26 results on '"Edge singularities"'
Search Results
2. Signatures of Witt spaces with boundary
- Author
-
Paolo Piazza and Boris Vertman
- Subjects
Mathematics - Differential Geometry ,General Mathematics ,Geometric Topology (math.GT) ,53C44, Secondary 58J35, 35K08 ,edge singularities ,index theorem ,Mathematics - Spectral Theory ,Mathematics - Geometric Topology ,Mathematics - Analysis of PDEs ,Differential Geometry (math.DG) ,Mathematics::K-Theory and Homology ,FOS: Mathematics ,eta-invariants ,signature ,Spectral Theory (math.SP) ,Analysis of PDEs (math.AP) - Abstract
Let M be a compact smoothly stratified pseudomanifold with boundary, satisfying the Witt assumption. In this paper we introduce the de Rham signature and the Hodge signature of M, and prove their equality. Next, building also on recent work of Albin and Gell-Redman, we extend the Atiyah-Patodi-Singer index theory established in our previous work under the hypothesis that M has stratification depth 1 to the general case, establishing in particular a signature formula on Witt spaces with boundary. In a parallel way we also pass to the case of a Galois covering M' of M with Galois group Gamma. Employing von Neumann algebras we introduce the de Rham Gamma-signature and the Hodge Gamma-signature and prove their equality, thus extending to Witt spaces a result proved by Lueck and Schick in the smooth case. Finally, extending work of Vaillant in the smooth case, we establish a formula for the Hodge Gamma-signature. As a consequence we deduce the fundamental result that equates the Cheeger-Gromov rho-invariant of the boundary of M' with the difference of the signatures of M and M'. We end the paper with two geometric applications of our results., 58 pages, 4 figures
- Published
- 2022
3. Signatures of Witt spaces with boundary.
- Author
-
Piazza, Paolo and Vertman, Boris
- Subjects
- *
MATHEMATICAL equivalence - Abstract
Let M ‾ be a compact smoothly stratified pseudomanifold with boundary, satisfying the Witt assumption. In this paper we introduce the de Rham signature and the Hodge signature of M ‾ , and prove their equality. Next, building also on recent work of Albin and Gell-Redman, we extend the Atiyah-Patodi-Singer index theory established in our previous work under the hypothesis that M ‾ has stratification depth 1 to the general case, establishing in particular a signature formula on Witt spaces with boundary. In a parallel way we also pass to the case of a Galois covering M ‾ Γ of M ‾ with Galois group Γ. Employing von Neumann algebras we introduce the de Rham Γ-signature and the Hodge Γ-signature and prove their equality, thus extending to Witt spaces a result proved by Lück and Schick in the smooth case. Finally, extending work of Vaillant in the smooth case, we establish a formula for the Hodge Γ-signature. As a consequence we deduce the fundamental result that equates the Cheeger-Gromov rho-invariant of the boundary ∂ M ‾ Γ with the difference of the signatures of and M ‾ and M ‾ Γ : sign dR (M ‾ , ∂ M ‾) − sign dR Γ ( M ‾ Γ , ∂ M ‾ Γ) = ρ Γ (∂ M ‾ Γ). We end the paper with two geometric applications of our results. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
4. High-order Treatment of Junctions and Edge Singularities with the Locally-corrected Nyström Method.
- Author
-
Bibby, M. M. and Peterson, A. F.
- Subjects
- *
MATHEMATICAL singularities , *ELECTROMAGNETIC fields , *HIGH-order derivatives (Mathematics) , *RADIAL basis functions , *SURFACES (Physics) - Abstract
High order techniques are known to be effective for the electromagnetic analysis of smooth structures. In the following, high order representations developed for the current density at edges and junctions are incorporated into the locally-corrected Nyström method. Conducting structures used for purposes of illustration include a strip, a structure with three fins and a junction, and a hexagonal cylinder. Results suggest that the accuracy of the numerical results obtained with the new approach is comparable to that obtained for problems with smooth surfaces. [ABSTRACT FROM AUTHOR]
- Published
- 2013
5. L-error estimates for Dirichlet and Neumann problems on anisotropic finite element meshes.
- Author
-
Apel, Thomas and Sirch, Dieter
- Subjects
- *
ERROR analysis in mathematics , *DIRICHLET problem , *BOUNDARY value problems , *INTERPOLATION , *ELLIPTIC functions , *FINITE element method , *MATHEMATICAL singularities , *CONVEX domains - Abstract
n L-estimate of the finite element error is proved for a Dirichlet and a Neumann boundary value problem on a three-dimensional, prismatic and non-convex domain that is discretized by an anisotropic tetrahedral mesh. To this end, an approximation error estimate for an interpolation operator that is preserving the Dirichlet boundary conditions is given. The challenge for the Neumann problem is the proof of a local interpolation error estimate for functions from a weighted Sobolev space. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF
6. Edge singularities and structure of the 3-D Williams expansion
- Author
-
Apel, Thomas, Leguillon, Dominique, Pester, Cornelia, and Yosibash, Zohar
- Subjects
- *
MATHEMATICAL singularities , *WEDGES , *ELASTICITY , *MATHEMATICAL symmetry , *MATHEMATICAL functions - Abstract
Abstract: The elastic solution in a vicinity of a re-entrant wedge can be described by a Williams like expansion in terms of powers of the distance to a point on the edge. This expansion has a particular structure due to the invariance of the problem by translation parallel to the edge. We show here that some terms, so-called primary solutions, derive directly from solutions to the 2-D corner problem posed in the orthogonal cross section of the domain. The others, baptized shadow functions, derive of the primary solutions by integration along the axis parallel to the edge. This 3-D Williams expansion is shown to be equivalent to the edge expansion proposed by Costabel et al. [M. Costabel, M. Dauge, Z. Yosibash, A quasidual function method for extracting edge stress intensity functions, SIAM J. Math. Anal. 35 (5) (2004) 1177–1202]. To cite this article: T. Apel et al., C. R. Mecanique 336 (2008). [Copyright &y& Elsevier]
- Published
- 2008
- Full Text
- View/download PDF
7. A domain-independent integral for computation of stress intensity factors along three-dimensional crack fronts and edges by BEM
- Author
-
Ortiz, J.E., Mantič, V., and París, F.
- Subjects
- *
NUMERICAL analysis , *ELASTIC solids , *SOLID state physics , *CONTINUUM mechanics - Abstract
Abstract: The present work deals with an evaluation of stress intensity factors (SIFs) along straight crack fronts and edges in three-dimensional isotropic elastic solids. A new numerical approach is developed for extraction, from a solution obtained by the boundary element method (BEM), of those SIFs, which are relevant for a failure assessment of mechanical components. In particular, the generalized SIFs associated to eigensolutions characterized by unbounded stresses at a neighbourhood of the crack front or a reentrant edge and also that associated to T-stress at the crack front can be extracted. The method introduced is based on a conservation integral, called H-integral, which leads to a new domain-independent integral represented by a scalar product of the SIF times some element shape function defined along the crack front or edge. For sufficiently small element lengths these weighted averages of SIFs give reasonable pointwise estimation of the SIFs. A proof of the domain integral independency, based on the bi-orthogonality of the classical two-dimensional eigensolutions associated to a corner problem, is presented. Numerical solutions of two three-dimensional problems, a crack problem and a reentrant edge problem, are presented, the accuracy and convergence of the new approach for SIF extraction being analysed. [Copyright &y& Elsevier]
- Published
- 2006
- Full Text
- View/download PDF
8. The Fourier Finite-element Approximation of the Lamé Equations in Axisymmetric Domains with Edges.
- Author
-
Nkemzi, B.
- Subjects
- *
STOCHASTIC convergence , *FINITE element method , *NUMERICAL analysis , *BOUNDARY value problems , *FOURIER analysis - Abstract
This paper is concerned with a priori error estimates and convergence analysis of the Fourier-finite-element solutions of the Neumann problem for the Lamé equations in axisymmetric domains [InlineMediaObject not available: see fulltext.] with reentrant edges. The Fourier-FEM combines the approximating Fourier method with respect to the rotational angle using trigonometric polynomials of degree N ( N→∞), with the finite element method on the plane meridian domain of [InlineMediaObject not available: see fulltext.] with mesh size h ( h→0) for approximating the Fourier coefficients. The asymptotic behavior of the solution near reentrant edges is described by singularity functions in non-tensor product form and treated numerically by means of finite element method on locally graded meshes. For [InlineMediaObject not available: see fulltext.] the rate of convergence of the combined approximations in [InlineMediaObject not available: see fulltext.] is proved to be of the order [InlineMediaObject not available: see fulltext.] [ABSTRACT FROM AUTHOR]
- Published
- 2006
- Full Text
- View/download PDF
9. On the solution of Maxwell's equations in axisymmetric domains with edges.
- Author
-
Nkemzi, Boniface
- Subjects
- *
MAXWELL equations , *AXIAL flow , *BOUNDARY value problems , *FOURIER analysis , *FINITE element method - Abstract
In this paper we present the basic mathematical tools for treating boundary value problems for the Maxwell equations in three-dimensional axisymmetric domains with reentrant edges using the Fourier-finite-element method. We consider both the classical and the regularized time-harmonic Maxwell equations subject to perfect conductor boundary conditions. The partial Fourier decomposition reduces the three-dimensional boundary value problem into an infinite sequence of two-dimensional boundary value problems in the plane meridian domain of the axsiymmetric domain. Here, suitable weighted Sobolev spaces that characterize the solutions of the reduced problems are given, and their trace properties on the rotational axis are proved. In these spaces, it is proved that the reduced problems are well posed, and the asymptotic behavior of the solutions near reentrant corners of the meridian domain is explicitly described by suitable singularity functions. Finally, a finite number of the two-dimensional problems is considered and treated using H1-conforming finite elements. An approximation of the solution of the three-dimensional problem is obtained by Fourier synthesis. For domains with reentrant edges, the singular field method is employed to compensate the singular behavior of the solutions of the reduced problems. Emphases are given to convergence analysis of the combined approximations in H1 under different regularity assumptions on the solution. [ABSTRACT FROM AUTHOR]
- Published
- 2005
- Full Text
- View/download PDF
10. Edge flux intensity functions in polyhedral domains and their extraction by a quasidual function method.
- Author
-
Omer, Netta, Yosibash, Zohar, Costabel, Martin, and Dauge, Monique
- Subjects
- *
BOUNDARY value problems , *EIGENFUNCTIONS , *MATHEMATICAL functions , *POLYNOMIALS , *FINITE element method , *ELASTICITY - Abstract
The asymptotics of solutions to scalar second order elliptic boundary value problems in three-dimensional polyhedral domains in the vicinity of an edge is provided in an explicit form. It involves a family of eigen-functions with their shadows, and the associated edge flux intensity functions (EFIFs), which are functions along the edges. Utilizing the explicit structure of the solution in the vicinity of the edge we present a new method for the extraction of the EFIFs called quasidual function method. It can be interpreted as an extension of the dual function contour integral method in 2-D domains, and involves the computation of a surface integral J[R] along a cylindrical surface of radius R away from the edge as presented in a general framework in (Costabel et al., 2004). The surface integral J[R] utilizes special constructed extraction polynomials together with the dual eigen-functions for extracting EFIFs. This accurate and efficient method provides a polynomial approximation of the EFIF along the edge whose order is adaptively increased so to approximate the exact EFIF. It is implemented as a post-solution operation in conjunction with the p-version finite element method. Numerical realization of some of the anticipated properties of the J[R] are provided, and it is used for extracting EFIFs associated with different scalar elliptic equations in 3-D domains, including domains having edge and vertex singularities. The numerical examples demonstrate the efficiency, robustness and high accuracy of the proposed quasi-dual function method, hence its potential extension to elasticity problems. [ABSTRACT FROM AUTHOR]
- Published
- 2004
- Full Text
- View/download PDF
11. Singularities in elasticity and their treatment with Fourier series.
- Author
-
Nkemzi, Boniface
- Subjects
- *
FOURIER analysis , *MATHEMATICAL analysis , *CALCULUS of tensors , *ELASTICITY , *HARMONIC analysis (Mathematics) - Abstract
This paper analyses the regularity of the weak solution of the linear elasticity system in three-dimensional axisymmetric domains with reentrant edges under prescribed traction on the boundary by means of Fourier series. Using partial Fourier analysis with respect to one space direction (rotational angle), the three-dimensional boundary value problem (BVP) is decomposed into a sequence of decoupled two-dimensional boundary value problems on the meridian of the axisymmetric domain. The splitting of the 2D solutions near corners of the meridian domain into regular and singular parts provides coefficients from which the 3D edge singularity functions (generalized stress intensity factors) are derived. Two types of singularity functions are presented, namely, a tensorial type, which needs more smoothness assumption on the right hand side and a non-tensorial type, which does not demand any further smoothness assumptions. [ABSTRACT FROM AUTHOR]
- Published
- 2004
- Full Text
- View/download PDF
12. Improved Quadrature Formulas for Boundary Integral Equations With Conducting or Dielectric Edge Singularities.
- Author
-
Burghignoli, Paolo, Pajewski, Lara, Frezza, Fabrizio, Galli, Alessandro, and Schettini, Giuseppe
- Subjects
- *
DIELECTRICS , *RADAR , *METALLIC composites , *INTEGRAL equations , *POLYNOMIALS , *NUMERICAL integration - Abstract
In this paper we derive new two-dimensional (2-D) quadrature formulas for the discretization of boundary integral equations in the presence of conducting or dielectric edges. The proposed formulas allow us to exactly integrate polynomials of degree less than or equal to five, multiplied by an algebraic singular factor that diverges along one side of the triangular integration domain. This is the kind of singularity that occurs when physical edges are present in both conducting and dielectric bodies. Numerical tests are performed on the presented formulas, in order to validate the achieved improvement in accuracy, and examples are given of their application to the determination of radar cross-section of 3-D metallic objects. [ABSTRACT FROM AUTHOR]
