheper, V, Groll, J, Ehrhart, F, Zimmermann, H, and Lenarz, T
- Subjects
ddc: 610 ,610 Medical sciences ,Medicine - Abstract
Einleitung: Die Effektivität der Cochlea Implantate (CI) wird durch die Degeneration der Zielzellen der CI-Anwendung, der Spiralganglienzellen (SGZ), verringert. Durch die Applikation von Wachstumsfaktoren wie Brain-derived Neurotrophic Factor (BDNF) kann die Degeneration der SGZ verzögert[for full text, please go to the a.m. URL], 81. Jahresversammlung der Deutschen Gesellschaft für Hals-Nasen-Ohren-Heilkunde, Kopf- und Hals-Chirurgie
- Published
- 2010
- Full Text
- View/download PDF
29. The individual-cell-based cryo-chip for the cryopreservation, manipulation and observation of spatially identifiable cells. Tl.II: Functional activity of cryopreserved cells
- Author
-
Afrimzon, E., Zurgil, N., Shafran, Y., Ehrhart, F., Namer, Y., Moshkov, S., Sobolev, M., Deutsch, A., Howitz, S., Greuner, M., Thaele, M., Meiser, I., Zimmermann, H., Deutsch, M., and Publica
- Abstract
Background The cryopreservation and thawing processes are known to induce many deleterious effects in cells and might be detrimental to several cell types. There is an inherent variability in cellular responses among cell types and within individual cells of a given population with regard to their ability to endure the freezing and thawing process. The aim of this study was to evaluate the fate of cryopreserved cells within an optical cryo apparatus, the individual-cell-based cryo-chip (i3C), by monitoring several basic cellular functional activities at the resolution of individual cells. Results In the present study, U937 cells underwent the freezing and thawing cycle in the i3C device. Then a panel of vital tests was performed, including the number of dead cells (PI staining), apoptotic rate (Annexin V staining), mitochondrial membrane potential (TMRM staining), cytoplasm membrane integrity and intracellular metabolism (FDA staining), as well as post-thawing cell proliferation assays. Cells that underwent the freezing - thawing cycle in i3C devices exhibited the same functional activity as control cells. Moreover, the combination of the multi-parametric analysis at a single cell resolution and the optical and biological features of the device enable an accurate determination of the functional status of individual cells and subsequent retrieval and utilization of the most valuable cells. Conclusions The means and methodologies described here enable the freezing and thawing of spatially identifiable cells, as well as the efficient detection of viable, specific, highly biologically active cells for future applications.
- Published
- 2010
30. Alginate encapsulation as a novel strategy for the cryopreservation of neurospheres
- Author
-
Malpique, R., Osorio, L.M., Ferreira, D.S., Ehrhart, F., Brito, C., Zimmermann, H., Alves, P.M., and Publica
- Abstract
Primary cultures of brain cell neurospheres are valuable in vitro models for neurotoxicology and brain cell research. Such applications would greatly benefit from the development of efficient cryopreservation protocols that assure the availability of viable and genetically stable stocks of functional neurospheres. In this work we aimed at developing an integrated strategy allowing for long-term culture and cryopreservation of brain cell neurospheres with high viability and reduced recovery time postthawing. Microencapsulation in clinical-grade, ultrahigh viscous, highly purified alginate uniformly cross-linked with Ba2+ was evaluated as the main strategy to avoid the commonly observed loss of cell-cell and cell-matrix interactions with consequent aggregate's fragmentation and decrease in cell viability that occurs postthawing. Brain cells isolated from 16-day-old fetal rats were cultured in spinner vessels as neurospheres, encapsulated at the 5th day of culture, and cryopreserved at day 19. Culture characterization and assessment of postthawing recovery, concerning cell metabolism, aggregate's cell type composition, and neuron-astrocyte interactions were performed through analysis of membrane integrity, metabolic activity assays, and immunohistochemistry. Our results show that the encapsulation process does not affect cell viability's central metabolism; neither cell differentiation nor cell extensions into cell networks are usually observed between neurons and astrocytes within the neurosphere structure. Neurosphere encapsulation resulted in reduced recovery time postthawing and significantly less fragmentation. Further, the use of serum-free CryoStor (TM) solution provided further protection for both nonencapsulated and encapsulated aggregates compared with serum-supplemented culture medium as the cryopreservation medium.
- Published
- 2010
31. Diabetes-Süßes Gift - Zucker und seine Folgen
- Author
-
Wiedemeier, S., Grodrian, A., Zimmermann, H., Ehrhart, F., Zimmermann, U., Weber, M.M., Forst, T., Kromminga, A., Danzebrink, R., Metze, J., and Publica
- Published
- 2009
32. Dispensing of very low volumes of ultra high viscosity alginate gels
- Author
-
Gepp, M.M., Ehrhart, F., Shirley, S.G., Howitz, S., Zimmermann, H., and Publica
- Abstract
We present a tool for dispensing very low volumes (20 nL or more) of ultra high viscosity (UHV) medical-grade alginate hydrogels. It uses a modified piezo-driven micrometering valve, integrated into a versatile system that allows fast prototyping of encapsulation procedures and scaffold production. Valves show excellent dispensing properties for UHV alginate in concentrations of 0.4% and 0.7% and also for aqueous liquids. An optimized process flow provides excellent handling of biological samples under sterile conditions. This technique allows the encapsulation of adherent cells and structuring of substrates for biotechnology and regenerative medicine. A variety of cell lines showed at least 70% viability after encapsulation (including cell lines that are relevant in regenerative medicine like Hep G2), and time-lapse analysis revealed cells proliferating and showing limited motility tinder alginate spots. Cells show metabolic activity gene product expression, and physiological function. Encapsulated cells have contact with the substrate and can exchange metabolites while being isolated from macromolecules in the environment. Contactless dispensing allows structuring of substrates with alginate, isolation and transfer of cell-alginate complexes, and the dispensing of biological active hydrogels like extracellular matrix-derived gels.
- Published
- 2009
33. Multiphoton microscopy for the in-situ investigation of cellular processes and integrity in cryopreservation
- Author
-
Dörr, D., Stark, M., Ehrhart, F., Zimmermann, H., Stracke, F., and Publica
- Published
- 2009
34. Towards a Medically Approved Technology for Large-Scale Stem Cell Banks: Tools and Method
- Author
-
Katsen-Globa, A., Schulz, J.C., Baunach, J.S., Ehrhart, F., Oh, Y.-J., Schön, U., Kofanova, O., Beier, A.F.J., Wiedemeier, S., Metze, J., Shirley, S., Spitkovsky, D., Sachinidis, A., Hescheler, J., and Zimmermann, H.
- Subjects
Секция «Современные проблемы выделения, культивирования, дифференциации и криоконсервирования стволовых клеток. Клеточная и тканевая терапия» - Abstract
The importance, of the development of stem cell cryobanking has increased recently with an augmentation of stem cell research and its therapeutic applications. The development of therapies is, among other things, limited by high sensitivity of stem cells to freezingthawing procedures. Thus, new approaches are needed for preservation and related evaluation methods, as well as new technologies for long term storage of large numbers of stem cells. Here we present selected recent improvements of stem cell cryopreservation, e.g. for freezing of adherent human embryonic stem cells using gel-like matrices. We report the application and performance of novel microsystem-based cryosubstrates and devices and describe new evaluation methods and the results of a thermal stress cycle study. В настоящее время возросла важность развития криобанков стволовых клеток в связи с их расширенным изучением и терапевтическим применением. Однако, наряду с другими факторами, вышеуказанная терапия ограничена высокой чувствительностью стволовых клеток к процедурам замораживания-оттаивания. Необходимы как новые подходы к криоконсервированию и связанным с ним методам оценки, так и новые технологии для долгосрочного хранения большого количества стволовых клеток. В настоящей работе мы представляем некоторые улучшенные методы криоконсервирования стволовых клеток, например замораживание эмбриональных стволовых клеток человека с использованием гелеобразного матрикса. Мы представляем результаты применения разработанных на базе микросистемной техники новых криосубстратов и устройств, а также описываем новые методы оценки и результаты изучения циклов температурного стресса. Наразі зросла важливість розвитку кріобанків стовбурових клітин у зв’язку з їх розширеним вивченням і терапевтичним застосуванням. Але водночас з іншими факторами вищезгадана терапія обмежена високою чутливістю стовбурових клітин до процедур заморожування-відтавання. Необхідні як нові підходи до кріоконсервування та повязаних з ним методам оцінки, так і нові технології для довгострокового зберігання великої кількості стовбурових клітин. В цій роботі ми представляємо деякі покращені методи кріоконсервування стовбурових клітин, наприклад заморожування ембріональних стовбурових клітин людини з використанням гелеподібного матриксу. Ми представляємо результати застосування розроблених на базі мікросистемної техніки нових кріосубстратів та приладів, а також описуємо нові методи оцінки і результати вивчення циклів температурного стресу.
- Published
- 2008
35. Improving tissue cryopreservation
- Author
-
Ehrhart, F., Katsen-Globa, A., Zimmermann, H., and Publica
- Published
- 2008
36. Multiphoton Fluorescence Imaging at Cryogenic Conditions
- Author
-
Stark, M, primary, Dörr, D, additional, Ehrhart, F, additional, Schulz, J, additional, Baunach, J, additional, Katsen-Globa, A, additional, Ehlers, A, additional, König, K, additional, and Zimmermann, H, additional
- Published
- 2007
- Full Text
- View/download PDF
37. Alginate encapsulation improves viability and integrity of cryopreserved pancreatic islets and multicellular spheroids: combined fluorescence, scanning and block-face scanning electron microscopy
- Author
-
Katsen-Globa, A, primary, Ehrhart, F, additional, Zimmermann, H, additional, Feilen, P, additional, and Weber, M M, additional
- Published
- 2007
- Full Text
- View/download PDF
38. The individual-cell-based cryo-chip for the cryopreservation, manipulation and observation of spatially identifiable cells. II: Functional activity of cryopreserved cells
- Author
-
Thaele Michael, Howitz Steffen, Greuner Martin, Deutsch Assaf, Sobolev Maria, Moshkov Sergei, Namer Yaniv, Ehrhart Friederike, Shafran Yana, Zurgil Naomi, Afrimzon Elena, Meiser Ina, Zimmermann Heiko, and Deutsch Mordechai
- Subjects
Cytology ,QH573-671 - Abstract
Abstract Background The cryopreservation and thawing processes are known to induce many deleterious effects in cells and might be detrimental to several cell types. There is an inherent variability in cellular responses among cell types and within individual cells of a given population with regard to their ability to endure the freezing and thawing process. The aim of this study was to evaluate the fate of cryopreserved cells within an optical cryo apparatus, the individual-cell-based cryo-chip (i3C), by monitoring several basic cellular functional activities at the resolution of individual cells. Results In the present study, U937 cells underwent the freezing and thawing cycle in the i3C device. Then a panel of vital tests was performed, including the number of dead cells (PI staining), apoptotic rate (Annexin V staining), mitochondrial membrane potential (TMRM staining), cytoplasm membrane integrity and intracellular metabolism (FDA staining), as well as post-thawing cell proliferation assays. Cells that underwent the freezing - thawing cycle in i3C devices exhibited the same functional activity as control cells. Moreover, the combination of the multi-parametric analysis at a single cell resolution and the optical and biological features of the device enable an accurate determination of the functional status of individual cells and subsequent retrieval and utilization of the most valuable cells. Conclusions The means and methodologies described here enable the freezing and thawing of spatially identifiable cells, as well as the efficient detection of viable, specific, highly biologically active cells for future applications.
- Published
- 2010
- Full Text
- View/download PDF
39. The individual-cell-based cryo-chip for the cryopreservation, manipulation and observation of spatially identifiable cells. I: Methodology
- Author
-
Thaele Michael, Greuner Martin, Howitz Steffen, Deutsch Assaf, Zurgil Naomi, Sobolev Maria, Shafran Yana, Namer Yaniv, Afrimzon Elena, Deutsch Mordechai, Zimmermann Heiko, Meiser Ina, and Ehrhart Friederike
- Subjects
Cytology ,QH573-671 - Abstract
Abstract Background Cryopreservation is the only widely applicable method of storing vital cells for nearly unlimited periods of time. Successful cryopreservation is essential for reproductive medicine, stem cell research, cord blood storage and related biomedical areas. The methods currently used to retrieve a specific cell or a group of individual cells with specific biological properties after cryopreservation are quite complicated and inefficient. Results The present study suggests a new approach in cryopreservation, utilizing the Individual Cell-based Cryo-Chip (i3C). The i3C is made of materials having appropriate durability for cryopreservation conditions. The core of this approach is an array of picowells, each picowell designed to maintain an individual cell during the severe conditions of the freezing - thawing cycle and accompanying treatments. More than 97% of cells were found to retain their position in the picowells throughout the entire freezing - thawing cycle and medium exchange. Thus the comparison between pre-freezing and post-thawing data can be achieved at an individual cell resolution. The intactness of cells undergoing slow freezing and thawing, while residing in the i3C, was found to be similar to that obtained with micro-vials. However, in a fast freezing protocol, the i3C was found to be far superior. Conclusions The results of the present study offer new opportunities for cryopreservation. Using the present methodology, the cryopreservation of individual identifiable cells, and their observation and retrieval, at an individual cell resolution become possible for the first time. This approach facilitates the correlation between cell characteristics before and after the freezing - thawing cycle. Thus, it is expected to significantly enhance current cryopreservation procedures for successful regenerative and reproductive medicine.
- Published
- 2010
- Full Text
- View/download PDF
40. Integrative analysis of multi-omics data reveals importance of collagen and the PI3K AKT signalling pathway in CAKUT.
- Author
-
Bayjanov JR, Doornbos C, Ozisik O, Shin W, Queralt-Rosinach N, Wijnbergen D, Saulnier-Blache JS, Schanstra JP, Buffin-Meyer B, Klein J, Fernández JM, Kaliyaperumal R, Baudot A, 't Hoen PAC, and Ehrhart F
- Subjects
- Humans, Computational Biology methods, MicroRNAs genetics, MicroRNAs metabolism, Vesico-Ureteral Reflux genetics, Vesico-Ureteral Reflux metabolism, Female, Proteome metabolism, Amniotic Fluid metabolism, Urinary Tract metabolism, Multiomics, Urogenital Abnormalities, Signal Transduction, Proto-Oncogene Proteins c-akt metabolism, Proto-Oncogene Proteins c-akt genetics, Phosphatidylinositol 3-Kinases metabolism, Phosphatidylinositol 3-Kinases genetics, Collagen metabolism, Collagen genetics
- Abstract
Congenital Anomalies of the Kidney and Urinary Tract (CAKUT) is the leading cause of childhood chronic kidney failure and a significant cause of chronic kidney disease in adults. Genetic and environmental factors are known to influence CAKUT development, but the currently known disease mechanism remains incomplete. Our goal is to identify affected pathways and networks in CAKUT, and thereby aid in getting a better understanding of its pathophysiology. With this goal, the miRNome, peptidome, and proteome of over 30 amniotic fluid samples of patients with non-severe CAKUT was compared to patients with severe CAKUT. These omics data sets were made findable, accessible, interoperable, and reusable (FAIR) to facilitate their integration with external data resources. Furthermore, we analysed and integrated the omics data sets using three different bioinformatics strategies: integrative analysis with mixOmics, joint dimensionality reduction and pathway analysis. The three bioinformatics analyses provided complementary features, but all pointed towards an important role for collagen in CAKUT development and the PI3K-AKT signalling pathway. Additionally, several key genes (CSF1, IGF2, ITGB1, and RAC1) and microRNAs were identified. We published the three analysis strategies as containerized workflows. These workflows can be applied to other FAIR data sets and help gaining knowledge on other rare diseases., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
41. Drug repurposing in Rett and Rett-like syndromes: a promising yet underrated opportunity?
- Author
-
Fuchs C, 't Hoen PAC, Müller AR, Ehrhart F, and Van Karnebeek CDM
- Abstract
Rett syndrome (RTT) and Rett-like syndromes [i.e., CDKL5 deficiency disorder (CDD) and FOXG1-syndrome] represent rare yet profoundly impactful neurodevelopmental disorders (NDDs). The severity and complexity of symptoms associated with these disorders, including cognitive impairment, motor dysfunction, seizures and other neurological features significantly affect the quality of life of patients and families. Despite ongoing research efforts to identify potential therapeutic targets and develop novel treatments, current therapeutic options remain limited. Here the potential of drug repurposing (DR) as a promising avenue for addressing the unmet medical needs of individuals with RTT and related disorders is explored. Leveraging existing drugs for new therapeutic purposes, DR presents an attractive strategy, particularly suited for neurological disorders given the complexities of the central nervous system (CNS) and the challenges in blood-brain barrier penetration. The current landscape of DR efforts in these syndromes is thoroughly examined, with partiuclar focus on shared molecular pathways and potential common drug targets across these conditions., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2024 Fuchs, ‘t Hoen, Müller, Ehrhart and Van Karnebeek.)
- Published
- 2024
- Full Text
- View/download PDF
42. A novel insight into neurological disorders through HDAC6 protein-protein interactions.
- Author
-
Bahram Sangani N, Koetsier J, Mélius J, Kutmon M, Ehrhart F, Evelo CT, Curfs LMG, Reutelingsperger CP, and Eijssen LMT
- Subjects
- Humans, Nervous System Diseases metabolism, Nervous System Diseases genetics, Alzheimer Disease metabolism, Alzheimer Disease genetics, Phosphorylation, Acetylation, Parkinson Disease metabolism, Parkinson Disease genetics, Parkinson Disease pathology, Histone Deacetylase 6 metabolism, Histone Deacetylase 6 genetics, Protein Interaction Maps
- Abstract
Due to its involvement in physiological and pathological processes, histone deacetylase 6 (HDAC6) is considered a promising pharmaceutical target for several neurological manifestations. However, the exact regulatory role of HDAC6 in the central nervous system (CNS) is still not fully understood. Hence, using a semi-automated literature screening technique, we systematically collected HDAC6-protein interactions that are experimentally validated and reported in the CNS. The resulting HDAC6 network encompassed 115 HDAC6-protein interactions divided over five subnetworks: (de)acetylation, phosphorylation, protein complexes, regulatory, and aggresome-autophagy subnetworks. In addition, 132 indirect interactions identified through HDAC6 inhibition were collected and categorized. Finally, to display the application of our HDAC6 network, we mapped transcriptomics data of Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis on the network and highlighted that in the case of Alzheimer's disease, alterations predominantly affect the HDAC6 phosphorylation subnetwork, whereas differential expression within the deacetylation subnetwork is observed across all three neurological disorders. In conclusion, the HDAC6 network created in the present study is a novel and valuable resource for the understanding of the HDAC6 regulatory mechanisms, thereby providing a framework for the integration and interpretation of omics data from neurological disorders and pharmacodynamic assessments., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
43. Copy number variant risk loci for schizophrenia converge on the BDNF pathway.
- Author
-
Ehrhart F, Silva A, Amelsvoort TV, von Scheibler E, Evelo C, and Linden DEJ
- Subjects
- Humans, Genetic Predisposition to Disease, Genome-Wide Association Study, Brain-Derived Neurotrophic Factor genetics, Brain-Derived Neurotrophic Factor metabolism, DNA Copy Number Variations, Schizophrenia genetics, Signal Transduction genetics
- Abstract
Objectives: Schizophrenia genetics is intricate, with common and rare variants' contributions not fully understood. Certain copy number variations (CNVs) elevate risk, pivotal for understanding mental disorder models. Despite CNVs' genome-wide distribution and variable gene and protein effects, we must explore beyond affected genes to interaction partners and molecular pathways., Methods: In this study, we developed machine-readable interactive pathways to enable analysis of functional effects of genes within CNV loci and identify ten common pathways across CNVs with high schizophrenia risk using the WikiPathways database, schizophrenia risk gene collections from GWAS studies, and a gene-disease association database., Results: For CNVs that are pathogenic for schizophrenia, we found overlapping pathways, including BDNF signalling, cytoskeleton, and inflammation. Common schizophrenia risk genes identified by different studies are found in all CNV pathways, but not enriched., Conclusions: Our findings suggest that specific pathways - BDNF signalling - are critical contributors to schizophrenia risk conferred by rare CNVs. Our approach highlights the importance of not only investigating deleted or duplicated genes within pathogenic CNV loci, but also study their direct interaction partners, which may explain pleiotropic effects of CNVs on schizophrenia risk and offer a broader field for interventions.
- Published
- 2024
- Full Text
- View/download PDF
44. Clustering Schizophrenia Genes by Their Temporal Expression Patterns Aids Functional Interpretation.
- Author
-
van der Meer D, Cheng W, Rokicki J, Fernandez-Cabello S, Shadrin A, Smeland OB, Ehrhart F, Gülöksüz S, Pries LK, Lin B, Rutten BPF, van Os J, O'Donovan M, Richards AL, Steen NE, Djurovic S, Westlye LT, Andreassen OA, and Kaufmann T
- Subjects
- Humans, Adult, Brain, Genetic Risk Score, Multifactorial Inheritance, Cluster Analysis, Genetic Predisposition to Disease, Schizophrenia genetics
- Abstract
Background: Schizophrenia is a highly heritable brain disorder with a typical symptom onset in early adulthood. The 2-hit hypothesis posits that schizophrenia results from differential early neurodevelopment, predisposing an individual, followed by a disruption of later brain maturational processes that trigger the onset of symptoms., Study Design: We applied hierarchical clustering to transcription levels of 345 genes previously linked to schizophrenia, derived from cortical tissue samples from 56 donors across the lifespan. We subsequently calculated clustered-specific polygenic risk scores for 743 individuals with schizophrenia and 743 sex- and age-matched healthy controls., Study Results: Clustering revealed a set of 183 genes that was significantly upregulated prenatally and downregulated postnatally and 162 genes that showed the opposite pattern. The prenatally upregulated set of genes was functionally annotated to fundamental cell cycle processes, while the postnatally upregulated set was associated with the immune system and neuronal communication. We found an interaction between the 2 scores; higher prenatal polygenic risk showed a stronger association with schizophrenia diagnosis at higher levels of postnatal polygenic risk. Importantly, this finding was replicated in an independent clinical cohort of 3233 individuals., Conclusions: We provide genetics-based evidence that schizophrenia is shaped by disruptions of separable biological processes acting at distinct phases of neurodevelopment. The modeling of genetic risk factors that moderate each other's effect, informed by the timing of their expression, will aid in a better understanding of the development of schizophrenia., (© The Author(s) 2023. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.)
