Search

Your search keyword '"Dutta, Moinak"' showing total 97 results

Search Constraints

Start Over You searched for: Author "Dutta, Moinak" Remove constraint Author: "Dutta, Moinak"
97 results on '"Dutta, Moinak"'

Search Results

2. Role of Covalent Cages and Rattler Atoms in Lowering the Thermal Conductivity in Zintl Metal Chalcogenides

3. Hidden structures: a driving factor to achieve low thermal conductivity and high thermoelectric performance.

5. Contributors

11. Extended Antibonding States and Phonon Localization Induce Ultralow Thermal Conductivity in Low Dimensional Metal Halide.

12. Chemical Bonding Tuned Lattice Anharmonicity Leads to a High Thermoelectric Performance in Cubic AgSnSbTe3.

13. Chemical Bonding Tuned Lattice Anharmonicity Leads to a High Thermoelectric Performance in Cubic AgSnSbTe3.

14. Sublinear temperature dependence of thermal conductivity in the incommensurate phase of TlInTe2

19. Local ferroelectric polarization switching driven by nanoscale distortions in thermoelectric \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Sn}}_{0.7}{\text {Ge}}_{0.3}{\text {Te}}$$\end{document}Sn0.7Ge0.3Te

21. Metavalent Bonding-Mediated Dual 6s2Lone Pair Expression Leads to Intrinsic Lattice Shearing in n-Type TlBiSe2

22. Bonding heterogeneity and lone pair induced anharmonicity resulted in ultralow thermal conductivity and promising thermoelectric properties in n-type AgPbBiSe3† †Electronic supplementary information (ESI) available: Contains the method of refinement of PDF (Fig. S1), figures containing different unit cells (Fig. S2); phonon dispersion of different supercells (Fig. S3); low T Cp data (Fig. S4); κdiff values (Fig. S5); figures containing supercells, charge density and ELF of AgPbBiSe3 (Fig. S6); visualization of eigen vectors (Fig. S7); mode Gruneisen parameters (Fig. S8); phonon dispersion curves (Fig. S9); avoided acoustic–optical crossing (Fig. S10); temperature dependent Rw and lattice parameter, a (Fig. S11); local structure fit (Fig. S12), PXRD data (Fig. S13); band gaps (Fig. S14); atom projected electronic structure (Fig. S15); mobility vs. carrier plot (Fig. S16). Also contains tables of Cp/T vs. T2 refined parameters (Table S1); LA and TA frequencies (Table S2); Uiso values (Table S3); band-gap (Table S4); carrier conc. (n) vs. mobility (μH) (Table S5). See DOI: 10.1039/c9sc00485h

26. Glassy thermal conductivity in Cs3Bi2I6Cl3 single crystal.

38. Evidence of Highly Anharmonic Soft Lattice Vibrations in a Zintl Rattler.

46. Enhanced thermoelectric performance in topological crystalline insulator n-type Pb0.6Sn0.4Te by simultaneous tuning of the band gap and chemical potential.

48. Chemical Bonding Tuned Lattice Anharmonicity Leads to a High Thermoelectric Performance in Cubic AgSnSbTe3.

49. Chemical Bonding Tuned Lattice Anharmonicity Leads to a High Thermoelectric Performance in Cubic AgSnSbTe3.

50. Evidence of Lone Pair Crafted Emphanisis in the Ruddlesden-Popper Halide Perovskite Cs 2 PbI 2 Cl 2 .

Catalog

Books, media, physical & digital resources