30 results on '"Doubre C"'
Search Results
2. Discovery of recent volcanic and tectonic provinces along the Comoros archipelago (North Mozambique Channel) ─ Preliminary results of the SISMAORE oceanographic cruise (ANR-COYOTES project)
- Author
-
Thinon, Isabelle, Lemoine, Anne, Leroy, Sylvie, Berthod, C., Bernard, J., Bignon, J., Boymond, P., Bujan, S., Canva, A., Chamot-rooke, N., Clouard, V., Dassie, E., Delescluse, M., Doubre, C., Famin, V., Feuillet, N., Franke, D., Jacques, E., Jorry, S., Masquelet, C., Mercury, N., Paquet, F., Rolandone, F., Rusquet, A., Scalabrin, C., Woerd, J. Van der, Watremez, L., Zaragosi, S., Sadeski, L., Michon, L., Sauter, D., Deplus, Christine, Bachèlery, Patrick, Bureau de Recherches Géologiques et Minières (BRGM) (BRGM), Institut des Sciences de la Terre de Paris (iSTeP), Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Institut national des sciences de l'Univers (INSU - CNRS), Laboratoire Magmas et Volcans (LMV), Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut de Recherche pour le Développement et la société-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Institut national des sciences de l'Univers (INSU - CNRS), Unité de Biotechnologie, Biocatalyse et Biorégulation (U3B), Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS), Environnements et Paléoenvironnements OCéaniques (EPOC), Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), UMR 5805 Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC), Géoazur (GEOAZUR 7329), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), Laboratoire de géologie de l'ENS (LGENS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Géosciences Environnement Toulouse (GET), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Ecole et Observatoire des Sciences de la Terre (EOST), Université de Strasbourg (UNISTRA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire GéoSciences Réunion (LGSR), Université de La Réunion (UR)-Institut de Physique du Globe de Paris, Centre National de la Recherche Scientifique (CNRS)-Université de La Réunion (UR)-Université Paris Diderot - Paris 7 (UPD7)-IPG PARIS-Institut national des sciences de l'Univers (INSU - CNRS), Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Laboratoire Environnements Sédimentaires - Géosciences Marines (GM/LES), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), BRGM – French Geological Survey, 45060 Orléans, France, Université de La Réunion - Faculté des Sciences et Technologies (FST), Université de La Réunion (UR), Institut Français de Recherche pour l'Exploitation de la Mer - Brest (IFREMER Centre de Bretagne), Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 (LOG), Institut national des sciences de l'Univers (INSU - CNRS)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Institut de physique du globe de Strasbourg (IPGS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement et la société-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement et la société-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Université Jean Monnet [Saint-Étienne] (UJM), Centre National de la Recherche Scientifique (CNRS)-Université de Nantes (UN), Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Centre National de la Recherche Scientifique (CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA), Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), ANr COYOTES, ANR-19-CE31-0018,COYOTES,COmores & maYotte : vOlcanisme, TEctonique et Sismicité(2019), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Institut national des sciences de l'Univers (INSU - CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Université Jean Monnet [Saint-Étienne] (UJM), Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA), Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), and Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])
- Subjects
Comoros archipelago ,Mayotte ,inheritance ,ANR COYOTES ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Mozambique Channel ,Recent tectonic and volcanic deformation ,SISMAORE - Abstract
International audience; A new geophysical and geological dataset, acquired during the SISMAORE oceanographic campaign (2020-2021), reveals a recent tectonic and volcanic deformation distributed over 130km in the abyssal plain that permit to unravel the unconstrained lithospheric plate boundaries between Lwandle and Somalia blocks and the controversial origin of the Comoros Archipelago.Two recent submarine volcanic and tectonic provinces of 5000km2, with a large number of varied volcanic structures and faults, are unveiled: the N160° N'Droundé (north of Grande-Comore) and the N130° Mwezi provinces (north of Anjouan/Mayotte). Dredged Mwezi rocks suggest a recent gas-rich volcanic activity. It is also identified a recent N130° trending volcanic structures (cones, lava flows, eruptive fissures) between Anjouan and Mayotte in agreement with the presence of shallow earthquakes, and also recent lava flows on the southern flanks of the Grande Comore and Moheli. Southwards, recent sedimentation is important with no volcanism and deformation. A consistent sedimentary thickness covers the flanks of Mayotte and Anjouan and the presence of large areas of submarine instability at the foot and on the slope of the islands is confirmed.These first observations suggest a transtensional deformation, accommodated by dextral strike-slip motion, strongly influenced by pre-existing structuration of the Mesozoic oceanic crust and by the East Africa Rift system. The 130km wide zone of intraplate deformation characterizes an immature lithospheric plate boundary of the north Lwandle block.
- Published
- 2021
3. Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models
- Author
-
Doin, M.-P., Lasserre, C., Peltzer, G., Cavalié, O., and Doubre, C.
