1. Dirac Cones and Room Temperature Polariton Lasing Evidenced in an Organic Honeycomb Lattice
- Author
-
Betzold, Simon, Düreth, Johannes, Dusel, Marco, Emmerling, Monika, Bieganowska, Antonina, Ohmer, Jürgen, Fischer, Utz, Höfling, Sven, and Klembt, Sebastian
- Subjects
Physics - Optics ,Condensed Matter - Mesoscale and Nanoscale Physics - Abstract
Artificial one- and two-dimensional lattices have emerged as a powerful platform for the emulation of lattice Hamiltonians, the fundamental study of collective many-body effects, and phenomena arising from non-trivial topology. Exciton-polaritons, bosonic part-light and part-matter quasiparticles, combine pronounced nonlinearities with the possibility of on-chip implementation. In this context, organic semiconductors embedded in microcavities have proven to be versatile candidates to study nonlinear many-body physics and bosonic condensation, and in contrast to most inorganic systems, they allow the use at ambient conditions since they host ultra-stable Frenkel excitons. We implement a well-controlled, high-quality optical lattice that accommodates light-matter quasiparticles. The realized polariton graphene presents with excellent cavity quality factors, showing distinct signatures of Dirac cone and flatband dispersions as well as polariton lasing at room temperature. This is realized by filling coupled dielectric microcavities with the fluorescent protein mCherry. We demonstrate the emergence of a coherent polariton condensate at ambient conditions, taking advantage of coupling conditions as precise and controllable as in state-of-the-art inorganic semiconductor-based systems, without the limitations of e.g. lattice matching in epitaxial growth. This progress allows straightforward extension to more complex systems, such as the study of topological phenomena in two-dimensional lattices including topological lasers and non-Hermitian optics., Comment: 28 pages, 9 figures
- Published
- 2024
- Full Text
- View/download PDF