- Published
- 2024
- Full Text
- View/download PDF
45. Drug-target identification in COVID-19 disease mechanisms using computational systems biology approaches.
- Author
-
Niarakis A, Ostaszewski M, Mazein A, Kuperstein I, Kutmon M, Gillespie ME, Funahashi A, Acencio ML, Hemedan A, Aichem M, Klein K, Czauderna T, Burtscher F, Yamada TG, Hiki Y, Hiroi NF, Hu F, Pham N, Ehrhart F, Willighagen EL, Valdeolivas A, Dugourd A, Messina F, Esteban-Medina M, Peña-Chilet M, Rian K, Soliman S, Aghamiri SS, Puniya BL, Naldi A, Helikar T, Singh V, Fernández MF, Bermudez V, Tsirvouli E, Montagud A, Noël V, Ponce-de-Leon M, Maier D, Bauch A, Gyori BM, Bachman JA, Luna A, Piñero J, Furlong LI, Balaur I, Rougny A, Jarosz Y, Overall RW, Phair R, Perfetto L, Matthews L, Rex DAB, Orlic-Milacic M, Gomez LCM, De Meulder B, Ravel JM, Jassal B, Satagopam V, Wu G, Golebiewski M, Gawron P, Calzone L, Beckmann JS, Evelo CT, D'Eustachio P, Schreiber F, Saez-Rodriguez J, Dopazo J, Kuiper M, Valencia A, Wolkenhauer O, Kitano H, Barillot E, Auffray C, Balling R, and Schneider R
- Subjects
- Humans, SARS-CoV-2, Drug Repositioning, Systems Biology, Computer Simulation, COVID-19
- Abstract
Introduction: The COVID-19 Disease Map project is a large-scale community effort uniting 277 scientists from 130 Institutions around the globe. We use high-quality, mechanistic content describing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines for novel target identification and drug repurposing., Methods: Extensive community work allowed an impressive step forward in building interfaces between Systems Biology tools and platforms. Our framework can link biomolecules from omics data analysis and computational modelling to dysregulated pathways in a cell-, tissue- or patient-specific manner. Drug repurposing using text mining and AI-assisted analysis identified potential drugs, chemicals and microRNAs that could target the identified key factors., Results: Results revealed drugs already tested for anti-COVID-19 efficacy, providing a mechanistic context for their mode of action, and drugs already in clinical trials for treating other diseases, never tested against COVID-19., Discussion: The key advance is that the proposed framework is versatile and expandable, offering a significant upgrade in the arsenal for virus-host interactions and other complex pathologies., Competing Interests: AN collaborates with SANOFI-AVENTIS R&D via a public–private partnership grant CIFRE contract, n° 2020/0766. DM and AB are employed at Labvantage-Biomax GmbH and will be affected by any effect of this publication on the commercial version of the AILANI software. JB and BG received consulting fees from Two Six Labs, LLC. TH has served as a shareholder and has consulted for Discovery Collective, Inc. RB and RS are founders and shareholders of MEGENO SA and ITTM SA. JS-R reports funding from GSK, Pfizer and Sanofi and fees/honoraria from Travere Therapeutics, Stadapharm, Astex, Owkin, Pfizer and Grunenthal. JP and LF are employees and shareholders of MedBioinformatics Solutions SL. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be constructed as a potential conflict of interest. The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision., (Copyright © 2024 Niarakis, Ostaszewski, Mazein, Kuperstein, Kutmon, Gillespie, Funahashi, Acencio, Hemedan, Aichem, Klein, Czauderna, Burtscher, Yamada, Hiki, Hiroi, Hu, Pham, Ehrhart, Willighagen, Valdeolivas, Dugourd, Messina, Esteban-Medina, Peña-Chilet, Rian, Soliman, Aghamiri, Puniya, Naldi, Helikar, Singh, Fernández, Bermudez, Tsirvouli, Montagud, Noël, Ponce-de-Leon, Maier, Bauch, Gyori, Bachman, Luna, Piñero, Furlong, Balaur, Rougny, Jarosz, Overall, Phair, Perfetto, Matthews, Rex, Orlic-Milacic, Gomez, De Meulder, Ravel, Jassal, Satagopam, Wu, Golebiewski, Gawron, Calzone, Beckmann, Evelo, D’Eustachio, Schreiber, Saez-Rodriguez, Dopazo, Kuiper, Valencia, Wolkenhauer, Kitano, Barillot, Auffray, Balling, Schneider and the COVID-19 Disease Map Community.)
