1. Neural Spelling: A Spell-Based BCI System for Language Neural Decoding
- Author
-
Jiang, Xiaowei, Zhou, Charles, Duan, Yiqun, Zhao, Ziyi, Do, Thomas, and Lin, Chin-Teng
- Subjects
Computer Science - Human-Computer Interaction ,Computer Science - Artificial Intelligence - Abstract
Brain-computer interfaces (BCIs) present a promising avenue by translating neural activity directly into text, eliminating the need for physical actions. However, existing non-invasive BCI systems have not successfully covered the entire alphabet, limiting their practicality. In this paper, we propose a novel non-invasive EEG-based BCI system with Curriculum-based Neural Spelling Framework, which recognizes all 26 alphabet letters by decoding neural signals associated with handwriting first, and then apply a Generative AI (GenAI) to enhance spell-based neural language decoding tasks. Our approach combines the ease of handwriting with the accessibility of EEG technology, utilizing advanced neural decoding algorithms and pre-trained large language models (LLMs) to translate EEG patterns into text with high accuracy. This system show how GenAI can improve the performance of typical spelling-based neural language decoding task, and addresses the limitations of previous methods, offering a scalable and user-friendly solution for individuals with communication impairments, thereby enhancing inclusive communication options.
- Published
- 2025