1. A Risk-Averse Just-In-Time Scheme for Learning-Based Operation of Microgrids with Coupled Electricity-Hydrogen-Ammonia under Uncertainties
- Author
-
Li, Longyan, Ning, Chao, Pan, Guangsheng, Zhang, Leiqi, Gu, Wei, Zhao, Liang, Du, Wenli, and Shahidehpour, Mohammad
- Subjects
Electrical Engineering and Systems Science - Systems and Control - Abstract
This paper proposes a Risk-Averse Just-In-Time (RAJIT) operation scheme for Ammonia-Hydrogen-based Micro-Grids (AHMGs) to boost electricity-hydrogen-ammonia coupling under uncertainties. First, an off-grid AHMG model is developed, featuring a novel multi-mode ammonia synthesis process and a hydrogen-ammonia dual gas turbine with tunable feed-in ratios. Subsequently, a state-behavior mapping strategy linking hydrogen storage levels with the operation modes of ammonia synthesis is established to prevent cost-ineffective shutdowns. The proposed model substantially improves operational flexibility but results in a challenging nonlinear fractional program. Based upon this model, a data-driven RAJIT scheme is developed for the real-time rolling optimization of AHMGs. Unlike conventional one-size-fits-all schemes using one optimization method throughout, the data driven RAJIT intelligently switches between cost-effective deterministic optimization and risk-averse online-learning distributionally robust optimization depending on actual risk profiles, thus capitalizing on the respective strengths of these two optimization methods. To facilitate the solution of the resulting nonlinear program, we develop an equivalent-reformulation-based solution methodology by leveraging a constraint-tightening technique. Numerical simulations demonstrate that the proposed scheme guarantees safety and yields an overall cost reduction up to 14.6% compared with several state-of-the-art methods.
- Published
- 2024