24 results on '"E. Syresin"'
Search Results
2. Progress on New Beam Lines Design and Construction for Applied Research at NICA
- Author
-
G. Filatov, A. Slivin, E. Syresin, A. Butenko, A. Vorozhtsov, A. Agapov, K. Shipulin, S. Kolesnikov, V. Karpinskii, M. Kuznetsov, S. Kirov, A. Sergeev, A. Galimov, A. Tikhomirov, V. Tyulkin, D. Letkin, D. Leushin, and A. Tuzikov
- Subjects
Nuclear and High Energy Physics ,Radiation ,Radiology, Nuclear Medicine and imaging ,Atomic and Molecular Physics, and Optics - Published
- 2022
- Full Text
- View/download PDF
3. RETRACTED: Investigation of polarized proton spin coherence time at storage rings
- Author
-
A Melnikov, A Aksentyev, Y Senichev, and E Syresin
- Subjects
History ,Computer Science Applications ,Education - Abstract
The idea of the Electric Dipole Moment (EDM) search using the storage ring with polarized beam demands long Spin Coherence Time (SCT). It is the time during which the RMS spread of the orientation of spins of all particles in the bunch reaches one radian. Long SCT is needed to observe a coherent effect on polarization induced by the EDM. The possibility of getting a 1000 s SCT for deuterons has been shown experimentally at COoler SYnchrotron (COSY), accelerator at FZJ Jülich, Germany. Reaching high values of SCT for protons is more challenging due to a higher anomalous magnetic moment. Obtaining sufficient proton SCT is obligatory for planned EDM search experiments at COSY and the ProtoType EDM Ring (PTR). It has been shown that the second order momentum compaction factor (α 1) has to be optimized along with chromaticities (ξx, y ) to get high SCT. Three families of sextupoles have to be used. The optimal values of chromaticities and α 1 are discussed. The racetrack option of PTR is investigated.
- Published
- 2023
- Full Text
- View/download PDF
4. RETRACTED: Quasi-frozen spin concept of magneto-optical structure of NICA adapted to study the electric dipole moment of the deuteron and to search for the axion
- Author
-
Y Senichev, A Aksentyev, S Kolokolchikov, A Melnikov, V Ladygin, E Syresin, and N Nikolaev
- Subjects
History ,Computer Science Applications ,Education - Abstract
The “frozen spin” method is based on the idea that at certain parameters of the ring, the particle spin rotates with the frequency of the momentum, creating conditions for the continuous growth of the electric dipole moment signal. The Nuclotron-based Ion Collider fAcility (NICA) is under construction in Joint Institute for Nuclear Research [1]. Since a straightforward implementation of the frozen spin regime at NICA is impossible, we suggest an alternative “quasi-frozen spin” concept. In this new regime, the reference particle’s spin-vector precesses with a spin phase advance π ⋅ γG/2 per beam revolution, locally recovering the longitudinal orientation at the location of the electric-magnetic elements, Wien filters, placed in the straight sections. In the deuterons case, thanks to the small magnetic anomaly G, the spin-vector continuously oscillates relative to the direction of the momentum-vector with a small amplitude of a few degrees and the expected EDM effect is reduced only by a few percent. In this paper, we study the spin-orbital motion with the aim of using the NICA collider to measure the EDM. We also comment on the potential of NICA as an axion antenna in both the quasi-frozen spin regime and beyond.
- Published
- 2023
- Full Text
- View/download PDF
5. New Heavy Ion Facility Design Project for Single Event Effect Tests
- Author
-
E. Syresin, A. Butenko, G. Filatov, A. Slivin, T. Kulevoy, Y. Titarenko, A. Titarenko, D. Bobrovsky, A. Chumakov, A. Pechenkin, A. Sogoyan, S. Soloviev, and V. Saburov
- Published
- 2020
- Full Text
- View/download PDF
6. Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator
- Author
-
B Faatz, E Plönjes, S Ackermann, A Agababyan, V Asgekar, V Ayvazyan, S Baark, N Baboi, V Balandin, N von Bargen, Y Bican, O Bilani, J Bödewadt, M Böhnert, R Böspflug, S Bonfigt, H Bolz, F Borges, O Borkenhagen, M Brachmanski, M Braune, A Brinkmann, O Brovko, T Bruns, P Castro, J Chen, M K Czwalinna, H Damker, W Decking, M Degenhardt, A Delfs, T Delfs, H Deng, M Dressel, H-T Duhme, S Düsterer, H Eckoldt, A Eislage, M Felber, J Feldhaus, P Gessler, M Gibau, N Golubeva, T Golz, J Gonschior, A Grebentsov, M Grecki, C Grün, S Grunewald, K Hacker, L Hänisch, A Hage, T Hans, E Hass, A Hauberg, O Hensler, M Hesse, K Heuck, A Hidvegi, M Holz, K Honkavaara, H Höppner, A Ignatenko, J Jäger, U Jastrow, R Kammering, S Karstensen, A Kaukher, H Kay, B Keil, K Klose, V Kocharyan, M Köpke, M Körfer, W Kook, B Krause, O Krebs, S Kreis, F Krivan, J Kuhlmann, M Kuhlmann, G Kube, T Laarmann, C Lechner, S Lederer, A Leuschner, D Liebertz, J Liebing, A Liedtke, L Lilje, T Limberg, D Lipka, B Liu, B Lorbeer, K Ludwig, H Mahn, G Marinkovic, C Martens, F Marutzky, M Maslocv, D Meissner, N Mildner, V Miltchev, S Molnar, D Mross, F Müller, R Neumann, P Neumann, D Nölle, F Obier, M Pelzer, H-B Peters, K Petersen, A Petrosyan, G Petrosyan, L Petrosyan, V Petrosyan, A Petrov, S Pfeiffer, A Piotrowski, Z Pisarov, T Plath, P Pototzki, M J Prandolini, J Prenting, G Priebe, B Racky, T Ramm, K Rehlich, R Riedel, M Roggli, M Röhling, J Rönsch-Schulenburg, J Rossbach, V Rybnikov, J Schäfer, J Schaffran, H Schlarb, G Schlesselmann, M Schlösser, P Schmid, C Schmidt, F Schmidt-Föhre, M Schmitz, E Schneidmiller, A Schöps, M Scholz, S Schreiber, K Schütt, U Schütz, H Schulte-Schrepping, M Schulz, A Shabunov, P Smirnov, E Sombrowski, A Sorokin, B Sparr, J Spengler, M Staack, M Stadler, C Stechmann, B Steffen, N Stojanovic, V Sychev, E Syresin, T Tanikawa, F Tavella, N Tesch, K Tiedtke, M Tischer, R Treusch, S Tripathi, P Vagin, P Vetrov, S Vilcins, M Vogt, A de Zubiaurre Wagner, T Wamsat, H Weddig, G Weichert, H Weigelt, N Wentowski, C Wiebers, T Wilksen, A Willner, K Wittenburg, T Wohlenberg, J Wortmann, W Wurth, M Yurkov, I Zagorodnov, and J Zemella
- Subjects
free-electron lasers ,soft x-ray ,accelerators ,Science ,Physics ,QC1-999 - Abstract
Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs—dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated in both FELs simultaneously. FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.
- Published
- 2016
- Full Text
- View/download PDF
7. A MHz-Repetition-Rate Hard X-Ray Free-Electron Laser Driven by a Superconducting Linear Accelerator
- Author
-
W. Decking, S. Abeghyan, P. Abramian, A. Abramsky, A. Aguirre, C. Albrecht, P. Alou, M. Altarelli, P. Altmann, K. Amyan, V. Anashin, E. Apostolov, K. Appel, D. Auguste, V. Ayvazyan, S. Baark, F. Babies, N. Baboi, P. Bak, V. Balandin, R. Baldinger, B. Baranasic, S. Barbanotti, O. Belikov, V. Belokurov, L. Belova, V. Belyakov, S. Berry, M. Bertucci, B. Beutner, A. Block, M. Blöcher, T. Böckmann, C. Bohm, M. Böhnert, V. Bondar, E. Bondarchuk, M. Bonezzi, P. Borowiec, C. Bösch, U. Bösenberg, A. Bosotti, R. Böspflug, M. Bousonville, E. Boyd, Y. Bozhko, A. Brand, J. Branlard, S. Briechle, F. Brinker, S. Brinker, R. Brinkmann, S. Brockhauser, O. Brovko, H. Brück, A. Brüdgam, L. Butkowski, T. Büttner, J. Calero, E. Castro-Carballo, G. Cattalanotto, J. Charrier, J. Chen, A. Cherepenko, V. Cheskidov, M. Chiodini, A. Chong, S. Choroba, M. Chorowski, D. Churanov, W. Cichalewski, M. Clausen, W. Clement, C. Cloué, J. A. Cobos, N. Coppola, S. Cunis, K. Czuba, M. Czwalinna, B. D’Almagne, J. Dammann, H. Danared, A. de Zubiaurre Wagner, A. Delfs, T. Delfs, F. Dietrich, T. Dietrich, M. Dohlus, M. Dommach, A. Donat, X. Dong, N. Doynikov, M. Dressel, M. Duda, P. Duda, H. Eckoldt, W. Ehsan, J. Eidam, F. Eints, C. Engling, U. Englisch, A. Ermakov, K. Escherich, J. Eschke, E. Saldin, M. Faesing, A. Fallou, M. Felber, M. Fenner, B. Fernandes, J. M. Fernández, S. Feuker, K. Filippakopoulos, K. Floettmann, V. Fogel, M. Fontaine, A. Francés, I. Freijo Martin, W. Freund, T. Freyermuth, M. Friedland, L. Fröhlich, M. Fusetti, J. Fydrych, A. Gallas, O. García, L. Garcia-Tabares, G. Geloni, N. Gerasimova, C. Gerth, P. Geßler, V. Gharibyan, M. Gloor, J. Głowinkowski, A. Goessel, Z. Gołębiewski, N. Golubeva, W. Grabowski, W. Graeff, A. Grebentsov, M. Grecki, T. Grevsmuehl, M. Gross, U. Grosse-Wortmann, J. Grünert, S. Grunewald, P. Grzegory, G. Feng, H. Guler, G. Gusev, J. L. Gutierrez, L. Hagge, M. Hamberg, R. Hanneken, E. Harms, I. Hartl, A. Hauberg, S. Hauf, J. Hauschildt, J. Hauser, J. Havlicek, A. Hedqvist, N. Heidbrook, F. Hellberg, D. Henning, O. Hensler, T. Hermann, A. Hidvégi, M. Hierholzer, H. Hintz, F. Hoffmann, Markus Hoffmann, Matthias Hoffmann, Y. Holler, M. Hüning, A. Ignatenko, M. Ilchen, A. Iluk, J. Iversen, M. Izquierdo, L. Jachmann, N. Jardon, U. Jastrow, K. Jensch, J. Jensen, M. Jeżabek, M. Jidda, H. Jin, N. Johansson, R. Jonas, W. Kaabi, D. Kaefer, R. Kammering, H. Kapitza, S. Karabekyan, S. Karstensen, K. Kasprzak, V. Katalev, D. Keese, B. Keil, M. Kholopov, M. Killenberger, B. Kitaev, Y. Klimchenko, R. Klos, L. Knebel, A. Koch, M. Koepke, S. Köhler, W. Köhler, N. Kohlstrunk, Z. Konopkova, A. Konstantinov, W. Kook, W. Koprek, M. Körfer, O. Korth, A. Kosarev, K. Kosiński, D. Kostin, Y. Kot, A. Kotarba, T. Kozak, V. Kozak, R. Kramert, M. Krasilnikov, A. Krasnov, B. Krause, L. Kravchuk, O. Krebs, R. Kretschmer, J. Kreutzkamp, O. Kröplin, K. Krzysik, G. Kube, H. Kuehn, N. Kujala, V. Kulikov, V. Kuzminych, D. La Civita, M. Lacroix, T. Lamb, A. Lancetov, M. Larsson, D. Le Pinvidic, S. Lederer, T. Lensch, D. Lenz, A. Leuschner, F. Levenhagen, Y. Li, J. Liebing, L. Lilje, T. Limberg, D. Lipka, B. List, J. Liu, S. Liu, B. Lorbeer, J. Lorkiewicz, H. H. Lu, F. Ludwig, K. Machau, W. Maciocha, C. Madec, C. Magueur, C. Maiano, I. Maksimova, K. Malcher, T. Maltezopoulos, E. Mamoshkina, B. Manschwetus, F. Marcellini, G. Marinkovic, T. Martinez, H. Martirosyan, W. Maschmann, M. Maslov, A. Matheisen, U. Mavric, J. Meißner, K. Meissner, M. Messerschmidt, N. Meyners, G. Michalski, P. Michelato, N. Mildner, M. Moe, F. Moglia, C. Mohr, S. Mohr, W. Möller, M. Mommerz, L. Monaco, C. Montiel, M. Moretti, I. Morozov, P. Morozov, D. Mross, J. Mueller, C. Müller, J. Müller, K. Müller, J. Munilla, A. Münnich, V. Muratov, O. Napoly, B. Näser, N. Nefedov, Reinhard Neumann, Rudolf Neumann, N. Ngada, D. Noelle, F. Obier, I. Okunev, J. A. Oliver, M. Omet, A. Oppelt, A. Ottmar, M. Oublaid, C. Pagani, R. Paparella, V. Paramonov, C. Peitzmann, J. Penning, A. Perus, F. Peters, B. Petersen, A. Petrov, I. Petrov, S. Pfeiffer, J. Pflüger, S. Philipp, Y. Pienaud, P. Pierini, S. Pivovarov, M. Planas, E. Pławski, M. Pohl, J. Polinski, V. Popov, S. Prat, J. Prenting, G. Priebe, H. Pryschelski, K. Przygoda, E. Pyata, B. Racky, A. Rathjen, W. Ratuschni, S. Regnaud-Campderros, K. Rehlich, D. Reschke, C. Robson, J. Roever, M. Roggli, J. Rothenburg, E. Rusiński, R. Rybaniec, H. Sahling, M. Salmani, L. Samoylova, D. Sanzone, F. Saretzki, O. Sawlanski, J. Schaffran, H. Schlarb, M. Schlösser, V. Schlott, C. Schmidt, F. Schmidt-Foehre, M. Schmitz, M. Schmökel, T. Schnautz, E. Schneidmiller, M. Scholz, B. Schöneburg, J. Schultze, C. Schulz, A. Schwarz, J. Sekutowicz, D. Sellmann, E. Semenov, S. Serkez, D. Sertore, N. Shehzad, P. Shemarykin, L. Shi, M. Sienkiewicz, D. Sikora, M. Sikorski, A. Silenzi, C. Simon, W. Singer, X. Singer, H. Sinn, K. Sinram, N. Skvorodnev, P. Smirnow, T. Sommer, A. Sorokin, M. Stadler, M. Steckel, B. Steffen, N. Steinhau-Kühl, F. Stephan, M. Stodulski, M. Stolper, A. Sulimov, R. Susen, J. Świerblewski, C. Sydlo, E. Syresin, V. Sytchev, J. Szuba, N. Tesch, J. Thie, A. Thiebault, K. Tiedtke, D. Tischhauser, J. Tolkiehn, S. Tomin, F. Tonisch, F. Toral, I. Torbin, A. Trapp, D. Treyer, G. Trowitzsch, T. Trublet, T. Tschentscher, F. Ullrich, M. Vannoni, P. Varela, G. Varghese, G. Vashchenko, M. Vasic, C. Vazquez-Velez, A. Verguet, S. Vilcins-Czvitkovits, R. Villanueva, B. Visentin, M. Viti, E. Vogel, E. Volobuev, R. Wagner, N. Walker, T. Wamsat, H. Weddig, G. Weichert, H. Weise, R. Wenndorf, M. Werner, R. Wichmann, C. Wiebers, M. Wiencek, T. Wilksen, I. Will, L. Winkelmann, M. Winkowski, K. Wittenburg, A. Witzig, P. Wlk, T. Wohlenberg, M. Wojciechowski, F. Wolff-Fabris, G. Wrochna, K. Wrona, M. Yakopov, B. Yang, F. Yang, M. Yurkov, I. Zagorodnov, P. Zalden, A. Zavadtsev, D. Zavadtsev, A. Zhirnov, A. Zhukov, V. Ziemann, A. Zolotov, N. Zolotukhina, F. Zummack, D. Zybin, Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), and Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph] ,Astrophysics::High Energy Astrophysical Phenomena ,02 engineering and technology ,7. Clean energy ,01 natural sciences ,Acceleration voltage ,Linear particle accelerator ,law.invention ,010309 optics ,Optics ,law ,0103 physical sciences ,ddc:530 ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Physics ,business.industry ,Free-electron laser ,Undulator ,021001 nanoscience & nanotechnology ,Laser ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,Cathode ray ,Physics::Accelerator Physics ,0210 nano-technology ,business ,Lasing threshold ,Beam (structure) - Abstract
Nature photonics 14(6), 391 - 397 (2020). doi:10.1038/s41566-020-0607-z, The European XFEL is a hard X-ray free-electron laser (FEL) based on a high-electron-energy superconducting linear accelerator. The superconducting technology allows for the acceleration of many electron bunches within one radio-frequency pulse of the accelerating voltage and, in turn, for the generation of a large number of hard X-ray pulses. We report on the performance of the European XFEL accelerator with up to 5,000 electron bunches per second and demonstrating a full energy of 17.5 GeV. Feedback mechanisms enable stabilization of the electron beam delivery at the FEL undulator in space and time. The measured FEL gain curve at 9.3 keV is in good agreement with predictions for saturated FEL radiation. Hard X-ray lasing was achieved between 7 keV and 14 keV with pulse energies of up to 2.0 mJ. Using the high repetition rate, an FEL beam with 6 W average power was created., Published by Nature Publ. Group, London [u.a.]
- Published
- 2020
- Full Text
- View/download PDF
8. Control of electromagnetic properties during prototyping, fabrication and operation of low-β 325 MHz half-wave resonators
- Author
-
H. Volunets, A. Pakrouski, M. Lalayan, Sergey A. Maksimenko, S. Yurevich, E. Syresin, Evgeny Gurnevich, N. Liubetski, A. Butenko, S. Polozov, E. Vasilevich, A. Sukhotski, Y. Tamashevich, M. Gusarova, S. Huseu, Dzmitry Bychanok, A. Shvedov, and V. Petrakovski
- Subjects
Resonator ,Fabrication ,Materials science ,Acoustics and Ultrasonics ,business.industry ,Optoelectronics ,Half wave ,Condensed Matter Physics ,business ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials - Abstract
The general steps for the fabrication of a copper prototype of 325 MHz coaxial half-wave resonator (HWR) with β = 0.21 are presented and discussed in this work. The main features for the control of the electromagnetic properties during the manufacturing process of HWR are described in detail. The resonant frequency sensitivity to the accelerating gap and to the cavity height were experimentally estimated. Bead-pull measurements were performed and the electric field distribution along the beam axis of the manufactured cavity was estimated. The features of the cavity’s response in the critical coupling regime are analyzed. The experimental concept of a slow frequency tuning system (FTS) based on the moving plungers is proposed and tested. The tuning sensibility is experimentally estimated. The measured results agree with the simulations quite well, and the sensitivity for a single plunger configuration Δ f / Δ L = + 13 kHz mm−1 is achieved. The dynamic properties and operation algorithm of the FTS are studied and experimentally investigated.
- Published
- 2021
- Full Text
- View/download PDF
9. Author Correction: A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator
- Author
-
W. Decking, S. Abeghyan, P. Abramian, A. Abramsky, A. Aguirre, C. Albrecht, P. Alou, M. Altarelli, P. Altmann, K. Amyan, V. Anashin, E. Apostolov, K. Appel, D. Auguste, V. Ayvazyan, S. Baark, F. Babies, N. Baboi, P. Bak, V. Balandin, R. Baldinger, B. Baranasic, S. Barbanotti, O. Belikov, V. Belokurov, L. Belova, V. Belyakov, S. Berry, M. Bertucci, B. Beutner, A. Block, M. Blöcher, T. Böckmann, C. Bohm, M. Böhnert, V. Bondar, E. Bondarchuk, M. Bonezzi, P. Borowiec, C. Bösch, U. Bösenberg, A. Bosotti, R. Böspflug, M. Bousonville, E. Boyd, Y. Bozhko, A. Brand, J. Branlard, S. Briechle, F. Brinker, S. Brinker, R. Brinkmann, S. Brockhauser, O. Brovko, H. Brück, A. Brüdgam, L. Butkowski, T. Büttner, J. Calero, E. Castro-Carballo, G. Cattalanotto, J. Charrier, J. Chen, A. Cherepenko, V. Cheskidov, M. Chiodini, A. Chong, S. Choroba, M. Chorowski, D. Churanov, W. Cichalewski, M. Clausen, W. Clement, C. Cloué, J. A. Cobos, N. Coppola, S. Cunis, K. Czuba, M. Czwalinna, B. D’Almagne, J. Dammann, H. Danared, A. de Zubiaurre Wagner, A. Delfs, T. Delfs, F. Dietrich, T. Dietrich, M. Dohlus, M. Dommach, A. Donat, X. Dong, N. Doynikov, M. Dressel, M. Duda, P. Duda, H. Eckoldt, W. Ehsan, J. Eidam, F. Eints, C. Engling, U. Englisch, A. Ermakov, K. Escherich, J. Eschke, E. Saldin, M. Faesing, A. Fallou, M. Felber, M. Fenner, B. Fernandes, J. M. Fernández, S. Feuker, K. Filippakopoulos, K. Floettmann, V. Fogel, M. Fontaine, A. Francés, I. Freijo Martin, W. Freund, T. Freyermuth, M. Friedland, L. Fröhlich, M. Fusetti, J. Fydrych, A. Gallas, O. García, L. Garcia-Tabares, G. Geloni, N. Gerasimova, C. Gerth, P. Geßler, V. Gharibyan, M. Gloor, J. Głowinkowski, A. Goessel, Z. Gołębiewski, N. Golubeva, W. Grabowski, W. Graeff, A. Grebentsov, M. Grecki, T. Grevsmuehl, M. Gross, U. Grosse-Wortmann, J. Grünert, S. Grunewald, P. Grzegory, G. Feng, H. Guler, G. Gusev, J. L. Gutierrez, L. Hagge, M. Hamberg, R. Hanneken, E. Harms, I. Hartl, A. Hauberg, S. Hauf, J. Hauschildt, J. Hauser, J. Havlicek, A. Hedqvist, N. Heidbrook, F. Hellberg, D. Henning, O. Hensler, T. Hermann, A. Hidvégi, M. Hierholzer, H. Hintz, F. Hoffmann, Markus Hoffmann, Matthias Hoffmann, Y. Holler, M. Hüning, A. Ignatenko, M. Ilchen, A. Iluk, J. Iversen, M. Izquierdo, L. Jachmann, N. Jardon, U. Jastrow, K. Jensch, J. Jensen, M. Jeżabek, M. Jidda, H. Jin, N. Johansson, R. Jonas, W. Kaabi, D. Kaefer, R. Kammering, H. Kapitza, S. Karabekyan, S. Karstensen, K. Kasprzak, V. Katalev, D. Keese, B. Keil, M. Kholopov, M. Killenberger, B. Kitaev, Y. Klimchenko, R. Klos, L. Knebel, A. Koch, M. Koepke, S. Köhler, W. Köhler, N. Kohlstrunk, Z. Konopkova, A. Konstantinov, W. Kook, W. Koprek, M. Körfer, O. Korth, A. Kosarev, K. Kosiński, D. Kostin, Y. Kot, A. Kotarba, T. Kozak, V. Kozak, R. Kramert, M. Krasilnikov, A. Krasnov, B. Krause, L. Kravchuk, O. Krebs, R. Kretschmer, J. Kreutzkamp, O. Kröplin, K. Krzysik, G. Kube, H. Kuehn, N. Kujala, V. Kulikov, V. Kuzminych, D. La Civita, M. Lacroix, T. Lamb, A. Lancetov, M. Larsson, D. Le Pinvidic, S. Lederer, T. Lensch, D. Lenz, A. Leuschner, F. Levenhagen, Y. Li, J. Liebing, L. Lilje, T. Limberg, D. Lipka, B. List, J. Liu, S. Liu, B. Lorbeer, J. Lorkiewicz, H. H. Lu, F. Ludwig, K. Machau, W. Maciocha, C. Madec, C. Magueur, C. Maiano, I. Maksimova, K. Malcher, T. Maltezopoulos, E. Mamoshkina, B. Manschwetus, F. Marcellini, G. Marinkovic, T. Martinez, H. Martirosyan, W. Maschmann, M. Maslov, A. Matheisen, U. Mavric, J. Meißner, K. Meissner, M. Messerschmidt, N. Meyners, G. Michalski, P. Michelato, N. Mildner, M. Moe, F. Moglia, C. Mohr, S. Mohr, W. Möller, M. Mommerz, L. Monaco, C. Montiel, M. Moretti, I. Morozov, P. Morozov, D. Mross, J. Mueller, C. Müller, J. Müller, K. Müller, J. Munilla, A. Münnich, V. Muratov, O. Napoly, B. Näser, N. Nefedov, Reinhard Neumann, Rudolf Neumann, N. Ngada, D. Noelle, F. Obier, I. Okunev, J. A. Oliver, M. Omet, A. Oppelt, A. Ottmar, M. Oublaid, C. Pagani, R. Paparella, V. Paramonov, C. Peitzmann, J. Penning, A. Perus, F. Peters, B. Petersen, A. Petrov, I. Petrov, S. Pfeiffer, J. Pflüger, S. Philipp, Y. Pienaud, P. Pierini, S. Pivovarov, M. Planas, E. Pławski, M. Pohl, J. Polinski, V. Popov, S. Prat, J. Prenting, G. Priebe, H. Pryschelski, K. Przygoda, E. Pyata, B. Racky, A. Rathjen, W. Ratuschni, S. Regnaud-Campderros, K. Rehlich, D. Reschke, C. Robson, J. Roever, M. Roggli, J. Rothenburg, E. Rusiński, R. Rybaniec, H. Sahling, M. Salmani, L. Samoylova, D. Sanzone, F. Saretzki, O. Sawlanski, J. Schaffran, H. Schlarb, M. Schlösser, V. Schlott, C. Schmidt, F. Schmidt-Foehre, M. Schmitz, M. Schmökel, T. Schnautz, E. Schneidmiller, M. Scholz, B. Schöneburg, J. Schultze, C. Schulz, A. Schwarz, J. Sekutowicz, D. Sellmann, E. Semenov, S. Serkez, D. Sertore, N. Shehzad, P. Shemarykin, L. Shi, M. Sienkiewicz, D. Sikora, M. Sikorski, A. Silenzi, C. Simon, W. Singer, X. Singer, H. Sinn, K. Sinram, N. Skvorodnev, P. Smirnow, T. Sommer, A. Sorokin, M. Stadler, M. Steckel, B. Steffen, N. Steinhau-Kühl, F. Stephan, M. Stodulski, M. Stolper, A. Sulimov, R. Susen, J. Świerblewski, C. Sydlo, E. Syresin, V. Sytchev, J. Szuba, N. Tesch, J. Thie, A. Thiebault, K. Tiedtke, D. Tischhauser, J. Tolkiehn, S. Tomin, F. Tonisch, F. Toral, I. Torbin, A. Trapp, D. Treyer, G. Trowitzsch, T. Trublet, T. Tschentscher, F. Ullrich, M. Vannoni, P. Varela, G. Varghese, G. Vashchenko, M. Vasic, C. Vazquez-Velez, A. Verguet, S. Vilcins-Czvitkovits, R. Villanueva, B. Visentin, M. Viti, E. Vogel, E. Volobuev, R. Wagner, N. Walker, T. Wamsat, H. Weddig, G. Weichert, H. Weise, R. Wenndorf, M. Werner, R. Wichmann, C. Wiebers, M. Wiencek, T. Wilksen, I. Will, L. Winkelmann, M. Winkowski, K. Wittenburg, A. Witzig, P. Wlk, T. Wohlenberg, M. Wojciechowski, F. Wolff-Fabris, G. Wrochna, K. Wrona, M. Yakopov, B. Yang, F. Yang, M. Yurkov, I. Zagorodnov, P. Zalden, A. Zavadtsev, D. Zavadtsev, A. Zhirnov, A. Zhukov, V. Ziemann, A. Zolotov, N. Zolotukhina, F. Zummack, and D. Zybin
