1. Exercise effects on brain health and learning from minutes to months: The brain EXTEND trial.
- Author
-
Voss MW, Oehler C, Daniels W, Sodoma M, Madero B, Kent J, Jain S, Jung M, Nuckols VR, DuBose LE, Davis KG, O'Deen A, Hamilton C, Baller K, Springer J, Rivera-Dompenciel A, Pipoly M, Muellerleile M, Nagarajan N, Bjarnason T, Harb N, Lin LC, Magnotta V, Hazeltine E, Long JD, and Pierce GL
- Subjects
- Humans, Aged, Male, Female, Middle Aged, Aged, 80 and over, Magnetic Resonance Imaging, Learning physiology, Memory physiology, Brain diagnostic imaging, Brain physiology, Exercise physiology, Hippocampus, Cardiorespiratory Fitness physiology
- Abstract
Despite evidence that aerobic exercise benefits the aging brain, in particular the hippocampus and memory, controlled clinical trials have not comprehensively evaluated effects of aerobic exercise training on human memory in older adults. The central goal of this study was to determine chronic effects of moderate-to-vigorous intensity aerobic exercise on the hippocampus and memory in non-demented, inactive adults ages 55-80 years. We determine effects of aerobic exercise training with a 6-month randomized controlled trial (RCT) comparing 150 min/week of home-based, light intensity exercise with progressive moderate-to-vigorous intensity aerobic exercise. For the first time in a large trial, we examined temporal mechanisms by determining if individual differences in the rapid, immediate effects of moderate intensity exercise on hippocampal-cortical connectivity predict chronic training-related changes over months in connectivity and memory. We examined physiological mechanisms by testing the extent to which chronic training-related changes in cardiorespiratory fitness are a critical factor to memory benefits. The Exercise Effects on Brain Connectivity and Learning from Minutes to Months (Brain-EXTEND) trial is conceptually innovative with advanced measures of hippocampal-dependent learning and memory processes combined with novel capture of the physiological changes, genetic components, and molecular changes induced by aerobic exercise that change hippocampal-cortical connectivity. Given that hippocampal connectivity deteriorates with Alzheimer's and aerobic exercise may contribute to reduced risk of Alzheimer's, our results could lead to an understanding of the physiological mechanisms and moderators by which aerobic exercise reduces risk of this devastating and costly disease., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF