1. Analyzing the Scalability of Bi-static Backscatter Networks for Large Scale Applications
- Author
-
Patel, Kartik, Zhang, Junbo, Kimionis, John, Kampianakis, Lefteris, Eggleston, Michael S., and Du, Jinfeng
- Subjects
Electrical Engineering and Systems Science - Systems and Control - Abstract
Backscatter radio is a promising technology for low-cost and low-power Internet-of-Things (IoT) networks. The conventional monostatic backscatter radio is constrained by its limited communication range, which restricts its utility in wide-area applications. An alternative bi-static backscatter radio architecture, characterized by a dis-aggregated illuminator and receiver, can provide enhanced coverage and, thus, can support wide-area applications. In this paper, we analyze the scalability of the bi-static backscatter radio for large-scale wide-area IoT networks consisting of a large number of unsynchronized, receiver-less tags. We introduce the Tag Drop Rate (TDR) as a measure of reliability and develop a theoretical framework to estimate TDR in terms of the network parameters. We show that under certain approximations, a small-scale prototype can emulate a large-scale network. We then use the measurements from experimental prototypes of bi-static backscatter networks (BNs) to refine the theoretical model. Finally, based on the insights derived from the theoretical model and the experimental measurements, we describe a systematic methodology for tuning the network parameters and identifying the physical layer design requirements for the reliable operation of large-scale bi-static BNs. Our analysis shows that even with a modest physical layer requirement of bit error rate (BER) 0.2, 1000 receiver-less tags can be supported with 99.9% reliability. This demonstrates the feasibility of bi-static BNs for large-scale wide-area IoT applications., Comment: To be published in IEEE Journal of Radio Frequency Identification
- Published
- 2024
- Full Text
- View/download PDF