7 results on '"Eaton AJ"'
Search Results
2. Specific heterozygous variants in MGP lead to endoplasmic reticulum stress and cause spondyloepiphyseal dysplasia.
- Author
-
Gourgas O, Lemire G, Eaton AJ, Alshahrani S, Duker AL, Li J, Carroll RS, Mackenzie S, Nikkel SM, Bober MB, Boycott KM, and Murshed M
- Subjects
- Abnormalities, Multiple, Pulmonary Valve Stenosis, Cartilage Diseases, Hand Deformities, Congenital, Extracellular Matrix Proteins genetics, Extracellular Matrix Proteins metabolism, Humans, Calcinosis, Matrix Gla Protein, Mice, Calcium-Binding Proteins metabolism, Animals, Osteochondrodysplasias genetics, Osteochondrodysplasias congenital, Mucopolysaccharidosis IV
- Abstract
Matrix Gla protein (MGP) is a vitamin K-dependent post-translationally modified protein, highly expressed in vascular and cartilaginous tissues. It is a potent inhibitor of extracellular matrix mineralization. Biallelic loss-of-function variants in the MGP gene cause Keutel syndrome, an autosomal recessive disorder characterized by widespread calcification of various cartilaginous tissues and skeletal and vascular anomalies. In this study, we report four individuals from two unrelated families with two heterozygous variants in MGP, both altering the cysteine 19 residue to phenylalanine or tyrosine. These individuals present with a spondyloepiphyseal skeletal dysplasia characterized by short stature with a short trunk, diffuse platyspondyly, midface retrusion, progressive epiphyseal anomalies and brachytelephalangism. We investigated the cellular and molecular effects of one of the heterozygous deleterious variants (C19F) using both cell and genetically modified mouse models. Heterozygous 'knock-in' mice expressing C19F MGP recapitulate most of the skeletal anomalies observed in the affected individuals. Our results suggest that the main underlying mechanism leading to the observed skeletal dysplasia is endoplasmic reticulum stress-induced apoptosis of the growth plate chondrocytes. Overall, our findings support that heterozygous variants in MGP altering the Cys19 residue cause autosomal dominant spondyloepiphyseal dysplasia, a condition distinct from Keutel syndrome both clinically and molecularly., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
3. Bridging clinical care and research in Ontario, Canada: Maximizing diagnoses from reanalysis of clinical exome sequencing data.
- Author
-
Hartley T, Soubry É, Acker M, Osmond M, Couse M, Gillespie MK, Ito Y, Marshall AE, Lemire G, Huang L, Chisholm C, Eaton AJ, Price EM, Dowling JJ, Ramani AK, Mendoza-Londono R, Costain G, Axford MM, Szuto A, McNiven V, Damseh N, Jobling R, de Kock L, Mojarad BA, Young T, Shao Z, Hayeems RZ, Graham ID, Tarnopolsky M, Brady L, Armour CM, Geraghty M, Richer J, Sawyer S, Lines M, Mercimek-Andrews S, Carter MT, Graham G, Kannu P, Lazier J, Li C, Aul RB, Balci TB, Dlamini N, Badalato L, Guerin A, Walia J, Chitayat D, Cohn R, Faghfoury H, Forster-Gibson C, Gonorazky H, Grunebaum E, Inbar-Feigenberg M, Karp N, Morel C, Rusnak A, Sondheimer N, Warman-Chardon J, Bhola PT, Bourque DK, Chacon IJ, Chad L, Chakraborty P, Chong K, Doja A, Goh ES, Saleh M, Potter BK, Marshall CR, Dyment DA, Kernohan K, and Boycott KM
- Subjects
- Humans, Ontario epidemiology, Exome Sequencing, Genetic Testing methods
- Abstract
We examined the utility of clinical and research processes in the reanalysis of publicly-funded clinical exome sequencing data in Ontario, Canada. In partnership with eight sites, we recruited 287 families with suspected rare genetic diseases tested between 2014 and 2020. Data from seven laboratories was reanalyzed with the referring clinicians. Reanalysis of clinically relevant genes identified diagnoses in 4% (13/287); four were missed by clinical testing. Translational research methods, including analysis of novel candidate genes, identified candidates in 21% (61/287). Of these, 24 families have additional evidence through data sharing to support likely diagnoses (8% of cohort). This study indicates few diagnoses are missed by clinical laboratories, the incremental gain from reanalysis of clinically-relevant genes is modest, and the highest yield comes from validation of novel disease-gene associations. Future implementation of translational research methods, including continued reporting of compelling genes of uncertain significance by clinical laboratories, should be considered to maximize diagnoses., (© 2022 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.)
- Published
- 2023
- Full Text
- View/download PDF
4. Prenatal Genetic Testing in the Era of Next Generation Sequencing: A One-Center Canadian Experience.
- Author
-
Almubarak A, Zhang D, Kosak M, Rathwell S, Doonanco J, Eaton AJ, Kannu P, Lazier J, Lui M, Niederhoffer KY, MacPherson MJ, Sorsdahl M, and Caluseriu O
- Subjects
- Female, Humans, Pregnancy, Canada, Retrospective Studies, Exome Sequencing, Genetic Testing, High-Throughput Nucleotide Sequencing
- Abstract
The introduction of next generation sequencing (NGS) technologies has revolutionized the practice of Medical Genetics, and despite initial reticence in its application to prenatal genetics (PG), it is becoming gradually routine, subject to availability. Guidance for the clinical implementation of NGS in PG, in particular whole exome sequencing (ES), has been provided by several professional societies with multiple clinical studies quoting a wide range of testing yields. ES was introduced in our tertiary care center in 2017; however, its use in relation to prenatally assessed cases has been limited to the postnatal period. In this study, we review our approach to prenatal testing including the use of microarray (CMA), and NGS technology (gene panels, ES) over a period of three years. The overall diagnostic yield was 30.4%, with 43.2% of those diagnoses being obtained through CMA, and the majority by using NGS technology (42% through gene panels and 16.6% by ES testing, respectively). Of these, 43.4% of the diagnoses were obtained during ongoing pregnancies. Seventy percent of the abnormal pregnancies tested went undiagnosed. We are providing a contemporary, one tertiary care center retrospective view of a real-life PG practice in the context of an evolving use of NGS within a Canadian public health care system that may apply to many similar jurisdictions around the world.
- Published
- 2022
- Full Text
- View/download PDF
5. Biallelic ADAM22 pathogenic variants cause progressive encephalopathy and infantile-onset refractory epilepsy.
- Author
-
van der Knoop MM, Maroofian R, Fukata Y, van Ierland Y, Karimiani EG, Lehesjoki AE, Muona M, Paetau A, Miyazaki Y, Hirano Y, Selim L, de França M, Fock RA, Beetz C, Ruivenkamp CAL, Eaton AJ, Morneau-Jacob FD, Sagi-Dain L, Shemer-Meiri L, Peleg A, Haddad-Halloun J, Kamphuis DJ, Peeters-Scholte CMPCD, Kurul SH, Horvath R, Lochmüller H, Murphy D, Waldmüller S, Spranger S, Overberg D, Muir AM, Rad A, Vona B, Abdulwahad F, Maddirevula S, Povolotskaya IS, Voinova VY, Gowda VK, Srinivasan VM, Alkuraya FS, Mefford HC, Alfadhel M, Haack TB, Striano P, Severino M, Fukata M, Hilhorst-Hofstee Y, and Houlden H
- Subjects
- Atrophy, Disks Large Homolog 4 Protein, Humans, Intracellular Signaling Peptides and Proteins, ADAM Proteins genetics, ADAM Proteins metabolism, Brain Diseases genetics, Drug Resistant Epilepsy, Nerve Tissue Proteins genetics, Nerve Tissue Proteins metabolism
- Abstract
Pathogenic variants in A Disintegrin And Metalloproteinase (ADAM) 22, the postsynaptic cell membrane receptor for the glycoprotein leucine-rich repeat glioma-inactivated protein 1 (LGI1), have been recently associated with recessive developmental and epileptic encephalopathy. However, so far, only two affected individuals have been described and many features of this disorder are unknown. We refine the phenotype and report 19 additional individuals harbouring compound heterozygous or homozygous inactivating ADAM22 variants, of whom 18 had clinical data available. Additionally, we provide follow-up data from two previously reported cases. All affected individuals exhibited infantile-onset, treatment-resistant epilepsy. Additional clinical features included moderate to profound global developmental delay/intellectual disability (20/20), hypotonia (12/20) and delayed motor development (19/20). Brain MRI findings included cerebral atrophy (13/20), supported by post-mortem histological examination in patient-derived brain tissue, cerebellar vermis atrophy (5/20), and callosal hypoplasia (4/20). Functional studies in transfected cell lines confirmed the deleteriousness of all identified variants and indicated at least three distinct pathological mechanisms: (i) defective cell membrane expression; (ii) impaired LGI1-binding; and/or (iii) impaired interaction with the postsynaptic density protein PSD-95. We reveal novel clinical and molecular hallmarks of ADAM22 deficiency and provide knowledge that might inform clinical management and early diagnostics., (© The Author(s) 2022. Published by Oxford University Press on behalf of the Guarantors of Brain.)
- Published
- 2022
- Full Text
- View/download PDF
6. A novel RLIM/RNF12 variant disrupts protein stability and function to cause severe Tonne-Kalscheuer syndrome.
- Author
-
Bustos F, Espejo-Serrano C, Segarra-Fas A, Toth R, Eaton AJ, Kernohan KD, Wilson MJ, Riley LG, and Findlay GM
- Subjects
- Humans, Infant, Newborn, Male, Ubiquitination, Craniofacial Abnormalities genetics, Hernia, Diaphragmatic genetics, Hypogonadism genetics, Intellectual Disability genetics, Mutation, Missense, Ubiquitin-Protein Ligases genetics, Ubiquitin-Protein Ligases metabolism
- Abstract
Tonne-Kalscheuer syndrome (TOKAS) is an X-linked intellectual disability syndrome associated with variable clinical features including craniofacial abnormalities, hypogenitalism and diaphragmatic hernia. TOKAS is caused exclusively by variants in the gene encoding the E3 ubiquitin ligase gene RLIM, also known as RNF12. Here we report identification of a novel RLIM missense variant, c.1262A>G p.(Tyr421Cys) adjacent to the regulatory basic region, which causes a severe form of TOKAS resulting in perinatal lethality by diaphragmatic hernia. Inheritance and X-chromosome inactivation patterns implicate RLIM p.(Tyr421Cys) as the likely pathogenic variant in the affected individual and within the kindred. We show that the RLIM p.(Tyr421Cys) variant disrupts both expression and function of the protein in an embryonic stem cell model. RLIM p.(Tyr421Cys) is correctly localised to the nucleus, but is readily degraded by the proteasome. The RLIM p.(Tyr421Cys) variant also displays significantly impaired E3 ubiquitin ligase activity, which interferes with RLIM function in Xist long-non-coding RNA induction that initiates imprinted X-chromosome inactivation. Our data uncover a highly disruptive missense variant in RLIM that causes a severe form of TOKAS, thereby expanding our understanding of the molecular and phenotypic spectrum of disease severity.
- Published
- 2021
- Full Text
- View/download PDF
7. Heritability of measures of kidney disease among Zuni Indians: the Zuni Kidney Project.
- Author
-
MacCluer JW, Scavini M, Shah VO, Cole SA, Laston SL, Voruganti VS, Paine SS, Eaton AJ, Comuzzie AG, Tentori F, Pathak DR, Bobelu A, Bobelu J, Ghahate D, Waikaniwa M, and Zager PG
- Subjects
- Albumins metabolism, Blood Urea Nitrogen, Community-Based Participatory Research, Creatinine urine, Diabetic Nephropathies ethnology, Diabetic Nephropathies genetics, Genetic Linkage, Glomerular Filtration Rate, Hematuria ethnology, Humans, Indians, North American, New Mexico, Obesity ethnology, Obesity genetics, Phenotype, Quantitative Trait, Heritable, Genetic Predisposition to Disease ethnology, Renal Insufficiency, Chronic ethnology, Renal Insufficiency, Chronic genetics
- Abstract
Background: The long-term goal of the GKDZI (Genetics of Kidney Disease in Zuni Indians) Study is to identify genes, environmental factors, and genetic-environmental interactions that modulate susceptibility to renal disease and intermediate phenotypes., Study Design: A community-based participatory research approach was used to recruit family members of individuals with kidney disease., Setting & Participants: The study was conducted in the Zuni Indians, a small endogamous tribe located in rural New Mexico. We recruited members of extended families, ascertained through a proband with kidney disease and at least 1 sibling with kidney disease. 821 participants were recruited, comprising 7,702 relative pairs. PREDICTOR OUTCOMES & MEASUREMENTS: Urine albumin-creatinine ratio (UACR) and hematuria were determined in 3 urine samples and expressed as a true ratio. Glomerular filtration rate (GFR) was estimated using the Modification of Diet in Renal Disease (MDRD) Study equation modified for American Indians. Probands were considered to have kidney disease if UACR was >or=0.2 in 2 or more of 3 spot urine samples or estimated GFR was decreased according to the CRIC (Chronic Renal Insufficiency Cohort) Study criteria., Results: Kidney disease was identified in 192 participants (23.4%). There were significant heritabilities for estimated GFR, UACR, serum creatinine, serum urea nitrogen, and uric acid and a variety of phenotypes related to obesity, diabetes, and cardiovascular disease. There were significant genetic correlations of some kidney-related phenotypes with these other phenotypes., Limitations: Limitations include absence of renal biopsy, possible misclassification bias, lack of direct GFR measurements, and failure to include all possible environmental interactions., Conclusions: Many phenotypes related to kidney disease showed significant heritabilities in Zuni Indians, and there were significant genetic correlations with phenotypes related to obesity, diabetes, and cardiovascular disease. The study design serves as a paradigm for the conduct of research in relatively isolated, endogamous, underserved populations., (Copyright (c) 2010 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.)
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.