1. Smartphone-driven centrifugal microfluidics for diagnostics in resource limited settings.
- Author
-
Lapins, Noa, Akhtar, Ahmad S., Banerjee, Indradumna, Kazemzadeh, Amin, Pinto, Inês F., and Russom, Aman
- Subjects
RESOURCE-limited settings ,ELECTRIC power ,CELL phones ,ELECTRICAL supplies ,POINT-of-care testing - Abstract
The broad availability of smartphones has provided new opportunities to develop less expensive, portable, and integrated point-of-care (POC) platforms. Here, a platform that consists of three main components is introduced: a portable housing, a centrifugal microfluidic disc, and a mobile phone. The mobile phone supplies the electrical power and serves as an analysing system. The low-cost housing made from cardboard serves as a platform to conduct tests. The electrical energy stored in mobile phones was demonstrated to be adequate for spinning a centrifugal disc up to 3000 revolutions per minute (RPM), a rotation speed suitable for majority of centrifugal microfluidics-based assays. For controlling the rotational speed, a combination of magnetic and acoustic tachometry using embedded sensors of the mobile phone was used. Experimentally, the smartphone-based tachometry was proven to be comparable with a standard laser-based tachometer. As a proof of concept, two applications were demonstrated using the portable platform: a colorimetric sandwich immunoassay to detect interleukin-2 (IL-2) having a limit of detection (LOD) of 65.17 ng/mL and a fully automated measurement of hematocrit level integrating blood-plasma separation, imaging, and image analysis that takes less than 5 mins to complete. The low-cost platform weighing less than 150 g and operated by a mobile phone has the potential to meet the REASSURED criteria for advanced diagnostics in resource limited settings. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF