1. Effects of Mixtures of Emerging Pollutants and Drugs on Modulation of Biomarkers Related to Toxicity, Oxidative Stress, and Cancer
- Author
-
Simona Manuguerra, Fabrizia Carli, Egeria Scoditti, Andrea Santulli, Amalia Gastaldelli, and Concetta Maria Messina
- Subjects
cadmium chloride ,carbamazepine ,polybrominated diphenyl-ether ,oxidative stress ,HepG2 ,biomarkers ,Microbiology ,QR1-502 - Abstract
Background/Objectives: Over time, the scientific community has developed a growing interest in the effects of mixtures of different compounds, for which there is currently no established evidence or knowledge, in relation to certain categories of xenobiotics. It is well known that exposure to pollutants causes oxidative stress, resulting in the overproduction of reactive oxygen species (ROS), which can affect signaling pathways that regulate the cell cycle, apoptosis, energy balance, and cellular metabolism. The aim of this study was to investigate the effects of sub-lethal concentrations of mixtures of emerging pollutants and pharmaceuticals on the modulation of biomarkers related to toxicity, oxidative stress, and cancer. Methods: In this study, the hepatoma cell line HepG2 was exposed to increasing concentrations of polybrominated diphenyl ether 47 (BDE-47), cadmium chloride (CdCl2), and carbamazepine (CBZ), both individually and in mixtures, for 72 h to assess cytotoxicity using the MTT assay. The subsequent step, following the identification of the sub-lethal concentration, was to investigate the effects of exposure at the gene expression level, through the evaluation of molecular markers related to cell cycle and apoptosis (p53), oxidative stress (NRF2), conjugation and detoxification of xenobiotics (CYP2C9 and GST), DNA damage (RAD51 and γH2AFX), and SUMOylation processes (SUMO1 and UBC9) in order to identify any potential alterations in pathways that are normally activated at the cellular level. Results: The results showed that contaminants tend to affect the enzymatic detoxification and antioxidant system, influencing DNA repair defense mechanisms involved in resistance to oxidative stress. The combined effect of the compounds at sub-lethal doses results in a greater activation of these pathways compared to exposure to each compound alone, thereby exacerbating their cytotoxicity. Conclusions: The biomarkers analyzed could contribute to the definition of early warning markers useful for environmental monitoring, while simultaneously providing insight into the toxicity and hazard levels of these substances in the environment and associated health risks.
- Published
- 2024
- Full Text
- View/download PDF