- Published
- 2004
- Full Text
- View/download PDF
13. A QUASI-DUAL FUNCTION METHOD FOR EXTRACTING EDGE STRESS INTENSITY FUNCTIONS.
- Author
-
Costabel, Martin, Dauge, Monique, and Yosibash, Zohar
- Subjects
- *
MATHEMATICAL singularities , *INITIAL value problems , *STRAINS & stresses (Mechanics) , *ORTHOGONALIZATION , *MATHEMATICAL functions - Abstract
We present a methodfor the computation of the coefficients of singularities along the edges of a polyhedron for second-order elliptic boundary value problems. The class of problems considered includes problems of stress concentration along edges or crack fronts in general linear three-dimensional elasticity. Our method uses an incomplete construction of three-dimensional dual singular functions, based on explicitly known dual singular functions of two-dimensional problems tensorizedby test functions along the edge andcombinedwith complementary terms improving their orthogonality properties with respect to the edge singularities. Our method is aimed at the numerical computation of the stress intensity functions. It is suitable for a postprocessing procedure in the finite element approximation of the solution of the boundary value problem. [ABSTRACT FROM AUTHOR]
- Published
- 2004
- Full Text
- View/download PDF
14. Steady state simulation of electrode processes with a new error bounded adaptive finite element algorithm
- Author
-
Abercrombie, Stuart C.B. and Denuault, Guy
- Subjects
- *
ELECTRIC currents , *ELECTRODES , *SIMULATION methods & models - Abstract
In a series of papers, Harriman et al. have presented a reliable means of simulating steady state currents with adaptive finite element. They have demonstrated that multi-step, even non-linear, mechanisms, alongside convection, can be incorporated. However, there is considerable complication in the mathematical approach taken, and it would seem to be limited as it stands to certain types of electrode reaction models – notably those without heterogeneous kinetics or transient effects. In this paper we discuss alternative approaches to error estimation and adaptivity, and present a simpler formulation, capable of simulating systems with heterogeneous kinetics; transient simulations also appear more attainable. We introduce, apparently for the first time in electrochemistry, the use of gradient recovery methods to both error estimation and accurate current calculations. The result is an algorithm with considerably more potential for generalisation, closer to the ideal of an entirely flexible automatic simulation program, capable of dealing with any mechanism or electrode geometry. In tests we find our method to perform more efficiently than that cited above, producing accurate results with simpler meshes in less time. [Copyright &y& Elsevier]
- Published
- 2003
- Full Text
- View/download PDF
15. Edge Singularities and Kutta Condition in 3D Aerodynamics.
- Author
-
Bassanini, P., Casciola, C.M., Lancia, M.R., and Piva, R.
- Abstract
This review paper presents a unified formulation of the Kutta condition for steady and unsteady flows, implemented by removing all unbounded velocity singularities (of power law and logarithmic type) at the trailing edge, and including nonlinear wakes and thick swept back wings. A suitable boundary integral approach is adopted and the uniqueness issue is discussed for several wing configurations of interest in aerodynamics. Sommario. Si presenta una formulazione unificata della condizione di Kutta per flussi stazionari e non stazionari, ottenuta imponendo la limitatezza della velocità al bordo d'uscita, e valida nel caso nonlineare anche per ali a freccia. Si utilizza un opportuno approccio integrale al contorno e si discute il problema dell'unicità per svariate configurazioni alari di interesse nelle applicazioni. [ABSTRACT FROM AUTHOR]
- Published
- 1999
- Full Text
- View/download PDF
16. Efficient analysis of microstrip lines including edge singularities in spatial domains.
- Author
-
Jong-Sung Kim and Wee Sang Park
- Abstract
