1. Perturbational phenotyping of human blood cells reveals genetically determined latent traits associated with subsets of common diseases.
- Author
-
Homilius M, Zhu W, Eddy SS, Thompson PC, Zheng H, Warren CN, Evans CG, Kim DD, Xuan LL, Nsubuga C, Strecker Z, Pettit CJ, Cho J, Howie MN, Thaler AS, Wilson E, Wollison B, Smith C, Nascimben JB, Nascimben DN, Lunati GM, Folks HC, Cupelo M, Sridaran S, Rheinstein C, McClennen T, Goto S, Truslow JG, Vandenwijngaert S, MacRae CA, and Deo RC
- Subjects
- Humans, Genome-Wide Association Study, Quantitative Trait Loci genetics, Genetic Predisposition to Disease, Phenotype, Blood Cells, Polymorphism, Single Nucleotide genetics, Diabetes Mellitus, Type 2 genetics
- Abstract
Although genome-wide association studies (GWAS) have successfully linked genetic risk loci to various disorders, identifying underlying cellular biological mechanisms remains challenging due to the complex nature of common diseases. We established a framework using human peripheral blood cells, physical, chemical and pharmacological perturbations, and flow cytometry-based functional readouts to reveal latent cellular processes and performed GWAS based on these evoked traits in up to 2,600 individuals. We identified 119 genomic loci implicating 96 genes associated with these cellular responses and discovered associations between evoked blood phenotypes and subsets of common diseases. We found a population of pro-inflammatory anti-apoptotic neutrophils prevalent in individuals with specific subsets of cardiometabolic disease. Multigenic models based on this trait predicted the risk of developing chronic kidney disease in type 2 diabetes patients. By expanding the phenotypic space for human genetic studies, we could identify variants associated with large effect response differences, stratify patients and efficiently characterize the underlying biology., (© 2023. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF