28 results on '"Dudakia, D"'
Search Results
2. A prospective prostate cancer screening programme for men with pathogenic variants in mismatch repair genes (IMPACT): initial results from an international prospective study.
- Author
-
Bancroft E.K., Page E.C., Brook M.N., Thomas S., Taylor N., Pope J., McHugh J., Jones A.-B., Karlsson Q., Merson S., Ong K.R., Hoffman J., Huber C., Maehle L., Grindedal E.M., Stormorken A., Evans D.G., Rothwell J., Lalloo F., Brady A.F., Bartlett M., Snape K., Hanson H., James P., McKinley J., Mascarenhas L., Syngal S., Ukaegbu C., Side L., Thomas T., Barwell J., Teixeira M.R., Izatt L., Suri M., Macrae F.A., Poplawski N., Chen-Shtoyerman R., Ahmed M., Musgrave H., Nicolai N., Greenhalgh L., Brewer C., Pachter N., Spigelman A.D., Azzabi A., Helfand B.T., Halliday D., Buys S., Ramon y Cajal T., Donaldson A., Cooney K.A., Harris M., McGrath J., Davidson R., Taylor A., Cooke P., Myhill K., Hogben M., Aaronson N.K., Ardern-Jones A., Bangma C.H., Castro E., Dearnaley D., Dias A., Dudderidge T., Eccles D.M., Green K., Eyfjord J., Falconer A., Foster C.S., Gronberg H., Hamdy F.C., Johannsson O., Khoo V., Lilja H., Lindeman G.J., Lubinski J., Axcrona K., Mikropoulos C., Mitra A.V., Moynihan C., Ni Raghallaigh H., Rennert G., Collier R., Adams L., Adlard J., Alfonso R., Ali S., Andrew A., Araujo L., Azam N., Ball D., Barker Q., Basevitch A., Benton B., Berlin C., Bermingham N., Biller L., Bloss A., Bradford M., Bradshaw N., Branson A., Brendler C., Brennan M., Bulman B., Burgess L., Cahill D., Callard A., Calvo Verges N., Cardoso M., Carter V., Catanzaro M., Chamberlain A., Chapman C., Chong M., Clark C., Clowes V., Cogley L., Cole T., Compton C., Conner T., Cookson S., Cornford P., Costello P., Coulier L., Davies M., Dechet C., DeSouza B., Devlin G., Douglas F., Douglas E., Dudakia D., Duncan A., Ellery N., Everest S., Freemantle S., Frydenberg M., Fuller D., Gabriel C., Gale M., Garcia L., Gay S., Genova E., George A., Georgiou D., Gisbert A., Gleeson M., Glover W., Gnanapragasam V., Goff S., Goldgar D., Goncalves N., Goodman S., Gorrie J., Gott H., Grant A., Gray C., Griffiths J., Gupwell K., Gurasashvili J., Hanslien E., Haraldsdottir S., Hart R., Hartigan C., Hawkes L., Heaton T., Henderson A., Henrique R., Hilario K., Hill K., Hulick P., Hunt C., Hutchings M., Ibitoye R., Inglehearn T., Ireland J., Islam F., Ismail S., Jacobs C., James D., Jenkins S., Jobson I., Johnstone A., Jones O., Josefsberg Ben-Yehoshua S., Kaemba B., Kaul K., Kemp Z., Kinsella N., Klehm M., Kockelbergh R., Kohut K., Kosicka-Slawinska M., Kulkarni A., Kumar P., Lam J., LeButt M., Leibovici D., Lim R., Limb L., Lomas C., Longmuir M., Lopez C., Magnani T., Maia S., Maiden J., Male A., Manalo M., Martin P., McBride D., McGuire M., McMahon R., McNally C., McVeigh T., Melzer E., Mencias M., Mercer C., Mitchell G., Mora J., Morton C., Moss C., Murphy M., Murphy D., Mzazi S., Nadolski M., Newlin A., Nogueira P., O'Keefe R., O'Toole K., O'Connell S., Ogden C., Okoth L., Oliveira J., Paez E., Palou J., Park L., Patel N., Paulo Souto J., Pearce A., Peixoto A., Perez K., Petelin L., Pichert G., Poile C., Potter A., Preitner N., Purnell H., Quinn E., Radice P., Rankin B., Rees K., Renton C., Richardson K., Risby P., Rogers J., Ruderman M., Ruiz A., Sajoo A., Salvatore N., Sands V., Sanguedolce F., Sattar A., Saunders K., Schofield L., Scott R., Searle A., Sehra R., Selkirk C., Shackleton K., Shanley S., Shaw A., Shevrin D., Shipman H., Sidat Z., Siguake K., Simon K., Smyth C., Snadden L., Solanky N., Solomons J., Sorrentino M., Stayner B., Stephenson R., Stoffel E., Thomas M., Thompson A., Tidey L., Tischkowitz M., Torokwa A., Townshend S., Treherne K., Tricker K., Trinh Q.-D., Tripathi V., Turnbull C., Valdagni R., Van As N., Venne V., Verdon L., Vitellaro M., Vogel K., Walker L., Watford A., Watt C., Weintroub I., Weiss S., Weissman S., Weston M., Wiggins J., Wise G., Woodhouse C., Yesildag P., Youngs A., Yurgelun M., Zollo F., Offman J., Kote-Jarai Z., Eeles R.A., Bancroft E.K., Page E.C., Brook M.N., Thomas S., Taylor N., Pope J., McHugh J., Jones A.-B., Karlsson Q., Merson S., Ong K.R., Hoffman J., Huber C., Maehle L., Grindedal E.M., Stormorken A., Evans D.G., Rothwell J., Lalloo F., Brady A.F., Bartlett M., Snape K., Hanson H., James P., McKinley J., Mascarenhas L., Syngal S., Ukaegbu C., Side L., Thomas T., Barwell J., Teixeira M.R., Izatt L., Suri M., Macrae F.A., Poplawski N., Chen-Shtoyerman R., Ahmed M., Musgrave H., Nicolai N., Greenhalgh L., Brewer C., Pachter N., Spigelman A.D., Azzabi A., Helfand B.T., Halliday D., Buys S., Ramon y Cajal T., Donaldson A., Cooney K.A., Harris M., McGrath J., Davidson R., Taylor A., Cooke P., Myhill K., Hogben M., Aaronson N.K., Ardern-Jones A., Bangma C.H., Castro E., Dearnaley D., Dias A., Dudderidge T., Eccles D.M., Green K., Eyfjord J., Falconer A., Foster C.S., Gronberg H., Hamdy F.C., Johannsson O., Khoo V., Lilja H., Lindeman G.J., Lubinski J., Axcrona K., Mikropoulos C., Mitra A.V., Moynihan C., Ni Raghallaigh H., Rennert G., Collier R., Adams L., Adlard J., Alfonso R., Ali S., Andrew A., Araujo L., Azam N., Ball D., Barker Q., Basevitch A., Benton B., Berlin C., Bermingham N., Biller L., Bloss A., Bradford M., Bradshaw N., Branson A., Brendler C., Brennan M., Bulman B., Burgess L., Cahill D., Callard A., Calvo Verges N., Cardoso M., Carter V., Catanzaro M., Chamberlain A., Chapman C., Chong M., Clark C., Clowes V., Cogley L., Cole T., Compton C., Conner T., Cookson S., Cornford P., Costello P., Coulier L., Davies M., Dechet C., DeSouza B., Devlin G., Douglas F., Douglas E., Dudakia D., Duncan A., Ellery N., Everest S., Freemantle S., Frydenberg M., Fuller D., Gabriel C., Gale M., Garcia L., Gay S., Genova E., George A., Georgiou D., Gisbert A., Gleeson M., Glover W., Gnanapragasam V., Goff S., Goldgar D., Goncalves N., Goodman S., Gorrie J., Gott H., Grant A., Gray C., Griffiths J., Gupwell K., Gurasashvili J., Hanslien E., Haraldsdottir S., Hart R., Hartigan C., Hawkes L., Heaton T., Henderson A., Henrique R., Hilario K., Hill K., Hulick P., Hunt C., Hutchings M., Ibitoye R., Inglehearn T., Ireland J., Islam F., Ismail S., Jacobs C., James D., Jenkins S., Jobson I., Johnstone A., Jones O., Josefsberg Ben-Yehoshua S., Kaemba B., Kaul K., Kemp Z., Kinsella N., Klehm M., Kockelbergh R., Kohut K., Kosicka-Slawinska M., Kulkarni A., Kumar P., Lam J., LeButt M., Leibovici D., Lim R., Limb L., Lomas C., Longmuir M., Lopez C., Magnani T., Maia S., Maiden J., Male A., Manalo M., Martin P., McBride D., McGuire M., McMahon R., McNally C., McVeigh T., Melzer E., Mencias M., Mercer C., Mitchell G., Mora J., Morton C., Moss C., Murphy M., Murphy D., Mzazi S., Nadolski M., Newlin A., Nogueira P., O'Keefe R., O'Toole K., O'Connell S., Ogden C., Okoth L., Oliveira J., Paez E., Palou J., Park L., Patel N., Paulo Souto J., Pearce A., Peixoto A., Perez K., Petelin L., Pichert G., Poile C., Potter A., Preitner N., Purnell H., Quinn E., Radice P., Rankin B., Rees K., Renton C., Richardson K., Risby P., Rogers J., Ruderman M., Ruiz A., Sajoo A., Salvatore N., Sands V., Sanguedolce F., Sattar A., Saunders K., Schofield L., Scott R., Searle A., Sehra R., Selkirk C., Shackleton K., Shanley S., Shaw A., Shevrin D., Shipman H., Sidat Z., Siguake K., Simon K., Smyth C., Snadden L., Solanky N., Solomons J., Sorrentino M., Stayner B., Stephenson R., Stoffel E., Thomas M., Thompson A., Tidey L., Tischkowitz M., Torokwa A., Townshend S., Treherne K., Tricker K., Trinh Q.-D., Tripathi V., Turnbull C., Valdagni R., Van As N., Venne V., Verdon L., Vitellaro M., Vogel K., Walker L., Watford A., Watt C., Weintroub I., Weiss S., Weissman S., Weston M., Wiggins J., Wise G., Woodhouse C., Yesildag P., Youngs A., Yurgelun M., Zollo F., Offman J., Kote-Jarai Z., and Eeles R.A.
- Abstract
Background: Lynch syndrome is a rare familial cancer syndrome caused by pathogenic variants in the mismatch repair genes MLH1, MSH2, MSH6, or PMS2, that cause predisposition to various cancers, predominantly colorectal and endometrial cancer. Data are emerging that pathogenic variants in mismatch repair genes increase the risk of early-onset aggressive prostate cancer. The IMPACT study is prospectively assessing prostate-specific antigen (PSA) screening in men with germline mismatch repair pathogenic variants. Here, we report the usefulness of PSA screening, prostate cancer incidence, and tumour characteristics after the first screening round in men with and without these germline pathogenic variants. Method(s): The IMPACT study is an international, prospective study. Men aged 40-69 years without a previous prostate cancer diagnosis and with a known germline pathogenic variant in the MLH1, MSH2, or MSH6 gene, and age-matched male controls who tested negative for a familial pathogenic variant in these genes were recruited from 34 genetic and urology clinics in eight countries, and underwent a baseline PSA screening. Men who had a PSA level higher than 3.0 ng/mL were offered a transrectal, ultrasound-guided, prostate biopsy and a histopathological analysis was done. All participants are undergoing a minimum of 5 years' annual screening. The primary endpoint was to determine the incidence, stage, and pathology of screening-detected prostate cancer in carriers of pathogenic variants compared with non-carrier controls. We used Fisher's exact test to compare the number of cases, cancer incidence, and positive predictive values of the PSA cutoff and biopsy between carriers and non-carriers and the differences between disease types (ie, cancer vs no cancer, clinically significant cancer vs no cancer). We assessed screening outcomes and tumour characteristics by pathogenic variant status. Here we present results from the first round of PSA screening in the IMPACT study. This
- Published
- 2022
3. Comparative performances of machine learning methods for classifying Crohn Disease patients using genome-wide genotyping data
- Author
-
Romagnoni, A., Jegou, S., Van Steen, K., Wainrib, G., Hugot, J. -P., Peyrin-Biroulet, L., Chamaillard, M., Colombel, J. -F., Cottone, M., D'Amato, M., D'Inca, R., Halfvarson, J., Henderson, P., Karban, A., Kennedy, N. A., Khan, M. A., Lemann, M., Levine, A., Massey, D., Milla, M., S. M. E., Ng, Oikonomou, I., Peeters, H., Proctor, D. D., Rahier, J. -F., Rutgeerts, P., Seibold, F., Stronati, L., Taylor, K. M., Torkvist, L., Ublick, K., Van Limbergen, J., Van Gossum, A., Vatn, M. H., Zhang, H., Zhang, W., Andrews, J. M., Bampton, P. A., Barclay, M., Florin, T. H., Gearry, R., Krishnaprasad, K., Lawrance, I. C., Mahy, G., Montgomery, G. W., Radford-Smith, G., Roberts, R. L., Simms, L. A., Hanigan, K., Croft, A., Amininijad, L., Cleynen, I., Dewit, O., Franchimont, D., Georges, M., Laukens, D., Theatre, E., Vermeire, S., Aumais, G., Baidoo, L., Barrie, A. M., Beck, K., Bernard, E. -J., Binion, D. G., Bitton, A., Brant, S. R., Cho, J. H., Cohen, A., Croitoru, K., Daly, M. J., Datta, L. W., Deslandres, C., Duerr, R. H., Dutridge, D., Ferguson, J., Fultz, J., Goyette, P., Greenberg, G. R., Haritunians, T., Jobin, G., Katz, S., Lahaie, R. G., Mcgovern, D. P., Nelson, L., S. M., Ng, Ning, K., Pare, P., Regueiro, M. D., Rioux, J. D., Ruggiero, E., Schumm, L. P., Schwartz, M., Scott, R., Sharma, Y., Silverberg, M. S., Spears, D., Steinhart, A. H., Stempak, J. M., Swoger, J. M., Tsagarelis, C., Zhang, C., Zhao, H., Aerts, J., Ahmad, T., Arbury, H., Attwood, A., Auton, A., Ball, S. G., Balmforth, A. J., Barnes, C., Barrett, J. C., Barroso, I., Barton, A., Bennett, A. J., Bhaskar, S., Blaszczyk, K., Bowes, J., Brand, O. J., Braund, P. S., Bredin, F., Breen, G., Brown, M. J., Bruce, I. N., Bull, J., Burren, O. S., Burton, J., Byrnes, J., Caesar, S., Cardin, N., Clee, C. M., Coffey, A. J., MC Connell, J., Conrad, D. F., Cooper, J. D., Dominiczak, A. F., Downes, K., Drummond, H. E., Dudakia, D., Dunham, A., Ebbs, B., Eccles, D., Edkins, S., Edwards, C., Elliot, A., Emery, P., Evans, D. M., Evans, G., Eyre, S., Farmer, A., Ferrier, I. N., Flynn, E., Forbes, A., Forty, L., Franklyn, J. A., Frayling, T. M., Freathy, R. M., Giannoulatou, E., Gibbs, P., Gilbert, P., Gordon-Smith, K., Gray, E., Green, E., Groves, C. J., Grozeva, D., Gwilliam, R., Hall, A., Hammond, N., Hardy, M., Harrison, P., Hassanali, N., Hebaishi, H., Hines, S., Hinks, A., Hitman, G. A., Hocking, L., Holmes, C., Howard, E., Howard, P., Howson, J. M. M., Hughes, D., Hunt, S., Isaacs, J. D., Jain, M., Jewell, D. P., Johnson, T., Jolley, J. D., Jones, I. R., Jones, L. A., Kirov, G., Langford, C. F., Lango-Allen, H., Lathrop, G. M., Lee, J., Lee, K. L., Lees, C., Lewis, K., Lindgren, C. M., Maisuria-Armer, M., Maller, J., Mansfield, J., Marchini, J. L., Martin, P., Massey, D. C., Mcardle, W. L., Mcguffin, P., Mclay, K. E., Mcvean, G., Mentzer, A., Mimmack, M. L., Morgan, A. E., Morris, A. P., Mowat, C., Munroe, P. B., Myers, S., Newman, W., Nimmo, E. R., O'Donovan, M. C., Onipinla, A., Ovington, N. R., Owen, M. J., Palin, K., Palotie, A., Parnell, K., Pearson, R., Pernet, D., Perry, J. R., Phillips, A., Plagnol, V., Prescott, N. J., Prokopenko, I., Quail, M. A., Rafelt, S., Rayner, N. W., Reid, D. M., Renwick, A., Ring, S. M., Robertson, N., Robson, S., Russell, E., Clair, D. S., Sambrook, J. G., Sanderson, J. D., Sawcer, S. J., Schuilenburg, H., Scott, C. E., Seal, S., Shaw-Hawkins, S., Shields, B. M., Simmonds, M. J., Smyth, D. J., Somaskantharajah, E., Spanova, K., Steer, S., Stephens, J., Stevens, H. E., Stirrups, K., Stone, M. A., Strachan, D. P., Su, Z., Symmons, D. P. M., Thompson, J. R., Thomson, W., Tobin, M. D., Travers, M. E., Turnbull, C., Vukcevic, D., Wain, L. V., Walker, M., Walker, N. M., Wallace, C., Warren-Perry, M., Watkins, N. A., Webster, J., Weedon, M. N., Wilson, A. G., Woodburn, M., Wordsworth, B. P., Yau, C., Young, A. H., Zeggini, E., Brown, M. A., Burton, P. R., Caulfield, M. J., Compston, A., Farrall, M., Gough, S. C. L., Hall, A. S., Hattersley, A. T., Hill, A. V. S., Mathew, C. G., Pembrey, M., Satsangi, J., Stratton, M. R., Worthington, J., Hurles, M. E., Duncanson, A., Ouwehand, W. H., Parkes, M., Rahman, N., Todd, J. A., Samani, N. J., Kwiatkowski, D. P., Mccarthy, M. I., Craddock, N., Deloukas, P., Donnelly, P., Blackwell, J. M., Bramon, E., Casas, J. P., Corvin, A., Jankowski, J., Markus, H. S., Palmer, C. N., Plomin, R., Rautanen, A., Trembath, R. C., Viswanathan, A. C., Wood, N. W., Spencer, C. C. A., Band, G., Bellenguez, C., Freeman, C., Hellenthal, G., Pirinen, M., Strange, A., Blackburn, H., Bumpstead, S. J., Dronov, S., Gillman, M., Jayakumar, A., Mccann, O. T., Liddle, J., Potter, S. C., Ravindrarajah, R., Ricketts, M., Waller, M., Weston, P., Widaa, S., Whittaker, P., Romagnoni, A., Jegou, S., Van Steen, K., Wainrib, G., Hugot, J. -P., Peyrin-Biroulet, L., Chamaillard, M., Colombel, J. -F., Cottone, M., D'Amato, M., D'Inca, R., Halfvarson, J., Henderson, P., Karban, A., Kennedy, N. A., Khan, M. A., Lemann, M., Levine, A., Massey, D., Milla, M., Ng, S. M. E., Oikonomou, I., Peeters, H., Proctor, D. D., Rahier, J. -F., Rutgeerts, P., Seibold, F., Stronati, L., Taylor, K. M., Torkvist, L., Ublick, K., Van Limbergen, J., Van Gossum, A., Vatn, M. H., Zhang, H., Zhang, W., Andrews, J. M., Bampton, P. A., Barclay, M., Florin, T. H., Gearry, R., Krishnaprasad, K., Lawrance, I. C., Mahy, G., Montgomery, G. W., Radford-Smith, G., Roberts, R. L., Simms, L. A., Hanigan, K., Croft, A., Amininijad, L., Cleynen, I., Dewit, O., Franchimont, D., Georges, M., Laukens, D., Theatre, E., Vermeire, S., Aumais, G., Baidoo, L., Barrie, A. M., Beck, K., Bernard, E. -J., Binion, D. G., Bitton, A., Brant, S. R., Cho, J. H., Cohen, A., Croitoru, K., Daly, M. J., Datta, L. W., Deslandres, C., Duerr, R. H., Dutridge, D., Ferguson, J., Fultz, J., Goyette, P., Greenberg, G. R., Haritunians, T., Jobin, G., Katz, S., Lahaie, R. G., Mcgovern, D. P., Nelson, L., Ng, S. M., Ning, K., Pare, P., Regueiro, M. D., Rioux, J. D., Ruggiero, E., Schumm, L. P., Schwartz, M., Scott, R., Sharma, Y., Silverberg, M. S., Spears, D., Steinhart, A. H., Stempak, J. M., Swoger, J. M., Tsagarelis, C., Zhang, C., Zhao, H., Aerts, J., Ahmad, T., Arbury, H., Attwood, A., Auton, A., Ball, S. G., Balmforth, A. J., Barnes, C., Barrett, J. C., Barroso, I., Barton, A., Bennett, A. J., Bhaskar, S., Blaszczyk, K., Bowes, J., Brand, O. J., Braund, P. S., Bredin, F., Breen, G., Brown, M. J., Bruce, I. N., Bull, J., Burren, O. S., Burton, J., Byrnes, J., Caesar, S., Cardin, N., Clee, C. M., Coffey, A. J., MC