5 results on '"Douga Nassoko"'
Search Results
2. Rationalizing the formation of binary mixed thiol self-assembled monolayers
- Author
-
Frederik Tielens, Douga Nassoko, Mahamadou Seydou, David Portehault, Clément Sanchez, Corinne Chanéac, Claire Goldmann, Chemistry, General Chemistry, Spectroscopie, Modélisation, Interfaces pour L'Environnement et la Santé (SMiLES), Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Bamako (ENSup Bamako), Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS (UMR_7086)), Université Paris Diderot - Paris 7 (UPD7)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Matériaux Hybrides et Nanomatériaux (MHN), Chaire Chimie des matériaux hybrides, Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)
- Subjects
Polymers and Plastics ,Nanoparticle ,Nanotechnology ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,DFT ,Catalysis ,Nanomaterials ,Biomaterials ,Adsorption ,Colloid and Surface Chemistry ,Monolayer ,Materials Chemistry ,thiols ,Chemistry ,Intermolecular force ,Self-assembled monolayer ,Interaction energy ,[CHIM.MATE]Chemical Sciences/Material chemistry ,self assembly ,021001 nanoscience & nanotechnology ,Nano domains ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,Chemical physics ,gold nanoparticles ,Self-assembly ,0210 nano-technology - Abstract
International audience; Periodic DFT-D calculations are used to decipher the role of intermolecular forces on the stability of mixed linear thiol self-assembled monolayers (SAMs) on Au(111) and compared with experiment. The interaction energy is rationalized by quantifying its different contributions. The inter-chain interaction energy is shown to be in direct relation with the surface reconstruction and the formation of adatoms. The stability of the mixed SAM systems is predicted by calculations and validated with experiments. In order to describe predictively the segregation of binary thiol mixtures adsorption on Au surfaces a segregation descriptor is defined. This procedure is a promising step forward in the prediction of segregated SAMs leading to future functional nanomaterials, including Janus or patchy nanoparticles for optics, formulation and self-assembled patterns.
- Published
- 2017
3. Nanophase Segregation of Self-Assembled Monolayers on Gold Nanoparticles
- Author
-
Corinne Chanéac, Marialore Sulpizi, Simona Moldovan, François Ribot, Santosh Kumar Meena, Thomas Marchandier, David Portehault, Ovidiu Ersen, Mahamadou Seydou, Frederik Tielens, Douga Nassoko, Claire Goldmann, Clément Sanchez, Johannes Gutenberg - Universität Mainz (JGU), Matériaux Hybrides et Nanomatériaux (MHN), Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Bamako (ENSup Bamako), Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS (UMR_7086)), Université Paris Diderot - Paris 7 (UPD7)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Spectroscopie, Modélisation, Interfaces pour L'Environnement et la Santé (SMiLES), Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Chaire Chimie des matériaux hybrides, Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et nanosciences d'Alsace, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), General Chemistry, Johannes Gutenberg - Universität Mainz = Johannes Gutenberg University (JGU), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, and Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Janus particles ,Nucleation ,General Physics and Astronomy ,Nanoparticle ,Nanotechnology ,02 engineering and technology ,Physics and Astronomy(all) ,010402 general chemistry ,01 natural sciences ,chemistry.chemical_compound ,Materials Science(all) ,Monolayer ,General Materials Science ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,density functional theory ,Engineering(all) ,General Engineering ,Self-assembled monolayer ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,molecular dynamics ,0104 chemical sciences ,Electron tomography ,Chemical engineering ,chemistry ,self-assembled monolayer ,Colloidal gold ,gold nanoparticles ,0210 nano-technology ,Ethylene glycol - Abstract
International audience; Nanophase segregation of a bi-component thiol self-assembled monolayer is predicted using atomistic molecular dynamics simulations and experimentally confirmed. The simulations suggest the formation of domains rich in acid-terminated chains, on one hand, and of domains rich in amide-functionalized ethylene glycol oligomers, on the other hand. In particular, within the amide-ethylene glycol oligomers region, a key role is played by the formation of inter-chain hydrogen bonds. The predicted phase segregation is experimentally confirmed by the synthesis of 35 and 15 nm gold nanoparticles functionalized with several binary mixtures of ligands. An extensive study by transmission electron microscopy and electron tomography, using silica selective heterogeneous nucleation on acid-rich domains to provide electron contrast, supports simulations and highlights patchy nanoparticles with a trend towards Janus nano-objects depending on the nature of the ligands and the particle size. These results validate our computational platform as an effective tool to predict nanophase separation in organic mixtures on a surface and drive further exploration of advanced nanoparticle functionalization.
- Published
- 2017
4. Nitrogen-doped TiO2 nanoparticles by using EDTA as nitrogen source and soft template: Simple preparation, mesoporous structure, and photocatalytic activity under visible light
- Author
-
Jia-Lin Li, Yuan-Zhi Li, Ying Yu, Yan-Fang Li, Douga Nassoko, and Hui Wang
- Subjects
Materials science ,Diffuse reflectance infrared fourier transform ,Mechanical Engineering ,Inorganic chemistry ,Metals and Alloys ,Electron spectroscopy ,Titanium oxide ,symbols.namesake ,X-ray photoelectron spectroscopy ,Mechanics of Materials ,Materials Chemistry ,symbols ,Photocatalysis ,Raman spectroscopy ,Spectroscopy ,Visible spectrum ,Nuclear chemistry - Abstract
A new way to dope TiO 2 nanoparticles by using ethylene-diaminetetraacetic acid (EDTA) as N source is introduced here. The nitrogen doped titanium oxide was successfully synthesized through an EDTA modified sol–gel process . The prepared samples were characterized by scanning electronic microscopy, X-ray diffractometer, Raman spectroscopy, UV–vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, and Brunauer–Emmett–Teller measurement. Their photocatalytic activities were examined by the degradation of organic pollutants such as rhodamine-B and benzene in comparison with those of N-doped TiO 2 with NH 3 flow as N source under visible light ( λ > 420 nm) irradiation. The results show that through the simple sol–gel process, nitrogen can be incorporated into crystal lattice of TiO 2 , leading to its response to visible light. With the presence of EDTA, the surface area of the prepared samples becomes larger, pore size smaller, and pore size distribution narrower. Additionally, the prepared N-doped TiO 2 samples has better photocatalytic activity for organic compound degradation than that prepared with NH 3 flow and there is an optimized N doping amount. The reason for the enhanced photocatalytic activity is discussed in detail. To the best of our knowledge, it is first time to report that N-doped TiO 2 nanoparticles can have high enough activity for benzene degradation.
- Published
- 2012
5. Neodymium-DopedTiO2with Anatase and Brookite Two Phases: Mechanism for Photocatalytic Activity Enhancement under Visible Light and the Role of Electron
- Author
-
Douga Nassoko, Ying Yu, Xi Li, Jia-Lin Li, and Yan-Fang Li
- Subjects
Anatase ,Materials science ,Diffuse reflectance infrared fourier transform ,Renewable Energy, Sustainability and the Environment ,Brookite ,chemistry.chemical_element ,General Chemistry ,Photochemistry ,Neodymium ,Atomic and Molecular Physics, and Optics ,chemistry.chemical_compound ,symbols.namesake ,chemistry ,visual_art ,Titanium dioxide ,Photocatalysis ,visual_art.visual_art_medium ,symbols ,General Materials Science ,Raman spectroscopy ,Visible spectrum - Abstract
Titanium dioxide (TiO2) doped with neodymium (Nd), one rare earth element, has been synthesized by a sol-gel method for the photocatalytic degradation of rhodamine-B under visible light. The prepared samples are characterized by X-ray diffractometer, Raman spectroscopy, UV-Vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller measurement. The results indicate that the prepared samples have anatase and brookite phases. Additionally, Nd as Nd3+may enter into the lattice ofTiO2and the presence of Nd3+substantially enhances the photocatalytic activity ofTiO2under visible light. In order to further explore the mechanism of photocatalytic degradation of organic pollutant, photoluminescence spectrometer and scavenger addition method have been employed. It is found that hydroxide radicals produced by Nd-dopedTiO2under visible light are one of reactive species for Rh-B degradation and photogenerated electrons are mainly responsible for the formation of the reactive species.
- Published
- 2012
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.