- Published
- 2024
- Full Text
- View/download PDF
46. Interactive neuroinflammation pathways and transcriptomics-based identification of drugs and chemical compounds for schizophrenia.
- Author
-
Koole L, Martinez-Martinez P, Amelsvoort TV, Evelo CT, and Ehrhart F
- Subjects
- Humans, Neuroinflammatory Diseases, Signal Transduction, Gene Expression Profiling, Transcription Factors genetics, Schizophrenia drug therapy, Schizophrenia genetics, Schizophrenia metabolism
- Abstract
Objectives: Schizophrenia is a psychiatric disorder affecting 1% of the population. Accumulating evidence indicates that neuroinflammation is involved in the pathology of these disorders by altering neurodevelopmental processes and specifically affecting glutamatergic signalling and astrocytic functioning. The aim of this study was to curate interactive biological pathways involved in schizophrenia for the identification of novel pharmacological targets implementing pathway, gene ontology, and network analysis., Methods: Neuroinflammatory pathways were created using PathVisio and published in WikiPathways. A transcriptomics dataset, originally created by Narla et al. was selected for data visualisation and analysis. Transcriptomics data was visualised within pathways and networks, extended with transcription factors, pathways, and drugs. Network hubs were determined based on degrees of connectivity., Results: Glutamatergic, immune, and astrocytic signalling as well as extracellular matrix reorganisation were altered in schizophrenia while we did not find an effect on the complement system. Pharmacological agents that target the glutamate receptor subunits, inflammatory mediators, and metabolic enzymes were identified., Conclusions: New neuroinflammatory pathways incorporating the extracellular matrix, glutamatergic neurons, and astrocytes in the aetiology of schizophrenia were established. Transcriptomics based network analysis provided novel targets, including extra-synaptic glutamate receptors, glutamate transporters and extracellular matrix molecules that can be evaluated for therapeutic strategies.
- Published
- 2024
- Full Text
- View/download PDF
47. WikiPathways 2024: next generation pathway database.
- Author
-
Agrawal A, Balcı H, Hanspers K, Coort SL, Martens M, Slenter DN, Ehrhart F, Digles D, Waagmeester A, Wassink I, Abbassi-Daloii T, Lopes EN, Iyer A, Acosta JM, Willighagen LG, Nishida K, Riutta A, Basaric H, Evelo CT, Willighagen EL, Kutmon M, and Pico AR
- Subjects
- Databases, Factual
- Abstract
WikiPathways (wikipathways.org) is an open-source biological pathway database. Collaboration and open science are pivotal to the success of WikiPathways. Here we highlight the continuing efforts supporting WikiPathways, content growth and collaboration among pathway researchers. As an evolving database, there is a growing need for WikiPathways to address and overcome technical challenges. In this direction, WikiPathways has undergone major restructuring, enabling a renewed approach for sharing and curating pathway knowledge, thus providing stability for the future of community pathway curation. The website has been redesigned to improve and enhance user experience. This next generation of WikiPathways continues to support existing features while improving maintainability of the database and facilitating community input by providing new functionality and leveraging automation., (© The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.)
- Published
- 2024
- Full Text
- View/download PDF
48. Exploring pathway interactions to detect molecular mechanisms of disease: 22q11.2 deletion syndrome.
- Author
-
Shin W, Kutmon M, Mina E, van Amelsvoort T, Evelo CT, and Ehrhart F
- Subjects
- Humans, Phosphatidylinositol 3-Kinases, Phenotype, Gene Expression Profiling, DiGeorge Syndrome genetics, Heart Defects, Congenital
- Abstract
Background: 22q11.2 Deletion Syndrome (22q11DS) is a genetic disorder characterized by the deletion of adjacent genes at a location specified as q11.2 of chromosome 22, resulting in an array of clinical phenotypes including autistic spectrum disorder, schizophrenia, congenital heart defects, and immune deficiency. Many characteristics of the disorder are known, such as the phenotypic variability of the disease and the biological processes associated with it; however, the exact and systemic molecular mechanisms between the deleted area and its resulting clinical phenotypic expression, for example that of neuropsychiatric diseases, are not yet fully understood., Results: Using previously published transcriptomics data (GEO:GSE59216), we constructed two datasets: one set compares 22q11DS patients experiencing neuropsychiatric diseases versus healthy controls, and the other set 22q11DS patients without neuropsychiatric diseases versus healthy controls. We modified and applied the pathway interaction method, originally proposed by Kelder et al. (2011), on a network created using the WikiPathways pathway repository and the STRING protein-protein interaction database. We identified genes and biological processes that were exclusively associated with the development of neuropsychiatric diseases among the 22q11DS patients. Compared with the 22q11DS patients without neuropsychiatric diseases, patients experiencing neuropsychiatric diseases showed significant overrepresentation of regulated genes involving the natural killer cell function and the PI3K/Akt signalling pathway, with affected genes being closely associated with downregulation of CRK like proto-oncogene adaptor protein. Both the pathway interaction and the pathway overrepresentation analysis observed the disruption of the same biological processes, even though the exact lists of genes collected by the two methods were different., Conclusions: Using the pathway interaction method, we were able to detect a molecular network that could possibly explain the development of neuropsychiatric diseases among the 22q11DS patients. This way, our method was able to complement the pathway overrepresentation analysis, by filling the knowledge gaps on how the affected pathways are linked to the original deletion on chromosome 22. We expect our pathway interaction method could be used for problems with similar contexts, where complex genetic mechanisms need to be identified to explain the resulting phenotypic plasticity., (© 2023. Institut National de la Santé et de la Recherche Médicale (INSERM).)