Connell, J., Conrad, D. F., Cooper, J. D., Dominiczak, A. F., Downes, K., Drummond, H. E., Dudakia, D., Dunham, A., Ebbs, B., Eccles, D., Edkins, S., Edwards, C., Elliot, A., Emery, P., Evans, D. M., Evans, G., Eyre, S., Farmer, A., Ferrier, I. N., Flynn, E., Forbes, A., Forty, L., Franklyn, J. A., Frayling, T. M., Freathy, R. M., Giannoulatou, E., Gibbs, P., Gilbert, P., Gordon-Smith, K., Gray, E., Green, E., Groves, C. J., Grozeva, D., Gwilliam, R., Hall, A., Hammond, N., Hardy, M., Harrison, P., Hassanali, N., Hebaishi, H., Hines, S., Hinks, A., Hitman, G. A., Hocking, L., Holmes, C., Howard, E., Howard, P., Howson, J. M. M., Hughes, D., Hunt, S., Isaacs, J. D., Jain, M., Jewell, D. P., Johnson, T., Jolley, J. D., Jones, I. R., Jones, L. A., Kirov, G., Langford, C. F., Lango-Allen, H., Lathrop, G. M., Lee, J., Lee, K. L., Lees, C., Lewis, K., Lindgren, C. M., Maisuria-Armer, M., Maller, J., Mansfield, J., Marchini, J. L., Martin, P., Massey, D. C., Mcardle, W. L., Mcguffin, P., Mclay, K. E., Mcvean, G., Mentzer, A., Mimmack, M. L., Morgan, A. E., Morris, A. P., Mowat, C., Munroe, P. B., Myers, S., Newman, W., Nimmo, E. R., O'Donovan, M. C., Onipinla, A., Ovington, N. R., Owen, M. J., Palin, K., Palotie, A., Parnell, K., Pearson, R., Pernet, D., Perry, J. R., Phillips, A., Plagnol, V., Prescott, N. J., Prokopenko, I., Quail, M. A., Rafelt, S., Rayner, N. W., Reid, D. M., Renwick, A., Ring, S. M., Robertson, N., Robson, S., Russell, E., Clair, D. S., Sambrook, J. G., Sanderson, J. D., Sawcer, S. J., Schuilenburg, H., Scott, C. E., Seal, S., Shaw-Hawkins, S., Shields, B. M., Simmonds, M. J., Smyth, D. J., Somaskantharajah, E., Spanova, K., Steer, S., Stephens, J., Stevens, H. E., Stirrups, K., Stone, M. A., Strachan, D. P., Su, Z., Symmons, D. P. M., Thompson, J. R., Thomson, W., Tobin, M. D., Travers, M. E., Turnbull, C., Vukcevic, D., Wain, L. V., Walker, M., Walker, N. M., Wallace, C., Warren-Perry, M., Watkins, N. A., Webster, J., Weedon, M. N., Wilson, A. G., Woodburn, M., Wordsworth, B. P., Yau, C., Young, A. H., Zeggini, E., Brown, M. A., Burton, P. R., Caulfield, M. J., Compston, A., Farrall, M., Gough, S. C. L., Hall, A. S., Hattersley, A. T., Hill, A. V. S., Mathew, C. G., Pembrey, M., Satsangi, J., Stratton, M. R., Worthington, J., Hurles, M. E., Duncanson, A., Ouwehand, W. H., Parkes, M., Rahman, N., Todd, J. A., Samani, N. J., Kwiatkowski, D. P., Mccarthy, M. I., Craddock, N., Deloukas, P., Donnelly, P., Blackwell, J. M., Bramon, E., Casas, J. P., Corvin, A., Jankowski, J., Markus, H. S., Palmer, C. N., Plomin, R., Rautanen, A., Trembath, R. C., Viswanathan, A. C., Wood, N. W., Spencer, C. C. A., Band, G., Bellenguez, C., Freeman, C., Hellenthal, G., Pirinen, M., Strange, A., Blackburn, H., Bumpstead, S. J., Dronov, S., Gillman, M., Jayakumar, A., Mccann, O. T., Liddle, J., Potter, S. C., Ravindrarajah, R., Ricketts, M., Waller, M., Weston, P., Widaa, S., Whittaker, P., Daly, Mark J. [0000-0002-0949-8752], Apollo - University of Cambridge Repository, Hugot, Jean-Pierre [0000-0002-8446-6056], UCL - SSS/IREC/GAEN - Pôle d'Hépato-gastro-entérologie, UCL - (MGD) Service de gastro-entérologie, Romagnoni, A, Jegou, S, VAN STEEN, Kristel, Wainrib, G, Hugot, JP, Peyrin-Biroulet, L, Chamaillard, M, Colombel, JF, Cottone, M, D'Amato, M, D'Inca, R, Halfvarson, J, Henderson, P, Karban, A, Kennedy, NA, Khan, MA, Lemann, M, Levine, A, Massey, D, Milla, M, Ng, SME, Oikonomou, I, Peeters, H, Proctor, DD, Rahier, JF, Rutgeerts, P, Seibold, F, Stronati, L, Taylor, KM, Torkvist, L, Ublick, K, Van Limbergen, J, Van Gossum, A, Vatn, MH, Zhang, H, Zhang, W, Andrews, JM, Bampton, PA, Barclay, M, Florin, TH, Gearry, R, Krishnaprasad, K, Lawrance, IC, Mahy, G, Montgomery, GW, Radford-Smith, G, Roberts, RL, Simms, LA, Hanigan, K, Croft, A, Amininijad, L, Cleynen, I, Dewit, O, Franchimont, D, Georges, M, Laukens, D, Theatre, E, Vermeire, S, Aumais, G, Baidoo, L, Barrie, AM, Beck, K, Bernard, EJ, Binion, DG, Bitton, A, Brant, SR, Cho, JH, Cohen, A, Croitoru, K, Daly, MJ, Datta, LW, Deslandres, C, Duerr, RH, Dutridge, D, Ferguson, J, Fultz, J, Goyette, P, Greenberg, GR, Haritunians, T, Jobin, G, Katz, S, Lahaie, RG, McGovern, DP, Nelson, L, Ng, SM, Ning, K, Pare, P, Regueiro, MD, Rioux, JD, Ruggiero, E, Schumm, LP, Schwartz, M, Scott, R, Sharma, Y, Silverberg, MS, Spears, D, Steinhart, AH, Stempak, JM, Swoger, JM, Tsagarelis, C, Zhang, C, Zhao, HY, AERTS, Jan, Ahmad, T, Arbury, H, Attwood, A, Auton, A, Ball, SG, Balmforth, AJ, Barnes, C, Barrett, JC, Barroso, I, Barton, A, Bennett, AJ, Bhaskar, S, Blaszczyk, K, Bowes, J, Brand, OJ, Braund, PS, Bredin, F, Breen, G, Brown, MJ, Bruce, IN, Bull, J, Burren, OS, Burton, J, Byrnes, J, Caesar, S, Cardin, N, Clee, CM, Coffey, AJ, Mc Connell, J, Conrad, DF, Cooper, JD, Dominiczak, AF, Downes, K, Drummond, HE, Dudakia, D, Dunham, A, Ebbs, B, Eccles, D, Edkins, S, Edwards, C, Elliot, A, Emery, P, Evans, DM, Evans, G, Eyre, S, Farmer, A, Ferrier, IN, Flynn, E, Forbes, A, Forty, L, Franklyn, JA, Frayling, TM, Freathy, RM, Giannoulatou, E, Gibbs, P, Gilbert, P, Gordon-Smith, K, Gray, E, Green, E, Groves, CJ, Grozeva, D, Gwilliam, R, Hall, A, Hammond, N, Hardy, M, Harrison, P, Hassanali, N, Hebaishi, H, Hines, S, Hinks, A, Hitman, GA, Hocking, L, Holmes, C, Howard, E, Howard, P, Howson, JMM, Hughes, D, Hunt, S, Isaacs, JD, Jain, M, Jewell, DP, Johnson, T, Jolley, JD, Jones, IR, Jones, LA, Kirov, G, Langford, CF, Lango-Allen, H, Lathrop, GM, Lee, J, Lee, KL, Lees, C, Lewis, K, Lindgren, CM, Maisuria-Armer, M, Maller, J, Mansfield, J, Marchini, JL, Martin, P, Massey, DCO, McArdle, WL, McGuffin, P, McLay, KE, McVean, G, Mentzer, A, Mimmack, ML, Morgan, AE, Morris, AP, Mowat, C, Munroe, PB, Myers, S, Newman, W, Nimmo, ER, O'Donovan, MC, Onipinla, A, Ovington, NR, Owen, MJ, Palin, K, Palotie, A, Parnell, K, Pearson, R, Pernet, D, Perry, JRB, Phillips, A, Plagnol, V, Prescott, NJ, Prokopenko, I, Quail, MA, Rafelt, S, Rayner, NW, Reid, DM, Renwick, A, Ring, SM, Robertson, N, Robson, S, Russell, E, St Clair, D, Sambrook, JG, Sanderson, JD, Sawcer, SJ, Schuilenburg, H, Scott, CE, Seal, S, Shaw-Hawkins, S, Shields, BM, Simmonds, MJ, Smyth, DJ, Somaskantharajah, E, Spanova, K, Steer, S, Stephens, J, Stevens, HE, Stirrups, K, Stone, MA, Strachan, DP, Su, Z, Symmons, DPM, Thompson, JR, Thomson, W, Tobin, MD, Travers, ME, Turnbull, C, Vukcevic, D, Wain, LV, Walker, M, Walker, NM, Wallace, C, Warren-Perry, M, Watkins, NA, Webster, J, Weedon, MN, Wilson, AG, Woodburn, M, Wordsworth, BP, Yau, C, Young, AH, Zeggini, E, Brown, MA, Burton, PR, Caulfield, MJ, Compston, A, Farrall, M, Gough, SCL, Hall, AS, Hattersley, AT, Hill, AVS, Mathew, CG, Pembrey, M, Satsangi, J, Stratton, MR, Worthington, J, Hurles, ME, Duncanson, A, Ouwehand, WH, Parkes, M, Rahman, N, Todd, JA, Samani, NJ, Kwiatkowski, DP, McCarthy, MI, Craddock, N, Deloukas, P, Donnelly, P, Blackwell, JM, Bramon, E, Casas, JP, Corvin, A, Jankowski, J, Markus, HS, Palmer, CNA, Plomin, R, Rautanen, A, Trembath, RC, Viswanathan, AC, Wood, NW, Spencer, CCA, Band, G, Bellenguez, C, Freeman, C, Hellenthal, G, Pirinen, M, Strange, A, Blackburn, H, Bumpstead, SJ, Dronov, S, Gillman, M, Jayakumar, A, McCann, OT, Liddle, J, Potter, SC, Ravindrarajah, R, Ricketts, M, Waller, M, Weston, P, Widaa, S, Whittaker, P, and Kwiatkowski, D
- Subjects
Male ,692/4020/1503/257/1402 ,Genotype ,Genotyping Techniques ,LOCI ,45/43 ,lcsh:Medicine ,Polymorphism, Single Nucleotide ,Crohn's disease, genetics, genome wide association ,Article ,Deep Learning ,Crohn Disease ,INDEL Mutation ,Genetics research ,Humans ,genetics ,Genetic Predisposition to Disease ,129 ,lcsh:Science ,Alleles ,Science & Technology ,genome wide association ,RISK PREDICTION ,45 ,Models, Genetic ,lcsh:R ,Decision Trees ,692/308/2056 ,ASSOCIATION ,Multidisciplinary Sciences ,Crohn's disease ,Logistic Models ,Nonlinear Dynamics ,ROC Curve ,Area Under Curve ,Science & Technology - Other Topics ,lcsh:Q ,Female ,Neural Networks, Computer ,INFLAMMATORY-BOWEL-DISEASE ,Genome-Wide Association Study - Abstract
Crohn Disease (CD) is a complex genetic disorder for which more than 140 genes have been identified using genome wide association studies (GWAS). However, the genetic architecture of the trait remains largely unknown. The recent development of machine learning (ML) approaches incited us to apply them to classify healthy and diseased people according to their genomic information. The Immunochip dataset containing 18,227 CD patients and 34,050 healthy controls enrolled and genotyped by the international Inflammatory Bowel Disease genetic consortium (IIBDGC) has been re-analyzed using a set of ML methods: penalized logistic regression (LR), gradient boosted trees (GBT) and artificial neural networks (NN). The main score used to compare the methods was the Area Under the ROC Curve (AUC) statistics. The impact of quality control (QC), imputing and coding methods on LR results showed that QC methods and imputation of missing genotypes may artificially increase the scores. At the opposite, neither the patient/control ratio nor marker preselection or coding strategies significantly affected the results. LR methods, including Lasso, Ridge and ElasticNet provided similar results with a maximum AUC of 0.80. GBT methods like XGBoost, LightGBM and CatBoost, together with dense NN with one or more hidden layers, provided similar AUC values, suggesting limited epistatic effects in the genetic architecture of the trait. ML methods detected near all the genetic variants previously identified by GWAS among the best predictors plus additional predictors with lower effects. The robustness and complementarity of the different methods are also studied. Compared to LR, non-linear models such as GBT or NN may provide robust complementary approaches to identify and classify genetic markers. Tis work was supported by Fondation pour la Recherche Médical (ref DEI20151234405) and Investissements d’Avenir programme ANR-11-IDEX-0005-02, Sorbonne Paris Cite, Laboratoire d’excellence INFLAMEX. Te authors thank the students that participated to the wisdom of the crowd exercise.
- Published
- 2019
4. Runs of homozygosity and testicular cancer risk
- Author
-
Loveday, C, Sud, A, Litchfield, K, Levy, M, Holroyd, A, Broderick, P, Kote-Jarai, Z, Dunning, AM, Muir, K, Peto, J, Eeles, R, Easton, DF, Dudakia, D, Orr, N, Pashayan, N, Rustin, Gordon, Srihari, Narayanan N, Cole, David, Askill, Colin, Bertelli, Gianfilippo, Barber, James, Gilby, Ed, White, Jeff, Baybrooke, Jeremy, Leahy, Michael, Welch, Richard, Chakraborti, Prabir, Joffe, Johnathan, Brown, Richard, Faust, Guy, Simmonds, Peter, Mazhar, Danish, Stockdale, Andrew, Hrounda, David, Humber, Caroline, Appel, Wiebke, Hong, Anne, Howard, Grahame, Douglas, Fiona, Bloomfield, David, Butt, Mohammad, Kelly, Kay, Mehra, Rakesh, Rogers, Paul, Hatton, Matthew, Hennig, Ivo, McAteer, John, Savage, Philip, Seckl, Michael, Gale, Joanna, Clark, Peter, Woby, Steve, Rathmell, Adrian, Lamont, Alan, Sarwar, Naveed, Stuart, Nick, Chowdhury, Simon, Beesley, Sharon, Winkler, Mathius, Hamid, Abdel, Pathak, Sanjeev, Madhavan, Krishnaswamy, Highley, Martin, Money-Kryle, Julian, Brock, Cathryn, Sreenivasan, Thiagarajan, Henderson, Brian E, Haiman, Christopher A, Schumacher, Fredrick R, Al Olama, Ali Amin, Benlloch, Sara, Berndt, Sonja I, Conti, David V, Wiklund, Fredrik, Chanock, Stephen, Gapster, Susan, Stevens, Victoria L, Tangen, Catherine M, Batra, Jyotsna, Clements, Judith, Gronberg, Henrik, Schleutker, Johanna, Albanes, Demetrius, Wolk, Alicja, West, Catharine, Mucci, Lorelei, Cancel-Tassin, Geraldine, Koutros, Stella, Sorensen, Karina Dalsgaard, Maehle, Lovise, Neal, David E, Hamdy, Freddie C, Donovan, Jenny L, Travis, Ruth C, Hamilton, Robert J, Ingles, Sue Ann, Rosenstein, Barry S, Lu, Yong-Jie, Giles, Graham G, Kibel, Adam S, Vega, Ana, Kogevinas, Manolis, Penney, Kathryn L, Park, Jong Y, Stanford, Janet L, Cybulski, Cezary, Nordestgaard, Borge G, Brenner, Hermann, Maier, Christiane, Kim, Jeri, John, Esther M, Teixeira, Manuel R, Neuhausen, Susan L, De Ruyck, Kim, Razack, Azad, Newcomb, Lisa F, Lessel, Davor, Kaneva, Radka, Usmani, Nawaid, Claessens, Frank, Townsend, Paul A, Dominguez, Manuela Gago, Roobol, Monique J, Menegaux, Florence, Khaw, Kay-Tee, Cannon-Albrigh, Lisa, Pandha, Hardev, Thibodeau, Stephen N, Reid, A, Huddart, RA, Houlston, RS, Turnbull, C, and Urology
- Subjects
Oncology ,Male ,Endocrinology, Diabetes and Metabolism ,LOCI ,Genome-wide association study ,Runs of Homozygosity ,SUSCEPTIBILITY ,VARIANTS ,0302 clinical medicine ,Endocrinology ,testicular germ cell tumour ,Risk Factors ,Genotype ,genetics ,Andrology ,030219 obstetrics & reproductive medicine ,Genome ,Homozygote ,Neoplasms, Germ Cell and Embryonal ,Disease gene identification ,homozygosity mapping ,Life Sciences & Biomedicine ,RECENT POSITIVE SELECTION ,medicine.medical_specialty ,Urology ,Biology ,BREAST ,Polymorphism, Single Nucleotide ,03 medical and health sciences ,Endocrinology & Metabolism ,Testicular Neoplasms ,SDG 3 - Good Health and Well-being ,Internal medicine ,medicine ,Genetic predisposition ,cancer ,Humans ,Allele ,GENOME-WIDE ASSOCIATION ,SEX DETERMINATION ,runs of homozygosity ,Science & Technology ,IDENTIFICATION ,Cancer ,recessive ,medicine.disease ,GERM-CELL TUMOR ,CONSANGUINITY ,Reproductive Medicine ,Relative risk ,genome-wide association studies ,Genome-Wide Association Study - Abstract
BACKGROUND: Testicular germ cell tumour (TGCT) is highly heritable but > 50% of the genetic risk remains unexplained. Epidemiological observation of greater relative risk to brothers of men with TGCT compared to sons has long alluded to recessively acting TGCT genetic susceptibility factors, but to date none have been reported. Runs of homozygosity (RoH) are a signature indicating underlying recessively acting alleles and have been associated with increased risk of other cancer types. OBJECTIVE: To examine whether RoH are associated with TGCT risk. METHODS: We performed a genome-wide RoH analysis using GWAS data from 3206 TGCT cases and 7422 controls uniformly genotyped using the OncoArray platform. RESULTS: Global measures of homozygosity were not significantly different between cases and controls, and the frequency of individual consensus RoH was not significantly different between cases and controls, after correction for multiple testing. RoH at three regions, 11p13-11p14.3, 5q14.1-5q22.3 and 13q14.11-13q.14.13, were, however, nominally statistically significant at p
- Published
- 2019
- Full Text
- View/download PDF
5. Runs of homozygosity and testicular cancer risk
- Author
-
Loveday, C., Sud, A., Litchfield, K., Levy, M., Holroyd, A., Broderick, P., Kote-Jarai, Z., Dunning, A. M., Muir, K., Peto, J., Eeles, R., Easton, D. F., Dudakia, D., Orr, N., Pashayan, N., Reid, A., Huddart, R. A., Houlston, R. S., Turnbull, C., other, and, Batra, Jyotsna, Clements, Judith, Loveday, C., Sud, A., Litchfield, K., Levy, M., Holroyd, A., Broderick, P., Kote-Jarai, Z., Dunning, A. M., Muir, K., Peto, J., Eeles, R., Easton, D. F., Dudakia, D., Orr, N., Pashayan, N., Reid, A., Huddart, R. A., Houlston, R. S., Turnbull, C., other, and, Batra, Jyotsna, and Clements, Judith
- Abstract
Background: Testicular germ cell tumour (TGCT) is highly heritable but > 50% of the genetic risk remains unexplained. Epidemiological observation of greater relative risk to brothers of men with TGCT compared to sons has long alluded to recessively acting TGCT genetic susceptibility factors, but to date none have been reported. Runs of homozygosity (RoH) are a signature indicating underlying recessively acting alleles and have been associated with increased risk of other cancer types. Objective: To examine whether RoH are associated with TGCT risk. Methods: We performed a genome-wide RoH analysis using GWAS data from 3206 TGCT cases and 7422 controls uniformly genotyped using the OncoArray platform. Results: Global measures of homozygosity were not significantly different between cases and controls, and the frequency of individual consensus RoH was not significantly different between cases and controls, after correction for multiple testing. RoH at three regions, 11p13-11p14.3, 5q14.1-5q22.3 and 13q14.11-13q.14.13, were, however, nominally statistically significant at p < 0.01. Intriguingly, RoH200 at 11p13-11p14.3 encompasses Wilms tumour 1 (WT1), a recognized cancer susceptibility gene with roles in sex determination and developmental transcriptional regulation, processes repeatedly implicated in TGCT aetiology. Discussion and conclusion: Overall, our data do not support a major role in the risk of TGCT for recessively acting alleles acting through homozygosity, as measured by RoH in outbred populations of cases and controls.
- Published
- 2019
6. Identification of four new susceptibility loci for testicular germ cell tumour
- Author
-
Litchfield, K, Holroyd, A, Lloyd, A, Broderick, P, Nsengimana, J, Eeles, R, Easton, DF, Dudakia, D, UKTCC, Bishop, DT, Reid, A, Huddart, RA, Grotmol, T, Wiklund, F, Shipley, J, Houlston, RS, and Turnbull, C
- Abstract
Genome wide association studies (GWAS) have identified multiple risk loci for testicular germ cell tumour (TGCT), revealing a polygenic model of disease susceptibility strongly influenced by common variation. To identify further SNPs associated with TGCT we conducted a multistage GWAS with combined dataset of >25,000 individuals (6,059 cases and 19,094 controls). We identified new risk loci for TGCT at 3q23 (rs11705932, TFDP2, P = 1.5 x 10-9), 11q14.1 (rs7107174, GAB2, P = 9.7 x 10-11), 16p13.13 (rs4561483, GSPT1, P = 1.6 x 10-8) and 16q24.2 (rs55637647, ZFPM1, P = 3.4 x 10-9). We additionally present detailed functional analysis of these loci, identifying a strong relationship between rs4561483 risk genotype and increased GSPT1 expression in TGCT patient samples. These findings provide additional support for a polygenic model of TGCT risk and further insight into the biologic basis of disease development.
- Published
- 2015
7. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease
- Author
-
Jostins, Luke, Ripke, Stephan, Weersma, Rinse K., Duerr, Richard H., Mcgovern, Dermot P., Hui, Ken Y., Lee, James C., Philip Schumm, L., Sharma, Yashoda, Anderson, Carl A., Essers, Jonah, Mitrovic, Mitja, Ning, Kaida, Cleynen, Isabelle, Theatre, Emilie, Spain, Sarah L., Raychaudhuri, Soumya, Goyette, Philippe, Wei, Zhi, Abraham, Clara, Achkar, Jean Paul, Ahmad, Tariq, Amininejad, Leila, Ananthakrishnan, Ashwin N., Andersen, Vibeke, Andrews, Jane M., Baidoo, Leonard, Balschun, Tobias, Bampton, Peter A., Bitton, Alain, Boucher, Gabrielle, Brand, Stephan, Büning, Carsten, Cohain, Ariella, Cichon, Sven, D'Amato, Mauro, De Jong, Dirk, Devaney, Kathy L., Dubinsky, Marla, Edwards, Cathryn, Ellinghaus, David, Ferguson, Lynnette R., Franchimont, Denis, Fransen, Karin, Gearry, Richard, Georges, Michel, Gieger, Christian, Glas, Jürgen, Haritunians, Talin, Hart, Ailsa, Hawkey, Chris, Hedl, Matija, Xinli, Hu, Karlsen, Tom H., Kupcinskas, Limas, Kugathasan, Subra, Latiano, Anna, Laukens, Debby, Lawrance, Ian C., Lees, Charlie W., Louis, Edouard, Mahy, Gillian, Mansfield, John, Morgan, Angharad R., Mowat, Craig, Newman, William, Palmieri, Orazio, Ponsioen, Cyriel Y., Potocnik, Uros, Prescott, Natalie J., Regueiro, Miguel, Rotter, Jerome I., Russell, Richard K., Sanderson, Jeremy D., Sans, Miquel, Satsangi, Jack, Schreiber, Stefan, Simms, Lisa A., Sventoraityte, Jurgita, Targan, Stephan R., Taylor, Kent D., Tremelling, Mark, Verspaget, Hein W., De Vos, Martine, Wijmenga, Cisca, Wilson, David C., Winkelmann, Juliane, Xavier, Ramnik J., Zeissig, Sebastian, Zhang, Bin, Zhang, Clarence K., Zhao, Hongyu, Silverberg, Mark S., Annese, Vito, Hakonarson, Hakon, Brant, Steven R., Radford Smith, Graham, Mathew, Christopher G., Rioux, John D., Schadt, Eric E., Daly, Mark J., Franke, Andre, Parkes, Miles, Vermeire, Severine, Barrett, Jeffrey C., Cho, Judy H., Barclay, M, Peyrin Biroulet, L, Chamaillard, M, Colombel, Jf, Cottone, M, Croft, A, D'Incà, R, Halfvarson J, Hanigan K, Henderson, P, Hugot, Jp, Karban, A, Kennedy, Na, Khan, Ma, Lémann, M, Levine, A, Massey, D, Milla, M, Montgomery, Gw, Ng, Sm, Oikonomou, I, Peeters, H, Proctor, Dd, Rahier, Jf, Roberts, R, Rutgeerts, P, Seibold, F, Stronati, Laura, Taylor, Km, Törkvist, L, Ublick, K, Van Limbergen, J, Van Gossum, A, Vatn, Mh, Zhang, H, Zhang, W, Andrews, Jm, Bampton, Pa, Florin, Th, Gearry, R, Krishnaprasad, K, Lawrance, Ic, Mahy, G, Radford Smith, G, Roberts, Rl, Simms, La, Amininijad, L, Cleynen, I, Dewit, O, Franchimont, D, Georges, M, Laukens, D, Theatre, E, Vermeire, S, Aumais, G, Baidoo, L, Barrie AM 3rd, Beck, K, Bernard, Ej, Binion, Dg, Bitton, A, Brant, Sr, Cho, Jh, Cohen, A, Croitoru, K, Daly, Mj, Datta, Lw, Deslandres, C, Duerr, Rh, Dutridge, D, Ferguson, J, Fultz, J, Goyette, P, Greenberg, Gr, Haritunians, T, Jobin, G, Katz, S, Lahaie, Rg, Mcgovern, Dp, Nelson, L, Ning, K, Paré, P, Regueiro, Md, Rioux, Jd, Ruggiero, E, Schumm, L, Schwartz, M, Scott, R, Sharma, Y, Silverberg, Ms, Spears, D, Steinhart, A, Stempak, Jm, Swoger, Jm, Tsagarelis, C, Zhang, C, Zhao, H, Aerts, J, Ahmad, T, Arbury, H, Attwood, A, Auton, A, Ball, Sg, Balmforth, Aj, Barnes, C, Barrett, Jc, Barroso, I, Barton, A, Bennett, Aj, Bhaskar, S, Blaszczyk, K, Bowes, J, Brand, Oj, Braund, Ps, Bredin, F, Breen, G, Brown, Mj, Bruce, In, Bull, J, Burren, Os, Burton, J, Byrnes, J, Caesar, S, Cardin, N, Clee, Cm, Coffey, Aj, Connell, Jm, Conrad, Df, Cooper, Jd, Dominiczak, Af, Downes, K, Drummond, He, Dudakia, D, Dunham, A, Ebbs, B, Eccles, D, Edkins, S, Edwards, C, Elliot, A, Emery, P, Evans, Dm, Evans, G, Eyre, S, Farmer, A, Ferrier, In, Flynn, E, Forbes, A, Forty, L, Franklyn, Ja, Frayling, Tm, Freathy, Rm, Giannoulatou, E, Gibbs, P, Gilbert, P, Gordon Smith, K, Gray, E, Green, E, Groves, Cj, Grozeva, D, Gwilliam, R, Hall, A, Hammond, N, Hardy, M, Harrison, P, Hassanali, N, Hebaishi, H, Hines, S, Hinks, A, Hitman, Ga, Hocking, L, Holmes, C, Howard, E, Howard, P, Howson, Jm, Hughes, D, Hunt, S, Isaacs, Jd, Jain, M, Jewell, Dp, Johnson, T, Jolley, Jd, Jones, Ir, Jones, La, Kirov, G, Langford, Cf, Lango Allen, H, Lathrop, Gm, Lee, J, Lee, Kl, Lees, C, Lewis, K, Lindgren, Cm, Maisuria Armer, M, Maller, J, Mansfield, J, Marchini, Jl, Martin, P, Massey, Dc, Mcardle, Wl, Mcguffin, P, Mclay, Ke, Mcvean, G, Mentzer, A, Mimmack, Ml, Morgan, Ae, Morris, Ap, Mowat, C, Munroe, Pb, Myers, S, Newman, W, Nimmo, Er, O'Donovan, Mc, Onipinla, A, Ovington, Nr, Owen, Mj, Palin, K, Palotie, A, Parnell, K, Pearson, R, Pernet, D, Perry, Jr, Phillips, A, Plagnol, V, Prescott, Nj, Prokopenko, I, Quail, Ma, Rafelt, S, Rayner, Nw, Reid, Dm, Renwick, A, Ring, Sm, Robertson, N, Robson, S, Russell, E, St Clair, D, Sambrook, Jg, Sanderson, Jd, Sawcer, Sj, Schuilenburg, H, Scott, Ce, Seal, S, Shaw Hawkins, S, Shields, Bm, Simmonds, Mj, Smyth, Dj, Somaskantharajah, E, Spanova, K, Steer, S, Stephens, J, Stevens, He, Stirrups, K, Stone, Ma, Strachan, Dp, Su, Z, Symmons, Dp, Thompson, Jr, Thomson, W, Tobin, Md, Travers, Me, Turnbull, C, Vukcevic, D, Wain, Lv, Walker, M, Walker, Nm, Wallace, C, Warren Perry, M, Watkins, Na, Webster, J, Weedon, Mn, Wilson, Ag, Woodburn, M, Wordsworth, Bp, Yau, C, Young, Ah, Zeggini, E, Brown, Ma, Burton, Pr, Caulfield, Mj, Compston, A, Farrall, M, Gough, Sc, Hall, As, Hattersley, At, Hill, Av, Mathew, Cg, Pembrey, M, Satsangi, J, Stratton, Mr, Worthington, J, Hurles, Me, Duncanson, A, Ouwehand, Wh, Parkes, M, Rahman, N, Todd, Ja, Samani, Nj, Kwiatkowski, Dp, Mccarthy, Mi, Craddock, N, Deloukas, P, Donnelly, P, Blackwell, Jm, Bramon, E, Casas, Jp, Corvin, A, Jankowski, J, Markus, Hs, Palmer, Cn, Plomin, R, Rautanen, A, Trembath, Rc, Viswanathan, Ac, Wood, Nw, Spencer, Cc, Band, G, Bellenguez, C, Freeman, C, Hellenthal, G, Pirinen, M, Strange, A, Blackburn, H, Bumpstead, Sj, Dronov, S, Gillman, M, Jayakumar, A, Mccann, Ot, Liddle, J, Potter, Sc, Ravindrarajah, R, Ricketts, M, Waller, M, Weston, P, Widaa, S, Whittaker, P., AGEM - Amsterdam Gastroenterology Endocrinology Metabolism, Gastroenterology and Hepatology, and Groningen Institute for Gastro Intestinal Genetics and Immunology (3GI)
- Subjects
Genome-wide association study ,Disease ,SUSCEPTIBILITY ,Inflammatory bowel disease ,NUMBER ,0302 clinical medicine ,Crohn Disease ,NETWORK ,Genetics ,0303 health sciences ,Multidisciplinary ,Genomics ,Ulcerative colitis ,3. Good health ,Colitis, Ulcerative ,Genetic Predisposition to Disease ,Genome, Human ,Haplotypes ,Humans ,Inflammatory Bowel Diseases ,Mycobacterium ,Mycobacterium Infections ,Mycobacterium tuberculosis ,Phenotype ,Polymorphism, Single Nucleotide ,Reproducibility of Results ,Genome-Wide Association Study ,Host-Pathogen Interactions ,IRGM ,Medical genetics ,030211 gastroenterology & hepatology ,EXPRESSION ,medicine.medical_specialty ,Immunology ,Biology ,Molecular gastro-enterology and hepatology Pathogenesis and modulation of inflammation [IGMD 2] ,TUBERCULOSIS ,03 medical and health sciences ,Medical research ,medicine ,Allele ,METAANALYSIS ,030304 developmental biology ,HYPER-IGE SYNDROME ,MUTATIONS ,medicine.disease ,RISK LOCI ,Genetic architecture ,digestive system diseases - Abstract
Crohn's disease and ulcerative colitis, the two common forms of inflammatory bowel disease (IBD), affect over 2.5 million people of European ancestry, with rising prevalence in other populations(1). Genome-wide association studies and subsequent meta-analyses of these two diseases(2,3) as separate phenotypes have implicated previously unsuspected mechanisms, such as autophagy(4), in their pathogenesis and showed that some IBD loci are shared with other inflammatory diseases(5). Here we expand on the knowledge of relevant pathways by undertaking a meta-analysis of Crohn's disease and ulcerative colitis genome-wide association scans, followed by extensive validation of significant findings, with a combined total of more than 75,000 cases and controls. We identify 71 new associations, for a total of 163 IBD loci, that meet genome-wide significance thresholds. Most loci contribute to both phenotypes, and both directional (consistently favouring one allele over the course of human history) and balancing (favouring the retention of both alleles within populations) selection effects are evident. Many IBD loci are also implicated in other immune-mediated disorders, most notably with ankylosing spondylitis and psoriasis. We also observe considerable overlap between susceptibility loci for IBD and mycobacterial infection. Gene co-expression network analysis emphasizes this relationship, with pathways shared between host responses to mycobacteria and those predisposing to IBD.
- Published
- 2012
- Full Text
- View/download PDF
8. Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls
- Author
-
Craddock, N, Hurles, ME, Cardin, N, Pearson, RD, Plagnol, V, Robson, S, Vukcevic, D, Barnes, C, Conrad, DF, Giannoulatou, E, Holmes, C, Marchini, JL, Stirrups, K, Tobin, MD, Wain, LV, Yau, C, Aerts, J, Ahmad, T, Andrews, TD, Arbury, H, Attwood, A, Auton, A, Ball, SG, Balmforth, AJ, Barrett, JC, Barroso, I, Barton, A, Bennett, AJ, Bhaskar, S, Blaszczyk, K, Bowes, J, Brand, OJ, Braund, PS, Bredin, F, Breen, G, Brown, MJ, Bruce, IN, Bull, J, Burren, OS, Burton, J, Byrnes, J, Caesar, S, Clee, CM, Coffey, AJ, Connell, JMC, Cooper, JD, Dominiczak, AF, Downes, K, Drummond, HE, Dudakia, D, Dunham, A, Ebbs, B, Eccles, D, Edkins, S, Edwards, C, Elliot, A, Emery, P, Evans, DM, Evans, G, Eyre, S, Farmer, A, Ferrier, IN, Feuk, L, Fitzgerald, T, Flynn, E, Forbes, A, Forty, L, Franklyn, JA, Freathy, RM, Gibbs, P, Gilbert, P, Gokumen, O, Gordon-Smith, K, Gray, E, Green, E, Groves, CJ, Grozeva, D, Gwilliam, R, Hall, A, Hammond, N, Hardy, M, Harrison, P, Hassanali, N, Hebaishi, H, Hines, S, Hinks, A, Hitman, GA, Hocking, L, Howard, E, Howard, P, Howson, JMM, Hughes, D, Hunt, S, Isaacs, JD, Jain, M, Jewell, DP, Johnson, T, Jolley, JD, Jones, IR, Jones, LA, Kirov, G, Langford, CF, Lango-Allen, H, Lathrop, GM, Lee, J, Lee, KL, Lees, C, Lewis, K, Lindgren, CM, Maisuria-Armer, M, Maller, J, Mansfield, J, Martin, P, Massey, DCO, McArdle, WL, McGuffin, P, McLay, KE, Mentzer, A, Mimmack, ML, Morgan, AE, Morris, AP, Mowat, C, Myers, S, Newman, W, Nimmo, ER, O'Donovan, MC, Onipinla, A, Onyiah, I, Ovington, NR, Owen, MJ, Palin, K, Parnell, K, Pernet, D, Perry, JRB, Phillips, A, Pinto, D, Prescott, NJ, Prokopenko, I, Quail, MA, Rafelt, S, Rayner, NW, Redon, R, Reid, DM, Renwick, A, Ring, SM, Robertson, N, Russell, E, St Clair, D, Sambrook, JG, Sanderson, JD, Schuilenburg, H, Scott, CE, Scott, R, Seal, S, Shaw-Hawkins, S, Shields, BM, Simmonds, MJ, Smyth, DJ, Somaskantharajah, E, Spanova, K, Steer, S, Stephens, J, Stevens, HE, Stone, MA, Su, Z, Symmons, DPM, Thompson, JR, Thomson, W, Travers, ME, Turnbull, C, Valsesia, A, Walker, M, Walker, NM, Wallace, C, Warren-Perry, M, Watkins, NA, Webster, J, Weedon, MN, Wilson, AG, Woodburn, M, Wordsworth, BP, Young, AH, Zeggini, E, Carter, NP, Frayling, TM, Lee, C, McVean, G, Munroe, PB, Palotie, A, Sawcer, SJ, Scherer, SW, Strachan, DP, Tyler-Smith, C, Brown, MA, Burton, PR, Caulfield, MJ, Compston, A, Farrall, M, Gough, SCL, Hall, AS, Hattersley, AT, Hill, AVS, Mathew, CG, Pembrey, M, Satsangi, J, Stratton, MR, Worthington, J, Deloukas, P, Duncanson, A, Kwiatkowski, DP, McCarthy, MI, Ouwehand, WH, Parkes, M, Rahman, N, Todd, JA, Samani, NJ, Donnelly, P, Craddock, N, Hurles, ME, Cardin, N, Pearson, RD, Plagnol, V, Robson, S, Vukcevic, D, Barnes, C, Conrad, DF, Giannoulatou, E, Holmes, C, Marchini, JL, Stirrups, K, Tobin, MD, Wain, LV, Yau, C, Aerts, J, Ahmad, T, Andrews, TD, Arbury, H, Attwood, A, Auton, A, Ball, SG, Balmforth, AJ, Barrett, JC, Barroso, I, Barton, A, Bennett, AJ, Bhaskar, S, Blaszczyk, K, Bowes, J, Brand, OJ, Braund, PS, Bredin, F, Breen, G, Brown, MJ, Bruce, IN, Bull, J, Burren, OS, Burton, J, Byrnes, J, Caesar, S, Clee, CM, Coffey, AJ, Connell, JMC, Cooper, JD, Dominiczak, AF, Downes, K, Drummond, HE, Dudakia, D, Dunham, A, Ebbs, B, Eccles, D, Edkins, S, Edwards, C, Elliot, A, Emery, P, Evans, DM, Evans, G, Eyre, S, Farmer, A, Ferrier, IN, Feuk, L, Fitzgerald, T, Flynn, E, Forbes, A, Forty, L, Franklyn, JA, Freathy, RM, Gibbs, P, Gilbert, P, Gokumen, O, Gordon-Smith, K, Gray, E, Green, E, Groves, CJ, Grozeva, D, Gwilliam, R, Hall, A, Hammond, N, Hardy, M, Harrison, P, Hassanali, N, Hebaishi, H, Hines, S, Hinks, A, Hitman, GA, Hocking, L, Howard, E, Howard, P, Howson, JMM, Hughes, D, Hunt, S, Isaacs, JD, Jain, M, Jewell, DP, Johnson, T, Jolley, JD, Jones, IR, Jones, LA, Kirov, G, Langford, CF, Lango-Allen, H, Lathrop, GM, Lee, J, Lee, KL, Lees, C, Lewis, K, Lindgren, CM, Maisuria-Armer, M, Maller, J, Mansfield, J, Martin, P, Massey, DCO, McArdle, WL, McGuffin, P, McLay, KE, Mentzer, A, Mimmack, ML, Morgan, AE, Morris, AP, Mowat, C, Myers, S, Newman, W, Nimmo, ER, O'Donovan, MC, Onipinla, A, Onyiah, I, Ovington, NR, Owen, MJ, Palin, K, Parnell, K, Pernet, D, Perry, JRB, Phillips, A, Pinto, D, Prescott, NJ, Prokopenko, I, Quail, MA, Rafelt, S, Rayner, NW, Redon, R, Reid, DM, Renwick, A, Ring, SM, Robertson, N, Russell, E, St Clair, D, Sambrook, JG, Sanderson, JD, Schuilenburg, H, Scott, CE, Scott, R, Seal, S, Shaw-Hawkins, S, Shields, BM, Simmonds, MJ, Smyth, DJ, Somaskantharajah, E, Spanova, K, Steer, S, Stephens, J, Stevens, HE, Stone, MA, Su, Z, Symmons, DPM, Thompson, JR, Thomson, W, Travers, ME, Turnbull, C, Valsesia, A, Walker, M, Walker, NM, Wallace, C, Warren-Perry, M, Watkins, NA, Webster, J, Weedon, MN, Wilson, AG, Woodburn, M, Wordsworth, BP, Young, AH, Zeggini, E, Carter, NP, Frayling, TM, Lee, C, McVean, G, Munroe, PB, Palotie, A, Sawcer, SJ, Scherer, SW, Strachan, DP, Tyler-Smith, C, Brown, MA, Burton, PR, Caulfield, MJ, Compston, A, Farrall, M, Gough, SCL, Hall, AS, Hattersley, AT, Hill, AVS, Mathew, CG, Pembrey, M, Satsangi, J, Stratton, MR, Worthington, J, Deloukas, P, Duncanson, A, Kwiatkowski, DP, McCarthy, MI, Ouwehand, WH, Parkes, M, Rahman, N, Todd, JA, Samani, NJ, and Donnelly, P
- Abstract
Copy number variants (CNVs) account for a major proportion of human genetic polymorphism and have been predicted to have an important role in genetic susceptibility to common disease. To address this we undertook a large, direct genome-wide study of association between CNVs and eight common human diseases. Using a purpose-designed array we typed approximately 19,000 individuals into distinct copy-number classes at 3,432 polymorphic CNVs, including an estimated approximately 50% of all common CNVs larger than 500 base pairs. We identified several biological artefacts that lead to false-positive associations, including systematic CNV differences between DNAs derived from blood and cell lines. Association testing and follow-up replication analyses confirmed three loci where CNVs were associated with disease-IRGM for Crohn's disease, HLA for Crohn's disease, rheumatoid arthritis and type 1 diabetes, and TSPAN8 for type 2 diabetes-although in each case the locus had previously been identified in single nucleotide polymorphism (SNP)-based studies, reflecting our observation that most common CNVs that are well-typed on our array are well tagged by SNPs and so have been indirectly explored through SNP studies. We conclude that common CNVs that can be typed on existing platforms are unlikely to contribute greatly to the genetic basis of common human diseases.
- Published
- 2010
9. Testicular microlithiasis as a familial risk factor for testicular germ cell tumour
- Author
-
Coffey, J, primary, Huddart, R A, additional, Elliott, F, additional, Sohaib, S A, additional, Parker, E, additional, Dudakia, D, additional, Pugh, J L, additional, Easton, D F, additional, Bishop, D T, additional, Stratton, M R, additional, and Rapley, E A, additional
- Published
- 2007
- Full Text
- View/download PDF
10. 1212 POSTER Testicular germ cell tumour and testicular microlithiasis; a familial association?
- Author
-
Huddart, R., primary, Coffey, J., additional, Elliot, F., additional, Sohaib, A., additional, Parker, E., additional, Dudakia, D., additional, Easton, D.F., additional, Bishop, D.T., additional, Stratton, M.R., additional, and Rapley, E.A., additional
- Published
- 2007
- Full Text
- View/download PDF
11. A physical analysis of the Y chromosome shows no additional deletions, other than Gr/Gr, associated with testicular germ cell tumour
- Author
-
Linger, R, primary, Dudakia, D, additional, Huddart, R, additional, Easton, D, additional, Bishop, D T, additional, Stratton, M R, additional, and Rapley, E A, additional
- Published
- 2007
- Full Text
- View/download PDF
12. Characteristics of a single-centre series of familial testicular germ cell tumours
- Author
-
Coffey, J., primary, Huddart, R. A., additional, Norman, A. R., additional, Dudakia, D., additional, Stratton, M. R., additional, and Rapley, E. A., additional
- Published
- 2006
- Full Text
- View/download PDF
13. Identification of 19 new risk loci and potential regulatory mechanisms influencing susceptibility to testicular germ cell tumor
- Author
-
Litchfield, K, Levy, M, Orlando, G, Loveday, C, Law, PJ, Migliorini, G, Holroyd, A, Broderick, P, Karlsson, R, Haugen, TB, Kristiansen, W, Nsengimana, J, Fenwick, K, Assiotis, I, Kote-Jarai, Z, Dunning, AM, Muir, K, Peto, J, Eeles, R, Easton, DF, Dudakia, D, Orr, N, Pashayan, N, UK Testicular Cancer Collaboration, PRACTICAL Consortium, Bishop, DT, Reid, A, Huddart, RA, Shipley, J, Grotmol, T, Wiklund, F, Houlston, RS, and Turnbull, C
- Subjects
Germ cell tumours ,Genome-wide association studies ,Gene expression profiling ,3. Good health - Abstract
Genome-wide association studies (GWAS) have transformed understanding of susceptibility to testicular germ cell tumors (TGCTs), but much of the heritability remains unexplained. Here we report a new GWAS, a meta-analysis with previous GWAS and a replication series, totaling 7,319 TGCT cases and 23,082 controls. We identify 19 new TGCT risk loci, roughly doubling the number of known TGCT risk loci to 44. By performing in situ Hi-C in TGCT cells, we provide evidence for a network of physical interactions among all 44 TGCT risk SNPs and candidate causal genes. Our findings implicate widespread disruption of developmental transcriptional regulators as a basis of TGCT susceptibility, consistent with failed primordial germ cell differentiation as an initiating step in oncogenesis. Defective microtubule assembly and dysregulation of KIT-MAPK signaling also feature as recurrently disrupted pathways. Our findings support a polygenic model of risk and provide insight into the biological basis of TGCT.
14. Genomic landscape of platinum resistant and sensitive testicular cancers.
- Author
-
Loveday C, Litchfield K, Proszek PZ, Cornish AJ, Santo F, Levy M, Macintyre G, Holryod A, Broderick P, Dudakia D, Benton B, Bakir MA, Hiley C, Grist E, Swanton C, Huddart R, Powles T, Chowdhury S, Shipley J, O'Connor S, Brenton JD, Reid A, de Castro DG, Houlston RS, and Turnbull C
- Subjects
- DNA Copy Number Variations, Genetic Predisposition to Disease genetics, Humans, Male, Mutation, Neoplasms, Germ Cell and Embryonal genetics, Neoplasms, Germ Cell and Embryonal metabolism, Organoplatinum Compounds therapeutic use, Proto-Oncogene Proteins c-kit genetics, Proto-Oncogene Proteins c-kit metabolism, Signal Transduction genetics, Testicular Neoplasms genetics, Testicular Neoplasms metabolism, Exome Sequencing methods, ras Proteins genetics, ras Proteins metabolism, Drug Resistance, Neoplasm drug effects, Genomics methods, Neoplasms, Germ Cell and Embryonal drug therapy, Platinum therapeutic use, Testicular Neoplasms drug therapy
- Abstract
While most testicular germ cell tumours (TGCTs) exhibit exquisite sensitivity to platinum chemotherapy, ~10% are platinum resistant. To gain insight into the underlying mechanisms, we undertake whole exome sequencing and copy number analysis in 40 tumours from 26 cases with platinum-resistant TGCT, and combine this with published genomic data on an additional 624 TGCTs. We integrate analyses for driver mutations, mutational burden, global, arm-level and focal copy number (CN) events, and SNV and CN signatures. Albeit preliminary and observational in nature, these analyses provide support for a possible mechanistic link between early driver mutations in RAS and KIT and the widespread copy number events by which TGCT is characterised.
- Published
- 2020
- Full Text
- View/download PDF
15. Large-scale Analysis Demonstrates Familial Testicular Cancer to have Polygenic Aetiology.
- Author
-
Loveday C, Law P, Litchfield K, Levy M, Holroyd A, Broderick P, Kote-Jarai Z, Dunning AM, Muir K, Peto J, Eeles R, Easton DF, Dudakia D, Orr N, Pashayan N, Reid A, Huddart RA, Houlston RS, and Turnbull C
- Subjects
- Case-Control Studies, Environment, Genetic Predisposition to Disease, Genome-Wide Association Study, Heredity, Humans, Life Style, Male, Neoplasms, Germ Cell and Embryonal epidemiology, Neoplasms, Germ Cell and Embryonal pathology, Pedigree, Phenotype, Risk Assessment, Risk Factors, Testicular Neoplasms epidemiology, Testicular Neoplasms pathology, Biomarkers, Tumor genetics, Multifactorial Inheritance, Neoplasms, Germ Cell and Embryonal genetics, Polymorphism, Single Nucleotide, Testicular Neoplasms genetics
- Abstract
Testicular germ cell tumour (TGCT) is the most common cancer in young men. Multiplex TGCT families have been well reported and analyses of population cancer registries have demonstrated a four- to eightfold risk to male relatives of TGCT patients. Early linkage analysis and recent large-scale germline exome analysis in TGCT cases demonstrate absence of major high-penetrance TGCT susceptibility gene(s). Serial genome-wide association study analyses in sporadic TGCT have in total reported 49 independent risk loci. To date, it has not been demonstrated whether familial TGCT arises due to enrichment of the same common variants underpinning susceptibility to sporadic TGCT or is due to shared environmental/lifestyle factors or disparate rare genetic TGCT susceptibility factors. Here we present polygenic risk score analysis of 37 TGCT susceptibility single-nucleotide polymorphisms in 236 familial and 3931 sporadic TGCT cases, and 12 368 controls, which demonstrates clear enrichment for TGCT susceptibility alleles in familial compared to sporadic cases (p=0.0001), with the majority of familial cases (84-100%) being attributable to polygenic enrichment. These analyses reveal TGCT as the first rare malignancy of early adulthood in which familial clustering is driven by the aggregate effects of polygenic variation in the absence of a major high-penetrance susceptibility gene., Patient Summary: To date, it has been unclear whether familial clusters of testicular germ cell tumour (TGCT) arise due to genetics or shared environmental or lifestyle factors. We present large-scale genetic analyses comparing 236 familial TGCT cases, 3931 isolated TGCT cases, and 12 368 controls. We show that familial TGCT is caused, at least in part, by presence of a higher dose of the same common genetic variants that cause susceptibility to TGCT in general., (Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
16. Large-scale Sequencing of Testicular Germ Cell Tumour (TGCT) Cases Excludes Major TGCT Predisposition Gene.
- Author
-
Litchfield K, Loveday C, Levy M, Dudakia D, Rapley E, Nsengimana J, Bishop DT, Reid A, Huddart R, Broderick P, Houlston RS, and Turnbull C
- Subjects
- Case-Control Studies, Gene Frequency, Humans, Male, Mutation, Penetrance, Risk Factors, Exome Sequencing, Genetic Predisposition to Disease genetics, Neoplasms, Germ Cell and Embryonal genetics, Testicular Neoplasms genetics
- Abstract
Testicular germ cell tumour (TGCT), the most common cancer in young men, has a significant heritable basis that has long raised questions as to the existence of underlying major high-penetrance susceptibility gene(s). To determine the contribution of rare gene mutations to the inherited risk of TGCT, we analysed germline whole-exome data for 919 TGCT cases and 1609 cancer-free controls. We compared frequencies between TGCT cases and controls of rare (<1%) and low-frequency (1-5%) coding variants (1) individually and (2) collapsed at the gene level via burden testing (T1, disruptive; T2, all deleterious; and T3, all nonsynonymous) using Fisher's exact test with Bonferroni correction of significance thresholds. No individual variant or individual gene showed a significant association with TGCT after correction for multiple testing. In the largest whole-exome sequencing study of testicular cancer reported to date, our findings do not support the existence of a major high-penetrance TGCT susceptibility gene (of odds ratio >10 and allele frequency [combined]>0.01%). Owing to its power, this study cannot exclude the existence of susceptibility genes responsible for occasional TGCT families or of rare mutations that confer very modest relative risks. In concert with findings from genome-wide association studies, our data support the notion that inherited susceptibility is largely polygenic with substantial contribution from common variation., Patient Summary: In the largest study of its kind, we sequenced ∼20 000 genes in 919 men with testicular germ cell tumour (TGCT) and 1609 TGCT-free individuals and found no evidence of a single major gene underlying predisposition to TGCT (in the manner of BRCA1 for breast cancer). Instead, familial risk of TGCT is likely to be due to varying dosages of hundreds of minor genetic factors., (Copyright © 2018 European Association of Urology. Published by Elsevier B.V. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
17. Validation of loci at 2q14.2 and 15q21.3 as risk factors for testicular cancer.
- Author
-
Loveday C, Litchfield K, Levy M, Holroyd A, Broderick P, Kote-Jarai Z, Dunning AM, Muir K, Peto J, Eeles R, Easton DF, Dudakia D, Orr N, Pashayan N, Reid A, Huddart RA, Houlston RS, and Turnbull C
- Abstract
Testicular germ cell tumor (TGCT), the most common cancer in men aged 18 to 45 years, has a strong heritable basis. Genome-wide association studies (GWAS) have proposed single nucleotide polymorphisms (SNPs) at a number of loci influencing TGCT risk. To further evaluate the association of recently proposed risk SNPs with TGCT at 2q14.2, 3q26.2, 7q36.3, 10q26.13 and 15q21.3, we analyzed genotype data on 3,206 cases and 7,422 controls. Our analysis provides independent replication of the associations for risk SNPs at 2q14.2 (rs2713206 at P = 3.03 × 10
-2 ; P -meta = 3.92 × 10-8; nearest gene, TFCP2L1) and rs12912292 at 15q21.3 ( P = 7.96 × 10-11 ; P -meta = 1.55 × 10-19 ; nearest gene PRTG). Case-only analyses did not reveal specific associations with TGCT histology. TFCP2L1 joins the growing list of genes located within TGCT risk loci with biologically plausible roles in developmental transcriptional regulation, further highlighting the importance of this phenomenon in TGCT oncogenesis., Competing Interests: CONFLICTS OF INTEREST The authors declare that they have no conflicts of interest.- Published
- 2017
- Full Text
- View/download PDF
18. Identification of 19 new risk loci and potential regulatory mechanisms influencing susceptibility to testicular germ cell tumor.
- Author
-
Litchfield K, Levy M, Orlando G, Loveday C, Law PJ, Migliorini G, Holroyd A, Broderick P, Karlsson R, Haugen TB, Kristiansen W, Nsengimana J, Fenwick K, Assiotis I, Kote-Jarai Z, Dunning AM, Muir K, Peto J, Eeles R, Easton DF, Dudakia D, Orr N, Pashayan N, Bishop DT, Reid A, Huddart RA, Shipley J, Grotmol T, Wiklund F, Houlston RS, and Turnbull C
- Subjects
- Adult, Chromatin genetics, Gene Expression Profiling, Genetic Predisposition to Disease, Genotype, Humans, Male, Middle Aged, Molecular Sequence Annotation, Neoplasms, Germ Cell and Embryonal epidemiology, Polymorphism, Single Nucleotide, Risk, Testicular Neoplasms epidemiology, Young Adult, Genome-Wide Association Study, Neoplasms, Germ Cell and Embryonal genetics, Testicular Neoplasms genetics
- Abstract
Genome-wide association studies (GWAS) have transformed understanding of susceptibility to testicular germ cell tumors (TGCTs), but much of the heritability remains unexplained. Here we report a new GWAS, a meta-analysis with previous GWAS and a replication series, totaling 7,319 TGCT cases and 23,082 controls. We identify 19 new TGCT risk loci, roughly doubling the number of known TGCT risk loci to 44. By performing in situ Hi-C in TGCT cells, we provide evidence for a network of physical interactions among all 44 TGCT risk SNPs and candidate causal genes. Our findings implicate widespread disruption of developmental transcriptional regulators as a basis of TGCT susceptibility, consistent with failed primordial germ cell differentiation as an initiating step in oncogenesis. Defective microtubule assembly and dysregulation of KIT-MAPK signaling also feature as recurrently disrupted pathways. Our findings support a polygenic model of risk and provide insight into the biological basis of TGCT.
- Published
- 2017
- Full Text
- View/download PDF
19. Rare disruptive mutations in ciliary function genes contribute to testicular cancer susceptibility.
- Author
-
Litchfield K, Levy M, Dudakia D, Proszek P, Shipley C, Basten S, Rapley E, Bishop DT, Reid A, Huddart R, Broderick P, Castro DG, O'Connor S, Giles RH, Houlston RS, and Turnbull C
- Subjects
- Animals, Cilia physiology, Disease Models, Animal, Female, Genetic Predisposition to Disease, Humans, Loss of Heterozygosity, Male, Microtubule-Associated Proteins deficiency, Middle Aged, Neoplasms, Germ Cell and Embryonal etiology, Pedigree, Risk Factors, Testicular Neoplasms etiology, Exome Sequencing, Zebrafish genetics, Cilia genetics, Microtubule-Associated Proteins genetics, Mutation, Neoplasms, Germ Cell and Embryonal genetics, Testicular Neoplasms genetics
- Abstract
Testicular germ cell tumour (TGCT) is the most common cancer in young men. Here we sought to identify risk factors for TGCT by performing whole-exome sequencing on 328 TGCT cases from 153 families, 634 sporadic TGCT cases and 1,644 controls. We search for genes that are recurrently affected by rare variants (minor allele frequency <0.01) with potentially damaging effects and evidence of segregation in families. A total of 8.7% of TGCT families carry rare disruptive mutations in the cilia-microtubule genes (CMG) as compared with 0.5% of controls (P=2.1 × 10
-8 ). The most significantly mutated CMG is DNAAF1 with biallelic inactivation and loss of DNAAF1 expression shown in tumours from carriers. DNAAF1 mutation as a cause of TGCT is supported by a dnaaf1hu255h (+/-) zebrafish model, which has a 94% risk of TGCT. Our data implicate cilia-microtubule inactivation as a cause of TGCT and provide evidence for CMGs as cancer susceptibility genes.- Published
- 2016
- Full Text
- View/download PDF
20. Identification of four new susceptibility loci for testicular germ cell tumour.
- Author
-
Litchfield K, Holroyd A, Lloyd A, Broderick P, Nsengimana J, Eeles R, Easton DF, Dudakia D, Bishop DT, Reid A, Huddart RA, Grotmol T, Wiklund F, Shipley J, Houlston RS, and Turnbull C
- Subjects
- Adult, Aged, Cohort Studies, Genome-Wide Association Study, Genotype, Humans, Male, Middle Aged, Polymorphism, Single Nucleotide, Young Adult, Adaptor Proteins, Signal Transducing genetics, DNA-Binding Proteins genetics, Genetic Predisposition to Disease, Neoplasms, Germ Cell and Embryonal genetics, Nuclear Proteins genetics, Peptide Termination Factors genetics, Testicular Neoplasms genetics, Transcription Factors genetics
- Abstract
Genome-wide association studies (GWAS) have identified multiple risk loci for testicular germ cell tumour (TGCT), revealing a polygenic model of disease susceptibility strongly influenced by common variation. To identify additional single-nucleotide polymorphisms (SNPs) associated with TGCT, we conducted a multistage GWAS with a combined data set of >25,000 individuals (6,059 cases and 19,094 controls). We identified new risk loci for TGCT at 3q23 (rs11705932, TFDP2, P=1.5 × 10(-9)), 11q14.1 (rs7107174, GAB2, P=9.7 × 10(-11)), 16p13.13 (rs4561483, GSPT1, P=1.6 × 10(-8)) and 16q24.2 (rs55637647, ZFPM1, P=3.4 × 10(-9)). We additionally present detailed functional analysis of these loci, identifying a statistically significant relationship between rs4561483 risk genotype and increased GSPT1 expression in TGCT patient samples. These findings provide additional support for a polygenic model of TGCT risk and further insight into the biological basis of disease development.
- Published
- 2015
- Full Text
- View/download PDF
21. Multi-stage genome-wide association study identifies new susceptibility locus for testicular germ cell tumour on chromosome 3q25.
- Author
-
Litchfield K, Sultana R, Renwick A, Dudakia D, Seal S, Ramsay E, Powell S, Elliott A, Warren-Perry M, Eeles R, Peto J, Kote-Jarai Z, Muir K, Nsengimana J, Stratton MR, Easton DF, Bishop DT, Huddart RA, Rahman N, and Turnbull C
- Subjects
- Alleles, Case-Control Studies, Female, Gene Frequency, Genotype, Humans, Linkage Disequilibrium, Male, Odds Ratio, Polymorphism, Single Nucleotide, Chromosomes, Human, Pair 3, Genetic Loci, Genetic Predisposition to Disease, Genome-Wide Association Study, Neoplasms, Germ Cell and Embryonal, Testicular Neoplasms
- Abstract
Recent genome-wide association studies (GWAS) and subsequent meta-analyses have identified over 25 SNPs at 18 loci, together accounting for >15% of the genetic susceptibility to testicular germ cell tumour (TGCT). To identify further common SNPs associated with TGCT, here we report a three-stage experiment, involving 4098 cases and 18 972 controls. Stage 1 comprised previously published GWAS analysis of 307 291 SNPs in 986 cases and 4946 controls. In Stage 2, we used previously published customised Illumina iSelect genotyping array (iCOGs) data across 694 SNPs in 1064 cases and 10 082 controls. Here, we report new genotyping of eight SNPs showing some evidence of association in combined analysis of Stage 1 and Stage 2 in an additional 2048 cases of TGCT and 3944 controls (Stage 3). Through fixed-effects meta-analysis across three stages, we identified a novel locus at 3q25.31 (rs1510272) demonstrating association with TGCT [per-allele odds ratio (OR) = 1.16, 95% confidence interval (CI) = 1.06-1.27; P = 1.2 × 10(-9)]., (© The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)
- Published
- 2015
- Full Text
- View/download PDF
22. Whole-exome sequencing reveals the mutational spectrum of testicular germ cell tumours.
- Author
-
Litchfield K, Summersgill B, Yost S, Sultana R, Labreche K, Dudakia D, Renwick A, Seal S, Al-Saadi R, Broderick P, Turner NC, Houlston RS, Huddart R, Shipley J, and Turnbull C
- Subjects
- Adult, Chromosome Aberrations, Chromosomes, Human, Pair 12, Cisplatin chemistry, Cohort Studies, DNA-Binding Proteins metabolism, Disease Progression, Gene Dosage, Genes, Tumor Suppressor, Humans, Interleukins metabolism, Male, Middle Aged, Mutation, Neoplasms, Germ Cell and Embryonal surgery, Polymorphism, Single Nucleotide, Proto-Oncogene Proteins c-kit genetics, Seminoma genetics, Spermatocytes cytology, Testicular Neoplasms surgery, DNA Mutational Analysis methods, Exome, Neoplasms, Germ Cell and Embryonal genetics, Testicular Neoplasms genetics
- Abstract
Testicular germ cell tumours (TGCTs) are the most common cancer in young men. Here we perform whole-exome sequencing (WES) of 42 TGCTs to comprehensively study the cancer's mutational profile. The mutation rate is uniformly low in all of the tumours (mean 0.5 mutations per Mb) as compared with common cancers, consistent with the embryological origin of TGCT. In addition to expected copy number gain of chromosome 12p and mutation of KIT, we identify recurrent mutations in the tumour suppressor gene CDC27 (11.9%). Copy number analysis reveals recurring amplification of the spermatocyte development gene FSIP2 (15.3%) and a 0.4 Mb region at Xq28 (15.3%). Two treatment-refractory patients are shown to harbour XRCC2 mutations, a gene strongly implicated in defining cisplatin resistance. Our findings provide further insights into genes involved in the development and progression of TGCT.
- Published
- 2015
- Full Text
- View/download PDF
23. The International Testicular Cancer Linkage Consortium: a clinicopathologic descriptive analysis of 461 familial malignant testicular germ cell tumor kindred.
- Author
-
Mai PL, Friedlander M, Tucker K, Phillips KA, Hogg D, Jewett MA, Lohynska R, Daugaard G, Richard S, Bonaïti-Pellié C, Heidenreich A, Albers P, Bodrogi I, Geczi L, Olah E, Daly PA, Guilford P, Fosså SD, Heimdal K, Liubchenko L, Tjulandin SA, Stoll H, Weber W, Easton DF, Dudakia D, Huddart R, Stratton MR, Einhorn L, Korde L, Nathanson KL, Bishop DT, Rapley EA, and Greene MH
- Subjects
- Adult, Cryptorchidism genetics, Hernia, Inguinal genetics, Humans, Male, Neoplasms, Germ Cell and Embryonal genetics, Neoplasms, Germ Cell and Embryonal pathology, Testicular Neoplasms genetics, Testicular Neoplasms pathology
- Abstract
Objectives: Familial aggregation of testicular germ cell tumor (TGCT) has been reported, but it is unclear if familial TGCT represents a unique entity with distinct clinicopathologic characteristics. Here we describe a collection of familial TGCT cases from an international consortium, in an effort to elucidate any clinical characteristics that are specific to this population., Materials and Methods: Families with >or=2 cases of TGCT enrolled at 18 of the sites participating in the International Testicular Cancer Linkage Consortium were included. We analyzed clinicopathologic characteristics of 985 cases from 461 families., Results: A majority (88.5%) of families had only 2 cases of TGCT. Men with seminoma (50% of cases) had an older mean age at diagnosis than nonseminoma cases (P = 0.001). Among individuals with a history of cryptorchidism, TGCT was more likely to occur in the ipsilateral testis (kappa = 0.65). Cousin pairs appeared to represent a unique group, with younger age at diagnosis and a higher prevalence of cryptorchidism than other families., Conclusions: Clinicopathologic characteristics in these familial TGCT cases were similar to those generally described for nonfamilial cases. However, we observed a unique presentation of familial TGCT among cousin pairs. Additional studies are needed to further explore this observation., (Published by Elsevier Inc.)
- Published
- 2010
- Full Text
- View/download PDF
24. Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls.
