1. A Mass-Based Approach for Local Outlier Detection
- Author
-
Anh Hoang, Toan Nguyen Mau, Duc-Vinh Vo, and Van-Nam Huynh
- Subjects
Outlier detection ,mass-based dissimilarity ,unsupervised learning ,knowledge discovery ,Electrical engineering. Electronics. Nuclear engineering ,TK1-9971 - Abstract
This paper proposes a new outlier detection approach that measures the degree of outlierness for each instance in a given dataset. The proposed model utilizes a mass-based dissimilarity measure to address the weaknesses of neighbor-based outlier models while detecting local outliers in the dataset within a variety of data point densities. In particular, it first applies a hierarchical partitioning technique to generate a set of tree-like nested structure partitions for the input dataset, and then a mass-based dissimilarity measure is defined to quantify the dissimilarity between two data instances given the generated hierarchical partition structure. After that, for each data instance, a context set is obtained by gathering the neighbors around it with the k lowest mass dissimilarities, and based on those context sets, a mass-based local outlier score model is introduced to compute the outlierness for each individual instance. The proposed approach fundamentally changes the perspective of the outlier model by using the mass-based measurement instead of the distance-based functions used in most neighbor-based methods. A comprehensive experiment conducted on both synthetic and real-world datasets demonstrates that the proposed approach is not only competitive with the existing state-of-the-art outlier detection models but is also an efficient and effective alternative for local outlier detection methods.
- Published
- 2021
- Full Text
- View/download PDF