Dutkowska, Agata, Domańska-Senderowska, Daria, Czarnecka-Chrebelska, Karolina H., Pikus, Ewa, Zielińska, Aleksandra, Biskup, Laura, Kołodziejska, Agata, Madura, Paulina, Możdżan, Maria, Załuska, Urszula, Zheng, Edward, Adamczyk, Eliza, Kędzia, Konrad, Wcisło, Szymon, Wawrzycki, Marcin, Brzeziańska-Lasota, Ewa, Jabłoński, Sławomir, Antczak, Adam, and Poznański, Michał
Simple Summary: Knowledge about the metabolic landscape of cancer cells may provide groundbreaking discoveries in the field of new methods for the diagnosis, prognosis, and treatment of lung cancer. The aim of our study was to assess mitochondrial alterations in the blood of lung cancer patients. We confirmed that fusion and fission protein blood expressions varied between 47 lung cancer patients and 21 healthy people. In the blood of lung cancer patients, fission protein expression is promoted only at an early stage of the disease. In locally advanced and metastatic stages of lung cancer, there is an increase in fusion protein expression. The results of this study provide hope for mitochondrial dynamics understanding in patients with lung cancer, which in the future may contribute to the discovery of new predictive factors for personalized therapy or diagnosis. In lung cancer patients, two complementary abnormalities were found that can cause disruption of the mitochondrial network: increased fusion and impaired fission, manifested by reduced levels of FIS1, a mitochondrial division regulator, and increased expression of MFN1, a mitochondrial fusion mediator. Immunoexpression studies of MFN1 and FIS1 proteins were performed in serum samples obtained from 47 patients with non-small cell lung cancer (NSCLC) and 21 controls. In the NSCLC patients, the immunoexpression of the MFN1 protein was significantly higher, and the FIS1 protein level was significantly lower than in the control group (p < 0.01; p < 0.001; UMW test). Patients with early, operable lung cancer had significantly lower levels of MFN1 immunoexpression compared to patients with advanced, metastatic lung cancer (p < 0.05; UMW test). This suggests that early stages of the disease are characterized by greater fragmentation of damaged mitochondria and apoptosis. In contrast, lower FIS1 protein levels were associated with a worse prognosis. Increased mitochondrial fusion in the blood of lung cancer patients may suggest an increase in protective and repair mechanisms. This opens up questions about why these mechanisms fail in the context of existing advanced cancer disease and is a starting point for further research into why protective mechanisms fail in lung cancer patients. [ABSTRACT FROM AUTHOR]