- Author
-
Craddock N, Hurles ME, Cardin N, Pearson RD, Plagnol V, Robson S, Vukcevic D, Barnes C, Conrad DF, Giannoulatou E, Holmes C, Marchini JL, Stirrups K, Tobin MD, Wain LV, Yau C, Aerts J, Ahmad T, Andrews TD, Arbury H, Attwood A, Auton A, Ball SG, Balmforth AJ, Barrett JC, Barroso I, Barton A, Bennett AJ, Bhaskar S, Blaszczyk K, Bowes J, Brand OJ, Braund PS, Bredin F, Breen G, Brown MJ, Bruce IN, Bull J, Burren OS, Burton J, Byrnes J, Caesar S, Clee CM, Coffey AJ, Connell JM, Cooper JD, Dominiczak AF, Downes K, Drummond HE, Dudakia D, Dunham A, Ebbs B, Eccles D, Edkins S, Edwards C, Elliot A, Emery P, Evans DM, Evans G, Eyre S, Farmer A, Ferrier IN, Feuk L, Fitzgerald T, Flynn E, Forbes A, Forty L, Franklyn JA, Freathy RM, Gibbs P, Gilbert P, Gokumen O, Gordon-Smith K, Gray E, Green E, Groves CJ, Grozeva D, Gwilliam R, Hall A, Hammond N, Hardy M, Harrison P, Hassanali N, Hebaishi H, Hines S, Hinks A, Hitman GA, Hocking L, Howard E, Howard P, Howson JM, Hughes D, Hunt S, Isaacs JD, Jain M, Jewell DP, Johnson T, Jolley JD, Jones IR, Jones LA, Kirov G, Langford CF, Lango-Allen H, Lathrop GM, Lee J, Lee KL, Lees C, Lewis K, Lindgren CM, Maisuria-Armer M, Maller J, Mansfield J, Martin P, Massey DC, McArdle WL, McGuffin P, McLay KE, Mentzer A, Mimmack ML, Morgan AE, Morris AP, Mowat C, Myers S, Newman W, Nimmo ER, O'Donovan MC, Onipinla A, Onyiah I, Ovington NR, Owen MJ, Palin K, Parnell K, Pernet D, Perry JR, Phillips A, Pinto D, Prescott NJ, Prokopenko I, Quail MA, Rafelt S, Rayner NW, Redon R, Reid DM, Renwick, Ring SM, Robertson N, Russell E, St Clair D, Sambrook JG, Sanderson JD, Schuilenburg H, Scott CE, Scott R, Seal S, Shaw-Hawkins S, Shields BM, Simmonds MJ, Smyth DJ, Somaskantharajah E, Spanova K, Steer S, Stephens J, Stevens HE, Stone MA, Su Z, Symmons DP, Thompson JR, Thomson W, Travers ME, Turnbull C, Valsesia A, Walker M, Walker NM, Wallace C, Warren-Perry M, Watkins NA, Webster J, Weedon MN, Wilson AG, Woodburn M, Wordsworth BP, Young AH, Zeggini E, Carter NP, Frayling TM, Lee C, McVean G, Munroe PB, Palotie A, Sawcer SJ, Scherer SW, Strachan DP, Tyler-Smith C, Brown MA, Burton PR, Caulfield MJ, Compston A, Farrall M, Gough SC, Hall AS, Hattersley AT, Hill AV, Mathew CG, Pembrey M, Satsangi J, Stratton MR, Worthington J, Deloukas P, Duncanson A, Kwiatkowski DP, McCarthy MI, Ouwehand W, Parkes M, Rahman N, Todd JA, Samani NJ, and Donnelly P
- Subjects
- Arthritis, Rheumatoid genetics, Case-Control Studies, Crohn Disease genetics, Diabetes Mellitus genetics, Gene Frequency genetics, Humans, Nucleic Acid Hybridization, Oligonucleotide Array Sequence Analysis, Pilot Projects, Polymorphism, Single Nucleotide genetics, Quality Control, DNA Copy Number Variations genetics, Disease, Genetic Predisposition to Disease genetics, Genome-Wide Association Study
- Abstract
Copy number variants (CNVs) account for a major proportion of human genetic polymorphism and have been predicted to have an important role in genetic susceptibility to common disease. To address this we undertook a large, direct genome-wide study of association between CNVs and eight common human diseases. Using a purpose-designed array we typed approximately 19,000 individuals into distinct copy-number classes at 3,432 polymorphic CNVs, including an estimated approximately 50% of all common CNVs larger than 500 base pairs. We identified several biological artefacts that lead to false-positive associations, including systematic CNV differences between DNAs derived from blood and cell lines. Association testing and follow-up replication analyses confirmed three loci where CNVs were associated with disease-IRGM for Crohn's disease, HLA for Crohn's disease, rheumatoid arthritis and type 1 diabetes, and TSPAN8 for type 2 diabetes-although in each case the locus had previously been identified in single nucleotide polymorphism (SNP)-based studies, reflecting our observation that most common CNVs that are well-typed on our array are well tagged by SNPs and so have been indirectly explored through SNP studies. We conclude that common CNVs that can be typed on existing platforms are unlikely to contribute greatly to the genetic basis of common human diseases.
- Published
- 2010
- Full Text
- View/download PDF
25. Younger age-at-diagnosis for familial malignant testicular germ cell tumor.
- Author
-
Mai PL, Chen BE, Tucker K, Friedlander M, Phillips KA, Hogg D, Jewett MA, Bodrogi I, Geczi L, Olah E, Heimdal K, Fosså SD, Nathanson KL, Korde L, Easton DF, Dudakia D, Huddart R, Stratton MR, Bishop DT, Rapley EA, and Greene MH
- Subjects
- Adolescent, Adult, Age of Onset, Aged, Aged, 80 and over, Genetic Predisposition to Disease, Humans, Male, Middle Aged, Neoplasms, Germ Cell and Embryonal diagnosis, Registries, Testicular Neoplasms diagnosis, Young Adult, Neoplasms, Germ Cell and Embryonal epidemiology, Neoplasms, Germ Cell and Embryonal genetics, Testicular Neoplasms epidemiology, Testicular Neoplasms genetics
- Abstract
One of the clinical hallmarks of hereditary cancer susceptibility disorders is a younger-than-usual age at diagnosis. Familial aggregation of testicular germ cell tumor (TGCT) has been reported, but data on whether familial TGCT cases are diagnosed at an earlier age are inconclusive. Here we compared the age at diagnosis of familial TGCT cases with that of population cases in several countries. Familial TGCT is defined as affected individuals from families with >or=2 cases of TGCT. Age at diagnosis of familial cases from the United States, Canada, United Kingdom, Australia and New Zealand, Norway, and Hungary was compared to cases identified in population-based cancer registries from the respective country, using the generalized estimation equation method. Age at diagnosis was statistically significantly younger for familial TGCT cases from North America (P = 0.024), the United Kingdom (P < 0.0001), and Australia and New Zealand (P = 0.0033) compared with population cases. When stratified by histology, the difference in age at diagnosis distribution between familial and population cases was observed for seminoma cases from North America (P = 0.002) and the United Kingdom (P < 0.0001) and non-seminoma cases from the United Kingdom (P = 0.029) and Australia and New Zealand (P = 0.0023). In summary, we found that the age at diagnosis for familial TGCT cases is, on the average, 2-3 years younger than that for the population cases in North America, United Kingdom, and Australia and New Zealand. The younger age at diagnosis might be suggestive of a genetic basis for familial TGCT.
- Published
- 2009
- Full Text
- View/download PDF
26. Analysis of the DND1 gene in men with sporadic and familial testicular germ cell tumors.
- Author
-
Linger R, Dudakia D, Huddart R, Tucker K, Friedlander M, Phillips KA, Hogg D, Jewett MA, Lohynska R, Daugaard G, Richard S, Chompret A, Stoppa-Lyonnet D, Bonaïti-Pellié C, Heidenreich A, Albers P, Olah E, Geczi L, Bodrogi I, Daly PA, Guilford P, Fosså SD, Heimdal K, Tjulandin SA, Liubchenko L, Stoll H, Weber W, Einhorn L, McMaster M, Korde L, Greene MH, Nathanson KL, Cortessis V, Easton DF, Bishop DT, Stratton MR, and Rapley EA
- Subjects
- DNA Mutational Analysis, Family Health, Genetic Predisposition to Disease, Humans, Male, Mutation, Neoplasms, Germ Cell and Embryonal etiology, Polymerase Chain Reaction, Testicular Neoplasms etiology, Neoplasm Proteins genetics, Neoplasms, Germ Cell and Embryonal genetics, Testicular Neoplasms genetics
- Abstract
A base substitution in the mouse Dnd1 gene resulting in a truncated Dnd protein has been shown to be responsible for germ cell loss and the development of testicular germ cell tumors (TGCT) in the 129 strain of mice. We investigated the human orthologue of this gene in 263 patients (165 with a family history of TGCT and 98 without) and found a rare heterozygous variant, p. Glu86Ala, in a single case. This variant was not present in control chromosomes (0/4,132). Analysis of the variant in an additional 842 index TGCT cases (269 with a family history of TGCT and 573 without) did not reveal any additional instances. The variant, p. Glu86Ala, is within a known functional domain of DND1 and is highly conserved through evolution. Although the variant may be a rare polymorphism, a change at such a highly conserved residue is characteristic of a disease-causing variant. Whether it is disease-causing or not, mutations in DND1 make, at most, a very small contribution to TGCT susceptibility in adults and adolescents., ((c) 2007 Wiley-Liss, Inc.)
- Published
- 2008
- Full Text
- View/download PDF
27. Somatic KIT mutations occur predominantly in seminoma germ cell tumors and are not predictive of bilateral disease: report of 220 tumors and review of literature.
- Author
-
Coffey J, Linger R, Pugh J, Dudakia D, Sokal M, Easton DF, Timothy Bishop D, Stratton M, Huddart R, and Rapley EA
- Subjects
- Adult, Amino Acid Substitution genetics, Humans, Male, Middle Aged, Predictive Value of Tests, Seminoma pathology, Testicular Neoplasms pathology, Mutation, Proto-Oncogene Proteins c-kit genetics, Seminoma genetics, Testicular Neoplasms genetics
- Abstract
Mutations in the KIT gene occur in approximately 8% of all testicular germ cell tumors (TGCT) and KIT is the most frequently mutated known cancer gene. One report has shown that 93% of patients with bilateral disease have a mutation at codon 816 of the KIT gene. Importantly, this suggests that the identification of a mutation in KIT is predictive of the development of a contralateral TGCT. We investigated the frequency and type of mutations in KIT in a series of 220 tumors from 211 patients with TGCTs and extragonadal germ cell tumors. In 170 patients with unilateral TGCT and no additional germ cell tumour, we identified one exon 11 mutation in a patient with unilateral TGCT and eight activating KIT mutations in exon 17 (9/175, 5.1%). In 32 patients with bilateral TGCT, one patient had an activating KIT mutation in exon 17 (3.1%). The incidence of activating KIT mutations in sporadic TGCT vs. familial TGCT was not significantly different. All mutations were identified in seminomas. Three extragonadal primary germ cell tumors were examined and in one tumor an activating KIT mutation was demonstrated in the pineal germinoma. Interestingly, this mutation was also seen in the patient's testicular seminoma. We find no evidence for an increased frequency of KIT mutations in bilateral TGCT.
- Published
- 2008
- Full Text
- View/download PDF
28. Genome-wide linkage screen for testicular germ cell tumour susceptibility loci.
- Author
-
Crockford GP, Linger R, Hockley S, Dudakia D, Johnson L, Huddart R, Tucker K, Friedlander M, Phillips KA, Hogg D, Jewett MA, Lohynska R, Daugaard G, Richard S, Chompret A, Bonaïti-Pellié C, Heidenreich A, Albers P, Olah E, Geczi L, Bodrogi I, Ormiston WJ, Daly PA, Guilford P, Fosså SD, Heimdal K, Tjulandin SA, Liubchenko L, Stoll H, Weber W, Forman D, Oliver T, Einhorn L, McMaster M, Kramer J, Greene MH, Weber BL, Nathanson KL, Cortessis V, Easton DF, Bishop DT, Stratton MR, and Rapley EA
- Subjects
- Chromosome Mapping, Chromosomes, Human, X genetics, Female, Genetic Heterogeneity, Humans, Lod Score, Male, Pedigree, Genetic Linkage genetics, Genetic Predisposition to Disease genetics, Genome, Human genetics, Neoplasms, Germ Cell and Embryonal genetics, Testicular Neoplasms genetics
- Abstract
A family history of disease is a strong risk factor for testicular germ cell tumour (TGCT). In order to identify the location of putative TGCT susceptibility gene(s) we conducted a linkage search in 237 pedigrees with two or more cases of TGCT. One hundred and seventy-nine pedigrees were evaluated genome-wide with an average inter-marker distance of 10 cM. An additional 58 pedigrees were used to more intensively investigate several genomic regions of interest. Genetic linkage analysis was performed with the ALLEGRO software using two model-based parametric analyses and a non-parametric analysis. Six genomic regions on chromosomes 2p23, 3p12, 3q26, 12p13-q21, 18q21-q23 and Xq27 showed heterogeneity LOD (HLOD) scores of greater than 1, with a maximum HLOD of 1.94 at 3q26. Genome-wide simulation studies indicate that the observed number of HLOD peaks greater than one does not differ significantly from that expected by chance. A TGCT locus at Xq27 has been previously reported. Of the 237 pedigrees examined in this study, 66 were previously unstudied at Xq27, no evidence for linkage to this region was observed in this new pedigree set. Overall, the results indicate that no single major locus can account for the majority of the familial aggregation of TGCT, and suggests that multiple susceptibility loci with weak effects contribute to the disease.
- Published
- 2006
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.