- Subjects
Superconductivity ,Optics ,Materials science ,Repetition (rhetorical device) ,business.industry ,X-ray ,Free-electron laser ,business ,Atomic and Molecular Physics, and Optics ,Linear particle accelerator ,Electronic, Optical and Magnetic Materials - Published
- 2020
- Full Text
- View/download PDF
10. Repulsion of dispersion curves of quasidipole modes of anisotropic waveguides studied by finite element method
- Author
-
T. V. Zharnikov and D. E. Syresin
- Subjects
Physics ,Acoustics and Ultrasonics ,Condensed matter physics ,Acoustic dispersion ,Finite element method ,Symmetry (physics) ,law.invention ,Cross section (physics) ,Classical mechanics ,Arts and Humanities (miscellaneous) ,law ,Dispersion (optics) ,Anisotropy ,Waveguide ,Rotation (mathematics) - Abstract
In this letter repulsion of phase-velocity dispersion curves of quasidipole eigenmodes of waveguides with non-circular cross section in non-axisymmetric anisotropic medium is studied by the semi-analytical finite element technique. Borehole waveguide is used as an example. The modeling helps in clarifying the nature of this phenomenon, which is accompanied by the rotation of the orientation of two quasidipole modes with frequency and by the exchange of their behavior at near-crossover point. The dispersion curves cross only in the presence of exact symmetry. Such a scenario is the alternative to the stress-induced anisotropy crossing of dispersion curves.
- Published
- 2015
- Full Text
- View/download PDF
11. Calculating the spectrum of anisotropic waveguides using a spectral method
- Author
-
T. V. Zharnikov, C.-J. Hsu, and D. E. Syresin
- Subjects
Sound Spectrography ,Acoustics and Ultrasonics ,Operator (physics) ,Numerical analysis ,Mathematical analysis ,Spectrum (functional analysis) ,Numerical Analysis, Computer-Assisted ,Signal Processing, Computer-Assisted ,Acoustics ,Models, Theoretical ,Elasticity ,Motion ,Sound ,Arts and Humanities (miscellaneous) ,Normal mode ,Transverse isotropy ,Harmonics ,Linear Models ,Anisotropy ,Computer Simulation ,Cylindrical coordinate system ,Spectral method ,Mathematics - Abstract
The computation of the spectrum of a waveguide with arbitrary anisotropy with spatial dependence is a challenging task due to the coupling between axial and azimuthal harmonics. This problem is tackled in cylindrical coordinates by extending a spectral method for the general case. By considering the matrix representation of the operator on the right-hand side of the governing equations, the latter are exactly reformulated as an infinite set of integro-differential equations. Essential part of this study is taking into account the coupling of different harmonics, which becomes evident from the kernels of these equations. Provided a waveguide is translationally invariant in the axial direction, the coupling of axial harmonics vanishes. A practical approximation and truncation procedure yields a generalized eigenvalue problem, which can be solved numerically to obtain the entire spectrum of the operator and to construct the dispersion curves for the eigenmodes. The spectral method is tested against the results from the measurements of dispersion curves for the monopole, dipole, and quadrupole normal modes of scaled boreholes in tilted transverse isotropy anisotropic rock sample. Besides, the comparison of dispersion curves calculated by the spectral method and those computed from the synthetic data is discussed.
- Published
- 2013
- Full Text
- View/download PDF
12. The effect of a surface impedance load on the behavior of quasi-Rayleigh waves near a cylindrical cavity
- Author
-
V. V. Tyutekin, T. V. Zharnikov, and D. E. Syresin
- Subjects
Physics ,Acoustics and Ultrasonics ,business.industry ,Acoustic interferometer ,Mechanics ,symbols.namesake ,Love wave ,Optics ,Dispersion relation ,symbols ,Rayleigh wave ,business ,Dispersion (water waves) ,Mechanical wave ,Electrical impedance ,Longitudinal wave - Abstract
The effect of a surface impedance load on the properties of axisymmetric quasi-Rayleigh waves propagating along the boundaries of a cylindrical cavity is investigated. By solving the problem by means of the impedance method, a dispersion equation for these waves is obtained. It is shown that the equation can be represented as the condition that the determinant of the sum of impedance matrices of the load and the medium is zero. Analysis of this equation allows one to investigate the effect of the surface load on the behavior of quasi-Rayleigh waves and on their critical frequencies. The conditions that should be met by the impedance load for quasi-Rayleigh waves to be absent near the cavity or for one or two such waves to exist are determined. The choice of the load is specified for the propagating quasi-Rayleigh wave to possess preset dispersion properties. The conclusions drawn on the basis of this study are illustrated by several examples of load models that can be implemented in practice.
- Published
- 2010
- Full Text
- View/download PDF
13. Possibility of hgh Z material detection by a setup for natural cosmic-ray muon flux measurement
- Author
-
D. E. Syresin and G.A. Shelkov
- Subjects
Physics ,Nuclear and High Energy Physics ,Radiation ,Muon ,Physics::Instrumentation and Detectors ,Scattering ,Atlas detector ,Detector ,Cosmic ray ,Charge (physics) ,Atomic and Molecular Physics, and Optics ,Nuclear physics ,Volume (thermodynamics) ,Muon flux ,High Energy Physics::Experiment ,Radiology, Nuclear Medicine and imaging - Abstract
A design is proposed and a resolving power is calculated for a detector that monitors the unauthorized transportation of high Z materials (nuclear materials with Z > 90) using the natural cosmic-ray muon flux. The identification of nuclear materials is based on the strong dependence of the multiple scattering angle on the matter charge upon traversing the matter by cosmic muons. It is proposed that chambers assembled from drift aluminum tubes similar to chambers used in the muon system of the ATLAS detector be used as the coordinate detector for the setup. The calculations show that the proposed variant of the setup makes it possible to detect the presence of nuclear materials with a weight of about 0.5–1 kg and higher in the inspected volume in a measurement time of several minutes.
- Published
- 2009
- Full Text
- View/download PDF
14. Electron cooling of bunched ion beam at NIRS-HIMAC
- Author
-
K. Noda, S. Shibuya, D. Tann, S. Ninomiya, T. Uesugi, T. Furukawa, T. Honma, T. Iwashima, H.Y. Ogawa, Y. Hashimoto, T. Fujisawa, H. Uchiyama, M. Muramatsu, and E. Syresin
- Subjects
Physics ,Nuclear and High Energy Physics ,Ion beam ,Space charge ,Charged particle ,law.invention ,Ion ,Amplitude ,law ,Physics::Accelerator Physics ,Electric potential ,Atomic physics ,Instrumentation ,Beam (structure) ,Electron cooling - Abstract
Electron-cooling experiments have been carried out at the HIMAC-synchrotron in order to provide high-quality beams for medical and related research. For investigating the behavior of the free radicals, especially, the beam bunch was compressed by electron cooling with a triangle-wave RF-field. The dependences of the bunch length on the electron energy and the RF voltage were investigated under various intensities of Ar18+ beam. As a result, the bunch length was limited by around 20 ns due to the space-charge effect under an intensity of 1.33×106 ions/bunch and an RF amplitude of 340 V.
- Published
- 2004
- Full Text
- View/download PDF
15. S-LSR: test ring for beam crystal, its design and ordering simulation
- Author
-
S. Shibuya, Masahiro Ikegami, Manfred Grieser, E. Syresin, T. Takeuchi, K. Okabe, A. Noda, Yoshihisa Iwashita, K. Noda, Y. Yuri, Hiromu Tongu, H. Fadil, Hiromi Okamoto, and Toshiyuki Shirai
- Subjects
Physics ,Nuclear and High Energy Physics ,Beam diameter ,business.industry ,Betatron ,Ion source ,law.invention ,Optics ,law ,Laser cooling ,Physics::Accelerator Physics ,M squared ,Laser beam quality ,business ,Instrumentation ,Beam (structure) ,Electron cooling - Abstract
A new compact ion cooler ring (S-LSR) in Kyoto University has a circumference of 22.197 m and maximum magnetic rigidity of 1 T/m. One of the research subjects of S-LSR is a test bed to produce crystalline beams. Ring optics is designed to satisfy several required conditions for the beam ordering such as a small betatron phase advance and small magnetic error. We plan two cooling approaches. One is an electron beam cooling with 7 MeV proton beam from a linac. This target is 1-dimensional Coulomb strings. The beam-ordering simulation is carried out using the S-LSR parameters. The other is laser cooling with 35 keV Mg + beam from an ion source. The goal of the laser cooling experiment is to produce two-dimensional and three-dimensional crystals.
- Published
- 2004
- Full Text
- View/download PDF
16. Dispersion properties of helical waves in radially inhomogeneous elastic media
- Author
-
T. V. Zharnikov, D. E. Syresin, and V. V. Tyutekin
- Subjects
Classical mechanics ,Nonlinear acoustics ,Acoustics and Ultrasonics ,Arts and Humanities (miscellaneous) ,Dispersion relation ,Isotropy ,Mathematical analysis ,Riccati equation ,Wavenumber ,Impedance parameters ,Transfer matrix ,Acoustic dispersion ,Mathematics - Abstract
In this paper, a method describing dispersion curve calculation for waves propagating in radially layered, inhomogeneous isotropic elastic waveguides is developed. Particular emphasis is placed on the helical waves with noninteger azimuthal wavenumbers, which can be potentially applied in such fields as nondestructive evaluation, acoustic tomography, etc., stipulating their practical importance. To solve the problem under consideration, the matrix Riccati equation is formulated for an impedance matrix. The use of the latter yields a simple form of the dispersion equation. Numerical computation of dispersion curves can encounter difficulties, which are due to potential singularities of the impedance matrix and the necessity to separate roots of the dispersion equation. These difficulties are overcome by employing the Cayley transform and invoking the parametric continuation method. The method developed by the authors is demonstrated by calculating dispersion diagrams in support of helical waves for several models of practical interest. Such computations for an inhomogeneous layer and its approximation by a set of homogeneous layers using a transfer matrix and Riccati equation methods revealed higher computational accuracy of the latter. Dispersion curves calculated for layers with different types of inhomogeneity demonstrated significant discrepancies at low frequencies.
- Published
- 2012
17. The electronion scattering experiment ELISe at the International Facility for Antiproton and Ion Research (FAIR) - A conceptual design study
- Author
-
E. Garrido, Igor Meshkov, E. Khan, Pedro Sarriguren, B. Franzke, A. Chatillon, Marielle Chartier, M. Aiche, D. Doré, B. Jurado, Dirk Rudolph, I.A. Koop, S. N. Ershov, M. Fujiwara, Mikhail V. Zhukov, Roy Crawford Lemmon, R. Johnson, S. A. Krupko, D. N. Kadrev, S. Karataglidis, Yurii M. Shatunov, G. Belier, Thomas Nilsson, Oliver Kester, C. Schmitt, C. Fernandez Ramirez, E. Moya de Guerra, Norbert Pietralla, S. Czajkowski, F. Nolden, M. K. Gaidarov, Thomas Rauscher, G. P. A. Berg, E. Berthoumieux, Harald Merkel, D. Ridikas, I. Seleznev, Achim Richter, Andreas Zilges, F. Farget, A. Kelic-Heil, J. A. Caballero, L. V. Chulkov, Tatuya Adachi, V. Lisin, Helmut Weick, H. Lenske, Håkan T Johansson, Kai Hencken, Anton Nikolaev Antonov, K.-H. Schmidt, B. Krusche, A.A. Korsheninnikov, A. M. Rodin, Björn Jonson, Y. Litvinov, A.V. Otboev, P. Beller, Nasser Kalantar-Nayestanaki, U. Müller, Ch. Scheidenberger, L. V. Grigorenko, A. Dolinskii, N. Kurz, D. G. Jenkins, Laurent Tassan-Got, Pavel Golubev, N. V. Rudnev, Thomas Aumann, Andreas Martin Heinz, Seigo Kato, J. Taieb, A.N. Skrinsky, R. Alvarez Rodriguez, W. N. Catford, M. J. G. Borge, A. A. Ogloblin, J. Jourdan, A. V. Gorshkov, G. Münzenberg, Elena Litvinova, A. Letourneau, Takeshi Suda, A. Artukh, B. V. Danilin, G. Schrieder, A.N. Vorontsov, G. M. Ter-Akopian, P.V. Logatchov, D.I. Shvartz, S. Hamieh, K. Boretzky, Sergei Kamerdzhiev, A. N. Mushkarenkov, C. J. Barton, Peter Egelhof, Jim Al-Khalili, H. Emling, Paul Stevenson, Carlos A. Bertulani, Arnd R. Junghans, D. M. Cullen, E. Dupont, Dirk Trautmann, Joachim Enders, M. Steck, J. Udias-Moinelo, L.M. Fraile Prieto, M. O. Distler, Vasilii V. Parkhomchuk, Mohsen Harakeh, Göran Hugo Nyman, M. V. Ivanov, Vladimir Avdeichikov, Stefano Panebianco, Y. Sereda, J.E. Amaro Soriano, S.V. Shiyankov, D. Kiselev, A. S. Fomichev, E. Syresin, Hans Geissel, V. Volkov, L. Audouin, E. A. Kuzmin, Y. Teterev, S. Klygin, A. Polonski, A. A. Turinge, S. I. Sidorchuk, T. Granier, H. J. Wörtche, V. G. Nedorezov, P.Y. Shatunov, J. R. Vignote, J. Lopez Herraiz, A.M. Lallena Rojo, D.N. Shatilov, Haik Simon, Y. Grishkin, G. Barreau, S. V. Stepantsov, M. S. Golovkov, Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), DAM Île-de-France (DAM/DIF), Direction des Applications Militaires (DAM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Grand Accélérateur National d'Ions Lourds (GANIL), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique Nucléaire d'Orsay (IPNO), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), KVI - Center for Advanced Radiation Technology, Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)
- Subjects
Nuclear and High Energy Physics ,electronscattering ,FORM-FACTORS ,[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph] ,Electron ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,DATA-ACQUISITION SYSTEM ,NUCLEAR-STRUCTURE ,01 natural sciences ,BINDING-ENERGIES ,CHARGE-DENSITY DISTRIBUTIONS ,Ion ,CROSS-SECTIONS ,Nuclear physics ,Nuclei far off stability ,Conceptual design ,eA collider ,0103 physical sciences ,CENTRAL DEPRESSION ,Electron scattering ,010306 general physics ,Instrumentation ,Physics ,010308 nuclear & particles physics ,Scattering ,29.27.-a, 25.30.Bf,25.30.Dh,21.10.Ft,29.20.Dh,29.30.-h ,RELATIVISTIC HEAVY-IONS ,EXOTIC NUCLEI ,Facility for Antiproton and Ion Research ,GIANT-RESONANCES ,Storage ring - Abstract
The electronion scattering experiment ELISe is part of the installations envisaged at the new experimental storage ring at the International Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany. It offers an unique opportunity to use electrons as probe in investigations of the structure of exotic nuclei. The conceptual design and the scientific challenges of ELISe are presented. © 2011 Elsevier B.V. All rights reserved., The authors acknowledge financial support from the EC via the INTAS pro- gramme, grants No. 03-54-6545 and 05-1000008-8272. This work was partially supported by the Hessian LOEWE initiative Helmholtz International Center for FAIR
- Published
- 2011
- Full Text
- View/download PDF
18. ILC beam energy measurement based on synchrotron radiation from a magnetic spectrometer
- Author
-
K. Hiller, B. Zalikhanov, H.J. Schreiber, R. Makarov, and E. Syresin
- Subjects
Physics ,Nuclear and High Energy Physics ,Spectrometer ,Physics::Instrumentation and Detectors ,business.industry ,Detector ,Synchrotron radiation ,law.invention ,Optics ,Beamline ,law ,High-energy X-rays ,Physics::Accelerator Physics ,ddc:530 ,Collider ,business ,Instrumentation ,Image resolution ,Beam (structure) - Abstract
We propose to measure, on a bunch-to-bunch basis, the beam energy at the International Linear e + e - Collider by recording synchrotron radiation (SR) light emitted in the magnets of an energy spectrometer based on beam position monitors. Measuring the width of the horizontal SR fan permits to determine the relative beam energy with a precision better than 10 - 4 . There are two different measuring schemes possible. The first one is based on edge measurements of the direct SR fan, while the second option includes mirrors to deflect soft SR light to detectors located sufficiently off the beamline. Three possibilities for high-spatial resolution detectors are considered: a standard silicon strip detector, a novel-type Si detector and a gas amplification detector, both with exceptional position resolution. The main issue of the first scheme is the high radiation dose expected in the direct SR fan. If mirrors are used this dose is strongly reduced and allows application of any of the three detectors proposed.
- Published
- 2007
- Full Text
- View/download PDF
19. Electron Cooling of Bunched Beams
- Author
-
I. Meshkov, K. Noda, S. Shibuya, E. Syresin, and T. Uesugi
- Subjects
Physics ,Field (physics) ,business.industry ,Scattering ,Astrophysics::High Energy Astrophysical Phenomena ,Particle accelerator ,Space (mathematics) ,Space charge ,Synchrotron ,law.invention ,Transverse plane ,Optics ,law ,Physics::Accelerator Physics ,Atomic physics ,business ,Electron cooling - Abstract
Experiments of electron cooling have been done with the HIMAC synchrotron in NIRS. Limitation on cooled beam‐sizes in longitudianl and transverse spaces were measured. The effect of space‐charge field and intra‐beam scattering are investigated.
- Published
- 2006
- Full Text
- View/download PDF
20. Stability conditions for a neutralised electron cooling beam
- Author
-
Igor Meshkov, E. Syresin, P. Zenkevich, J. Bosser, D. Möhl, E. Mustafin, F Varenne, and Stephan Maury
- Subjects
Physics ,Dipole ,Antiproton ,law ,Cathode ray ,Landau damping ,Electron ,Atomic physics ,Accelerators and Storage Rings ,Space charge ,Beam (structure) ,Electron cooling ,law.invention - Abstract
Charge neutralisation of the cooling electron beam, e.g. by stationary ions produced from the residual gas, is desirable to compensate the space-charge induced velocity spread which tends to reduce the cooling force. However, it has been demonstrated by Parkhomchuk and collaborators (1993) that two-stream instabilities, especially transverse dipole modes, are a serious threat to the stability. In the present report we analyse stabilising mechanisms including Landau damping, external feedback and clearing of reflected electrons. Experimental results at LEAR (the Low Energy Antiproton Ring at CERN) are discussed in a companion paper at this conference.
- Published
- 2002
- Full Text
- View/download PDF
21. The injection and storage schemes for heavy ion beams
- Author
-
Y. Yano, I. Meshkov, E. Syresin, and Takeshi Katayama
- Subjects
Physics ,Stacking ,Particle accelerator ,Ion source ,Computational physics ,law.invention ,Ion ,law ,Turn (geometry) ,Physics::Accelerator Physics ,Thermal emittance ,Beam emittance ,Atomic physics ,Beam (structure) - Abstract
Two injection schemes: multi-turn injection with RF stacking and a single turn injection are discussed in this report. The multi-turn injection scheme has an advantage in the number of turns, however, it causes to cooling of a large beam emittance before stacking1. On the other hand, the single turn scheme has a significant gain in the ion storage rate, if the initial emittance of the injected beam is small2–3. We begin with the general consideration of both schemes and then give numerical estimations demonstrating characteristic features of these schemes for ACR. The problem of the ion source choice is also discussed.
- Published
- 1999
- Full Text
- View/download PDF
22. X-ray photon diagnostics at the European XFEL.
- Author
-
Grünert J, Carbonell MP, Dietrich F, Falk T, Freund W, Koch A, Kujala N, Laksman J, Liu J, Maltezopoulos T, Tiedtke K, Jastrow UF, Sorokin A, Syresin E, Grebentsov A, and Brovko O
- Subjects
- Calibration, Equipment Design, Europe, Photons, X-Rays, Lasers, Particle Accelerators, Radiation Monitoring methods
- Abstract
The European X-ray Free-Electron Laser (European XFEL) (Altarelli et al., 2006; Tschentscher et al., 2017), the world's largest and brightest X-ray free-electron laser (Saldin et al., 1999; Pellegrini et al., 2016), went into operation in 2017. This article describes the as-built realization of photon diagnostics for this facility, the diagnostics commissioning and their application for commissioning of the facility, and results from the first year of operation, focusing on the SASE1 beamline, which was the first to be commissioned. The commissioning consisted of pre-beam checkout, first light from the bending magnets, X-rays from single undulator segments, SASE tuning with many undulator segments, first lasing, optics alignment for FEL beam transport through the tunnel up to the experiment hutches, and finally beam delivery to first users. The beam properties assessed by photon diagnostics throughout these phases included per-pulse intensity, beam position, shape, lateral dimensions and spectral properties. During this time period, the machine provided users with up to 14 keV photon energy, 1.5 mJ pulse energy, 300 FEL pulses per train and 4.5 MHz intra-bunch train repetition rate at a 10 Hz train repetition rate. Finally, an outlook is given into the diagnostic prospects for the future.
- Published
- 2019
- Full Text
- View/download PDF
23. MCP-based detectors: calibration and first photon radiation measurements.
- Author
-
Syresin E, Grebentsov A, Brovko O, Yurkov M, Freund W, and Grünert J
- Subjects
- Calibration, Equipment Design, Particle Accelerators, Photons, X-Rays, Lasers, Optically Stimulated Luminescence Dosimetry instrumentation
- Abstract
Detectors based on microchannel plates (MCPs) are used to detect radiation from free-electron lasers. Three MCP detectors have been developed by JINR for the European XFEL (SASE1, SASE2 and SASE3 lines). These detectors are designed to operate in a wide dynamic range from the level of spontaneous emission to the SASE saturation level (between a few nJ up to 25 mJ), in a wide wavelength range from 0.05 nm to 0.4 nm for SASE1 and SASE2, and from 0.4 nm to 4.43 nm for SASE3. The detectors measure photon pulse energies with an anode and a photodiode. The photon beam image is observed with an MCP imager with a phosphor screen. At present, the SASE1 and SASE3 MCP detectors are commissioned with XFEL beams. Calibration and first measurements of photon radiation in multibunch mode are performed with the SASE1 and SASE3 MCPs. The MCP detector for SASE2 and its electronics are installed in the XFEL tunnel, technically commissioned, and are now ready for acceptance tests with the X-ray beam.
- Published
- 2019
- Full Text
- View/download PDF
24. DELSY project: status and development.
- Author
-
Balalykin N, Beloshitsky P, Bykovsky V, Kobets V, Kolobanov V, Kulipanov G, Levichev E, Mikhaylin V, Meshkov I, Mezentsev N, Morozov N, Seleznev I, Sidorov G, Skrinsky A, Shirkov G, Syresin E, Titkova I, and Yurkov M
- Abstract
The DELSY (Dubna Electron Synchrotron) project is under development at the Joint Institute for Nuclear Research [Arkhipov et al. (2001). Nucl. Instrum. Methods, A467, 57-62; Arkhipov et al. (2001). Nucl. Instrum. Methods, A470, 1-6; Titkova et al. (2000). Proceedings of the Seventh European Particle Accelerator Conference, pp. 702-704]. It is based on an acceleration facility donated to the Joint Institute for Nuclear Research by the Institute for Nuclear and High Energy Physics (NIKHEF, Amsterdam). The NIKHEF accelerator facility consists of the linear electron accelerator MEA, which has an electron energy of 700 MeV, and the electron storage ring AmPS, with a maximum energy of 900 MeV and a beam current of 200 mA. There are three phases to the construction of the DELSY facility. Phase I will be accomplished with the construction of a complex of free-electron lasers covering continuously the spectrum from the far infrared down to the ultraviolet ( approximately 150 nm). Phase II will be accomplished with the commissioning of the storage ring DELSY. Complete commissioning of the DELSY project will take place after finishing Phase III, the construction of an X-ray free-electron laser. This phase is considered as the ultimate goal of the project; it is currently under development and is not described in this paper.
- Published
- 2003
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.