Microstrip lines are analyzed by considering edge-singular behavior using closed-form Green's functions in a spatial domain. A Maxwell function which incorporates the appropriate edge conditions of the line is introduced for the derivations of a transverse correlation function. From calculations of excess lengths of an open-end discontinuity, the results of the proposed method using the edge conditions are in better agreement with the quasistatic results than those of transverse uniform current variations for conductor strips with relatively wider width [ABSTRACT FROM PUBLISHER]
- Published
- 2001
- Full Text
- View/download PDF
17. Edge quantisation of elliptic operators
- Author
-
Dines, Nicoleta, Liu, Xiaochun, and Schulze, Bert-Wolfgang
- Published
- 2009
- Full Text
- View/download PDF
18. Work distribution and edge singularities for generic time-dependent protocols in extended systems
- Author
-
Alessandro Silva and Pietro Smacchia
- Subjects
Statistical Mechanics (cond-mat.stat-mech) ,Work (physics) ,FOS: Physical sciences ,Bosonic field theory ,Condensation transition ,Edge singularities ,Extended systems ,Generic protocols ,One-dimensional Ising chain ,Transverse field ,Work distribution ,Settore FIS/03 - Fisica della Materia ,Scaling limit ,Singularity ,Critical point (thermodynamics) ,Quantum mechanics ,Bosonic field ,Exponent ,Gravitational singularity ,Statistical physics ,Quantum statistical mechanics ,Condensed Matter - Statistical Mechanics ,Mathematics - Abstract
We study the statistics of the work done by globally changing in time with a generic protocol the mass in a free bosonic field theory with relativistic dispersion and the transverse field in the one-dimensional Ising chain both globally and locally. In the latter case we make the system start from the critical point and we describe it in the scaling limit. We provide exact formulas in all these cases for the full statistics of the work and we show that the low energy part of the distribution of the work displays an edge singularity whose exponent does not depend on the specifics of the protocol that is chosen, and may only depend on the position of the initial and final value with respect to the critical point of the system. We also show that the condensation transition found in the bosonic system for sudden quenches [A. Gambassi and A. Silva, Phys. Rev. Lett. {\bf 109}, 250602 (2012)] is robust with respect to the choice of the protocol., Comment: 21 pages, 13 figures; Minor changes, published version
- Published
- 2013
19. Primal and Shadow functions, Dual and Dual-Shadow functions for a circular crack and a circular 90o V-notch with Neumann boundary conditions
- Author
-
Shannon, Samuel, Yosibash, Zohar, Dauge, Monique, Costabel, Martin, Department of Computer Science, Ben-Gurion University of the Negev ( BGU ), Institut de Recherche Mathématique de Rennes ( IRMAR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -AGROCAMPUS OUEST-École normale supérieure - Rennes ( ENS Rennes ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National des Sciences Appliquées ( INSA ) -Université de Rennes 2 ( UR2 ), Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ), Department of Computer Science [Beer-Sheva], Ben-Gurion University of the Negev (BGU), Institut de Recherche Mathématique de Rennes (IRMAR), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Dauge, Monique, Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
- Subjects
Penny-shaped crack ,[ MATH.MATH-NA ] Mathematics [math]/Numerical Analysis [math.NA] ,[MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA] ,Shadow functions ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,V-notch ,Edge singularities - Abstract
This report presents explicit analytical expressions for the primal, primal shadows, dual and dual shadows functions for the Laplace equation in the vicinity of a circular singular edge with Neumann boundary conditions on the faces that intersect at the singular edge. Two configurations are investigated: a penny-shaped crack and a 90o V-notch.
- Published
- 2013
20. Επεκτάσεις της μεθόδου Συνοριακού Ολοκληρώματος με Ιδιάζουσες Συναρτήσεις στις δύο και τρεις διαστάσεις
- Author
-
Christodoulou, Evgenia Ch., Xenophontos, Christos, Georgiou, Georgios, Ξενοφώντος, Χρίστος, Γεωργίου, Γεώργιος, Smyrlis, Yiorgos-Sokratis, Boudouvis, Andreas, Yosibash, Zohar, Σμυρλής, Γιώργος-Σωκράτης, Μπουντουβής, Ανδρέας, University of Cyprus, Faculty of Pure and Applied Sciences, Department of Mathematics and Statistics, and Πανεπιστήμιο Κύπρου, Σχολή Θετικών και Εφαρμοσμένων Επιστημών, Τμήμα Μαθηματικών και Στατιστικής
- Subjects
SINGULAR FUNCTION BOUNDARY INTEGRAL METHOD ,ΕΛΛΕΙΠΤΙΚΕΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ,Boundary element methods ,ΣΥΝΟΡΙΑΚΕΣ ΙΔΙΟΜΟΡΦΙΕΣ ,ΜΕΘΟΔΟΙ ΣΥΝΟΡΙΑΚΟΥ ΟΛΟΚΛΗΡΩΜΑΤΟΣ ,ΛΑΠΛΑΣΙΑΝΗ ΕΞΙΣΩΣΗ ,ΔΙΑΡΜΟΝΙΚΗ ΕΞΙΣΩΣΗ ,STRESS INTENSITY FACTORS ,LAPLACE EQUATION ,ΜΕΘΟΔΟΣ ΣΥΝΟΡΙΑΚΟΥ ΟΛΟΚΛΗΡΩΜΑΤΟΣ ΜΕ ΙΔΙΑΖΟΥΣΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ,ΣΥΝΤΕΛΕΣΤΕΣ ΣΥΓΚΕΝΤΡΩΣΗΣ ΤΑΣΕΩΝ ,Integral equations Numerical solutions ,Differential equations, Elliptic Numerical solutions ,EDGE SINGULARITIES ,ΙΔΙΟΜΟΡΦΙΕΣ ΑΚΜΗΣ ,BOUNDARY INTEGRAL METHODS ,ELLIPTIC DIFFERENTIAL EQUATIONS ,Boundary value problems Numerical solutions ,BOUNDARY SINGULARITIES ,BIHARMONIC EQUATION ,Numerical analysis - Abstract
Includes bibliography (p. 120-126). Number of sources in the bibliography: 57 Thesis (Ph. D.) -- University of Cyprus, Faculty of Pure and Applied Sciences, Department of Mathematics and Statistics, 2011. The University of Cyprus Library holds the printed form of the thesis. The Singular Function Boundary Integral Method (SFBIM) was introduced by Georgiou et al. (1996) for solving numerically two-dimensional Laplacian problems with one boundary singularity. In this method, the solution is approximated by the leading terms of the local asymptotic expansion near the singular point. By weighting the governing equation with the eigenfunctions in the Galerkin sense and applying Green's second identity, the discretized problem is reduced to a system of boundary integral equations far from the singular point. This reduces the dimension of the problem by one and leads to considerable computational savings. Dirichlet boundary conditions are enforced by means of Lagrange multiplier functions, which appear as additional unknowns in the system. These functions are approximated locally by polynomial basis functions. Therefore, the unknowns in the SFBIM are the coefficients of the eigenfunctions, also known as singular coefficients or generalized stress intensity factors, and the discrete Lagrange multiplier values. The fact that the singular coefficients are calculated directly and not by postprocessing the numerical solution is another advantage of the method. The latter has been applied to both Laplacian and biharmonic two-dimensional problems exhibiting fast convergence with the number of singular coefficients and the number of Lagrange multipliers. The convergence of the method has also been analyzed theoretically in the case of two-dimensional Laplacian problems. The objectives of this thesis were: (i) the numerical verification of certain theoretical results on model two-dimensional problems. (ii) the proof of convergence of the method for a two-dimensional biharmonic problem with one boundary singularity. (iii) the extension of the method to three-dimensional Laplacian problems with straight-edge singularities. For accomplishing the first objective, we considered a Laplacian problem over a circular sector, with known analytical solution. This allowed us to study the convergence of the method for various orders of the polynomial approximation of the Lagrange multipliers and to calculate the exact approximation errors. The numerical results agree well with the theoretical analysis of Xenophontos et al. (2006). Objective number two was achieved by extending the convergence analysis from Xenophontos et. al. (2006) to a model two-dimensional biharmonic problem with a boundary singularity. We proved that the calculated singular coefficients converge exponentially with the number of singular functions. To illustrate the theoretical findings, we have carried out numerical experiments on a Stokes flow problem. Finally, we extended the method for solving a three-dimensional Laplacian problem with a straight-edge singularity. The solution in the neighbourhood of the straight edge can be expressed as an asymptotic expansion involving the eigenpairs of the analogous two-dimensional problem, which have as coefficients the so-called edge flux stress intensity functions (EFIFs). The EFIFs are functions of the axial coordinate the higher derivatives of which appear in an infinite series in the expansion (Yosibash et al., 2002). Approximating the EFIFs by piecewise polynomials of degree k=0,1 defined on a mesh with width h, eliminates the inner infinite series in the local expansion and allows for the straightforward extension of the SFBIM. As in the case of two-dimensional problems the solution was approximated by the leading terms of the local asymptotic solution expansion and the Dirichlet boundary conditions were imposed by means of Lagrange multiplier functions. Our numerical calculations demostrated that the calculated EFIFs converge with order Ο(hk+1) , in the L2 norm. H Μέθοδος Συνοριακού Ολοκληρώματος με Ιδιάζουσες Συναρτήσεις (Singular Function Boundary Integral Method, SFBIM) αναπτύχθηκε από τους Georgiou et. al. (1996) για την αριθμητική επίλυση διδιάστατων προβλημάτων Laplace με συνοριακές ιδιομορφίες. Στη μέθοδο αυτή, η λύση προσεγγίζεται με τους αρχικούς όρους του τοπικού αναπτύγματος της λύσης κοντά στο σημείο της ιδιομορφίας. Σταθμίζοντας τη διαφορική εξίσωση με τις συναρτήσεις βάσης κατά Galerkin και εφαρμόζοντας τη δεύτερη ταυτότητα του Green, το διακριτοποιημένο πρόβλημα ανάγεται σε ένα σύστημα ολοκληρωτικών εξισώσεων πάνω στο σύνορο του χωρίου και μάλιστα μακριά από το ιδιάζον σημείο. Έτσι η διάσταση του προβλήματος μειώνεται κατά ένα με σημαντική μείωση του υπολογιστικού κόστους. Οι συνοριακές συνθήκες τύπου Dirichlet επιβάλλονται μέσω συναρτήσεων πολλαπλασιαστών Lagrange, οι οποίες εμφανίζονται σαν επιπρόσθετοι άγνωστοι στο τελικό γραμμικό σύστημα και προσεγγίζονται τοπικά με πολυωνυμικές συναρτήσεις βάσης. Οι άγνωστοι στην μέθοδο SFBIM είναι οι ιδιάζοντες συντελεστές της προσέγγισης της λύσης, γνωστοί και ως γενικευμένοι συντελεστές συγκέντρωσης τάσεων, και οι διακριτές τιμές των πολλαπλασιαστών Lagrange. Το γεγονός ότι οι ιδιάζοντες συντελεστές υπολογίζονται απευθείας και όχι με μετεπεξεργασία της αριθμητικής λύσης αποτελεί άλλο πλεονέκτημα της μεθόδου. Η μέθοδος μελετήθηκε και εφαρμόστηκε σε Λαπλασιανά και Διαρμονικά προβλήματα στις δύο διαστάσεις, δίνοντας ταχεία σύγκλιση με το πλήθος των ιδιοσυναρτήσεων και το πλήθος των συντελεστών Lagrange. Η σύγκλιση της μεθόδου αναλύθηκε θεωρητικά στην περίπτωση διδιάστατων προβλημάτων Laplace. Οι στόχοι της διατριβής αυτής ήταν οι εξής: (i) Η αριθμητική επαλήθευση κάποιων θεωρητικών αποτελεσμάτων σε πρότυπα προβλήματα Laplace. (ii) Η απόδειξη της σύγκλισης της μεθόδου για ένα διδιάστατο διαρμονικό πρόβλημα με μια συνοριακή ιδιομορφία. (iii) Η επέκταση της μεθόδου σε τριδιάστατα προβλήματα Laplace με ιδιομορφίες ακμής. Για την επίτευξη του πρώτου στόχου μελετήσαμε προβλήματα Laplace πάνω σε κυκλικούς τομείς, με γνωστή αναλυτική λύση. Αυτό επέτρεψε τη μελέτη της σύγκλισης της μεθόδου για διάφορους βαθμούς της πολυωνυμικής προσέγγισης των πολλαπλασιαστών Lagrange και τον ακριβή υπολογισμό των σφαλμάτων προσέγγισης. Τα αριθμητικά μας αποτελέσματα συμφωνούν με τη θεωρητική ανάλυση των Xenophontos et al. (2006). Ο δεύτερος στόχος επιτεύχθηκε με την επέκταση της ανάλυσης σύγκλισης των Xenophontos et al. (2006) για ένα πρότυπο διδιάστατο διαρμονικό πρόβλημα με συνοριακή ιδιομορφία. Αποδείξαμε ότι οι υπολογιζόμενοι ιδιάζοντες συντελεστές συγκλίνουν εκθετικά με το πλήθος των ιδιοσυναρτήσεων. Εκτελέσαμε επίσης αριθμητικά πειράματα για ένα πρόβλημα ροής Stokes για την παρουσίαση των θεωρητικών ευρημάτων. Για τον τελευταίο στόχο επεκτείναμε τη μέθοδο για την επίλυση ενός τριδιάστατου προβλήματος Laplace με ιδιομορφία ακμής. Η τοπική λύση γύρω από την ακμή μπορεί να εκφρασθεί σαν ένα ασυμπτωτικό ανάπτυγμα που περιλαμβάνει τις ιδιοτιμές και τις ιδιοσυναρτήσεις του αντίστοιχου διδιάστατου προβλήματος σε πολικές συντεταγμένες, οι συντελεστές των οποίων είναι οι λεγόμενες συναρτήσεις ακμαίων συγκεντρώσεων ροής (edge flux intensity functions, EFIFs). Οι παράγωγοι ανώτερης τάξης αυτών των συναρτήσεων της αξονικής συντεταγμένης εμφανίζονται σε μια εσωτερική απειροσειρά στο ανάπτυγμα της λύσης (Yosibash et al., 2002). Προσεγγίζοντας τις συναρτήσεις EFIFs με τμηματικά πολυώνυμα βαθμού k=0, 1 σε ένα πλέγμα πλάτους h απαλείφουμε την εσωτερική απειροσειρά και μπορούμε να επεκτείνουμε τη μέθοδο SFBIM. Όπως και στα διδιάστατα προβλήματα, η λύση προσεγγίζεται από ένα πεπερασμένο πλήθος όρων του τοπικού αναπτύγματος και οι συνοριακές συνθήκες Dirichlet επιβάλλονται μέσω πολλαπλασιαστών Lagrange. Οι αριθμητικοί υπολογισμοί έδειξαν ότι οι υπολογιζόμενες συναρτήσεις EFIFs συγκλίνουν με τάξη Ο(hk+1) ως προς την L2-νόρμα.
- Published
- 2011
21. Partition function zeros for aperiodic systems
- Author
-
Baake, Michael, Grimm, Uwe, and Pisani, Carmelo
- Published
- 1995
- Full Text
- View/download PDF
22. The singular function boundary integral method for Laplacian problems with boundary singularities in two and three-dimensions
- Author
-
Xenophontos, Christos A., Christodoulou, Evgenia, Georgiou, Georgios C., Xenophontos, Christos A. [0000-0003-0862-3977], and Georgiou, Georgios C. [0000-0002-7451-224X]
- Subjects
Expansion ,Boundary integrals ,Lagrange multipliers ,Elliptic problem ,Boundary approximation methods ,Asymptotic analysis ,Linear systems ,Asymptotic expansion ,Stress intensity ,Leading terms ,Laplacian problems ,Singular function boundary integral methods ,Boundary singularities ,Bench-mark problems ,Integral equations ,Problem solving ,Dirichlet boundary condition ,Approximation theory ,Laplace transforms ,Stress intensity factors ,Lagrange ,Exponential rates ,Galerkin ,Asymptotic solutions ,Edge singularities ,Singular points ,Green's theorem - Abstract
We present a Singular Function Boundary Integral Method (SFBIM) for solving elliptic problems with a boundary singularity. In this method the solution is approximated by the leading terms of the asymptotic solution expansion, which exists near the singular point and is known for many benchmark problems. The unknowns to be calculated are the singular coefficients, i.e. the coefficients in the asymptotic expansion, also called (generalized) stress intensity factors. The discretized Galerkin equations are reduced to boundary integrals by means of Green's theorem and the Dirichlet boundary conditions are weakly enforced by means of Lagrange multipliers, the values of which are introduced as additional unknowns in the resulting linear system. The method is described for two-dimensional Laplacian problems for which the analysis establishes exponential rates of convergence as the number of terms in the asymptotic expansion is increased. We also discuss the extension of the method to three-dimensional Laplacian problems with exhibits edge singularities. 1 2599 2608 Sponsors: The Netherlands Organization for Scientific Research (NWO) The Royal Netherlands Academy of Arts and Sciences (KNAW) Elsevier B.V. The University of Amsterdam Conference code: 83058 Cited By :1
- Published
- 2010
23. A fast semi-analytic method for the computation of elastic edge singularities
- Author
-
Costabel, Martin, Dauge, Monique, Lafranche, Yvon, Institut de Recherche Mathématique de Rennes (IRMAR), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Institut de Recherche Mathématique de Rennes ( IRMAR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -AGROCAMPUS OUEST-École normale supérieure - Rennes ( ENS Rennes ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National des Sciences Appliquées ( INSA ) -Université de Rennes 2 ( UR2 ), Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ), and Lafranche, Yvon
- Subjects
[ MATH.MATH-NA ] Mathematics [math]/Numerical Analysis [math.NA] ,[MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA] ,[SPI.MECA.MEMA] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph] ,Singularity exponent ,Edge singularities ,[PHYS.MECA.MEMA]Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph] ,[PHYS.MECA.MEMA] Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph] ,[ SPI.MECA.MEMA ] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph] ,[ PHYS.MECA.MEMA ] Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph] ,Stress concentration ,[SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph] ,Material interface ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Anisotropic elasticity - Abstract
International audience; The singularities that we consider are the characteristic non-smooth solutions of the equations of linear elasticity in piecewise homogeneous media near two dimensional corners or three dimensional edges. We describe here a method to compute their singularity exponents and the associated angular singular functions. We present the implementation of this method in a program whose input data are geometrical data, the elasticity coefficients of each material involved and the type of boundary conditions (Dirichlet, Neumann or mixed conditions). Our method is particularly useful with anisotropic materials and allows to ''follow" the dependency of singularity exponents along a curved edge.
- Published
- 2001
24. Optical absorption spectrum of dilute U4+ impurities in incommensurate ThBr4 : lineshape analysis
- Author
-
P. Delamoye, R. Currat, Institut de Physique Nucléaire d'Orsay (IPNO), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Institut Laue-Langevin (ILL), and ILL
- Subjects
Materials science ,Absorption spectroscopy ,incommensurate modulation ,Analytical chemistry ,chemistry.chemical_element ,Halide ,02 engineering and technology ,Crystal structure ,edge singularities ,010402 general chemistry ,01 natural sciences ,Spectral line ,Bromine Compounds ,uranium ,spectral singularities ,dilute U sup 4+ impurities ,Impurity ,Condensed Matter::Superconductivity ,lineshape analysis ,crystal field transitions ,partial pinning ,Condensed matter physics ,impurity and defect absorption spectra of inorganic solids ,General Engineering ,optical absorption spectrum ,incommensurate ThBr sub 4 ,Uranium ,crystal field interactions ,sinusoidal distortion ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,chemistry ,Thorium Compounds ,[PHYS.HIST]Physics [physics]/Physics archives ,thorium compounds ,Br sup ion equilibrium positions ,Condensed Matter::Strongly Correlated Electrons ,spectral line breadth ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,actinide site symmetry ,0210 nano-technology - Abstract
Crystal-field transitions associated with U4+ impurities diluted in ThBr4 give rise to broad absorption bands characterized by edge singularities. We show that the experimental spectra are consistent with the known occurrence of a sinusoidal distortion which modulates the Br- ion equilibrium positions, thus reducing the actinide site-symmetry from D2d to D2. The observation of spectral singularities corresponding to D2d-sites is interpreted as resulting from the partial pinning of the incommensurate modulation by the U4+ impurities.
- Published
- 1982
- Full Text
- View/download PDF
25. The Fourier-Finite-Element Method for Poisson's Equation in Axisymmetric Domains with Edges
- Author
-
Heinrich, Bernd
- Published
- 1996
26. Mesh Refinement and Windowing Near Edges for Some Elliptic Problem
- Author
-
Heinrich, B.
- Published
- 1994
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.