- Published
- 2023
- Full Text
- View/download PDF
49. Fetal alcohol spectrum disorders and the risk of crime.
- Author
-
Roozen S and Ehrhart F
- Subjects
- Female, Pregnancy, Humans, Crime, Ethanol, Brain diagnostic imaging, Fetal Alcohol Spectrum Disorders epidemiology, Prenatal Exposure Delayed Effects epidemiology
- Abstract
Fetal alcohol spectrum disorders (FASD) are an important preventable global health concern. FASD is an umbrella term describing a range of mild to severe cognitive and behavioral problems among individuals prenatally exposed to alcohol. Alcohol causes FASD by interfering with molecular pathways during fetal development involving increased oxidative stress, disturbed organ development, and change of epigenetic gene expression control. Neuroimaging studies into FASD show several neuropathological abnormalities including abnormal brain structure, cortical development, white matter microstructure, and functional connectivity. Individuals with FASD experience a wide range of cognitive and behavioral challenges. Risks of violent behavior, criminality, and criminalization have been indicated by a limited number of epidemiological studies. The relationship between prenatal alcohol exposure and the increase of these risks remains unclear. This is further impeded by the complexity of an FASD diagnosis, the lack of a clear dose-response relationship of brain impact to alcohol use, and the lack of a clear FASD behavioral phenotype. Literature with respect to FASD and crime is still in its infancy. From the studies available, it is recommended to pay close attention to individuals with FASD and the relation with the criminal justice system and the risk for discrimination. There is a clear need for FASD-related stigma reduction programs within the correctional system. Further investigations into reliable biomarkers for diagnosis and treatment are needed., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
50. Neuroimaging Findings in Neurodevelopmental Copy Number Variants: Identifying Molecular Pathways to Convergent Phenotypes.
- Author
-
Silva AI, Ehrhart F, Ulfarsson MO, Stefansson H, Stefansson K, Wilkinson LS, Hall J, and Linden DEJ
- Subjects
- Animals, DNA Copy Number Variations genetics, Genetic Predisposition to Disease, Humans, Neuroimaging, Phenotype, Autism Spectrum Disorder diagnostic imaging, Autism Spectrum Disorder genetics, Neurodevelopmental Disorders diagnostic imaging, Neurodevelopmental Disorders genetics
- Abstract
Genomic copy number variants (CNVs) are associated with a high risk of neurodevelopmental disorders. A growing body of genetic studies suggests that these high-risk genetic variants converge in common molecular pathways and that common pathways also exist across clinically distinct disorders, such as schizophrenia and autism spectrum disorder. A key question is how common molecular mechanisms converge into similar clinical outcomes. We review emerging evidence for convergent cognitive and brain phenotypes across distinct CNVs. Multiple CNVs were shown to have similar effects on core sensory, cognitive, and motor traits. Emerging data from multisite neuroimaging studies have provided valuable information on how these CNVs affect brain structure and function. However, most of these studies examined one CNV at a time, making it difficult to fully understand the proportion of shared brain effects. Recent studies have started to combine neuroimaging data from multiple CNV carriers and identified similar brain effects across CNVs. Some early findings also support convergence in CNV animal models. Systems biology, through integration of multilevel data, provides new insights into convergent molecular mechanisms across genetic risk variants (e.g., altered synaptic activity). However, the link between such key molecular mechanisms and convergent psychiatric phenotypes is still unknown. To better understand this link, we need new approaches that integrate human molecular data with neuroimaging, cognitive, and animal model data, while taking into account critical developmental time points. Identifying risk mechanisms across genetic loci can elucidate the pathophysiology of neurodevelopmental disorders and identify new therapeutic targets for cross-disorder applications., (Copyright © 2022 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.