1. Data-Driven Ground-Fault Location Method in Distribution Power System With Distributed Generation
- Author
-
Caporuscio, Mauro, Dupuis, Antoine, and Löwe, Welf
- Subjects
Electrical Engineering and Systems Science - Systems and Control ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning ,Electrical Engineering and Systems Science - Signal Processing - Abstract
The recent increase in renewable energy penetration at the distribution level introduces a multi-directional power flow that outdated traditional fault location techniques. To this extent, the development of new methods is needed to ensure fast and accurate fault localization and, hence, strengthen power system reliability. This paper proposes a data-driven ground fault location method for the power distribution system. An 11-bus 20 kV power system is modeled in Matlab/Simulink to simulate ground faults. The faults are generated at different locations and under various system operational states. Time-domain faulted three-phase voltages at the system substation are then analyzed with discrete wavelet transform. Statistical quantities of the processed data are eventually used to train an Artificial Neural Network (ANN) to find a mapping between computed voltage features and faults. Specifically, three ANNs allow the prediction of faulted phase, faulted branch, and fault distance from the system substation separately. According to the results, the method shows good potential, with a total relative error of 0,4% for fault distance prediction. The method is applied to datasets with unknown system states to test robustness., Comment: Technical Report
- Published
- 2024