- Published
- 2009
- Full Text
- View/download PDF
4. Coda-Q in the 2.5-20 s period band from seismic noise : application to the greater Alpine area
- Author
-
Soergel, D., Pedersen, H. A., Stehly, L., Margerin, L., Paul, A., Hetenyi, G., Abreu, R., Allegretti, I., Apoloner, M. T., Aubert, C., De Berc, M. B., Bokelmann, G., Brunel, D., Capello, M., Carman, M., Cavaliere, A., Cheze, J., Chiarabba, C., Clinton, J., Cougoulat, G., Crawford, W., Cristiano, L., Czifra, T., D'Alema, E., Danesi, S., Daniel, R., Dasovic, I., Deschamps, A., Dessa, J. X., Doubre, C., Egdorf, S., Fiket, T., Fischer, K., Friederich, W., Fuchs, F., Funke, S., Giardini, D., Govoni, A., Graczer, Z., Groschl, G., Heimers, S., Heit, B., Herak, D., Herak, M., Huber, J., Jaric, D., Jedlicka, P., Jia, Y., Jund, H., Kissling, E., Klingen, S., Klotz, B., Kolinsky, P., Korn, M., Kotek, J., Kuhne, L., Kuk, K., Loos, J., Malengros, D., Margheriti, L., Maron, C., Martin, X., Massa, M., Mazzarini, F., Meier, T., Metral, L., Molinari, I., Moretti, M., Munzarova, H., Nardi, A., Pahor, J., Pequegnat, C., Pesaresi, D., Piccinini, D., Piromallo, C., Plenefisch, T., Plomerova, J., Pondrelli, S., Prevolnik, S., Racine, R., Régnier, Marc, Reiss, M., Ritter, J., Rumpker, G., Salimbeni, S., Schulte-Kortnack, D., Scherer, W., Schippkus, S., Sipka, V., Spallarossa, D., Spieker, K., Stipcevic, J., Strollo, A., Sule, B., Szanyi, G., Szucs, E., Thomas, C., Tilmann, F., Ueding, S., Vallocchia, M., Vecsey, L., Voigt, R., Wassermann, J., Weber, Z., Weidle, C., Wesztergom, V., Weyland, G., Wiemer, S., Wolyniec, D., Zieke, T., Zivvic, M., and AlpArray Working Group
- Subjects
Europe ,surface waves and free oscillations ,Coda waves ,seismic attenuation ,seismic noise ,wave scattering and diffraction - Abstract
Coda-Q is used to estimate the attenuation and scattering properties of the Earth. So far focus has been on earthquake data at frequencies above 1 Hz, as the high noise level in the first and second microseismic peak, and possibly lower scattering coefficient, hinder stable measurements at lower frequencies. In this work, we measure and map coda-Q in the period bands 2.5-5 s, 5-10 s and 10-20 s in the greater Alpine region using noise cross-correlations between station pairs, based on data from permanent seismic stations and from the temporary AlpArray experiment. The observed coda-Q for short interstation distances is independent of azimuth so there is no indication of influence of the directivity of the incoming noise field on our measurements. In the 2.5-5 s and 5-10 s period bands, our measurements are self-consistent, and we observe stable geographic patterns of low and high coda-Q in the period bands 2.5-5 s and 5-10 s. In the period band 10-20 s, the dispersion of our measurements increases and geographic patterns become speculative. The coda-Q maps show that major features are observed with high resolution, with a very good geographical resolution of for example low coda-Q in the Po Plain. There is a sharp contrast between the Po Plain and the Alps and Apennines where coda-Q is high, with the exception a small area in the Swiss Alps which may be contaminated by the low coda-Q of the Po Plain. The coda of the correlations is too short to make independent measurements at different times within the coda, so we cannot distinguish between intrinsic and scattering Q. Measurements on more severely selected data sets and longer time-series result in identical geographical patterns but lower numerical values. Therefore, high coda-Q values may be overestimated, but the geographic distribution between high and low coda-Q areas is respected. Our results demonstrate that noise correlations are a promising tool for extending coda-Q measurements to frequencies lower than those analysed with earthquake data.
- Published
- 2020
5. Deep Transient Slow Slip Detected by Survey GPS in the Region of Atacama, Chile
- Author
-
Klein, E., Duputel, Z., Zigone, D., Vigny, C., Boy, J.‐P., Doubre, C., Meneses, G., Sismologie (IPGS) (IPGS-Sismologie), Institut de physique du globe de Strasbourg (IPGS), Université de Strasbourg (UNISTRA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Ecole et Observatoire des Sciences de la Terre (EOST), Université de Strasbourg (UNISTRA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de géologie de l'ENS (LGENS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Dynamique globale (IPGS) (IPGS-DG), Déformation active (IPGS) (IPGS-DA), Laboratoire de géologie de l'ENS (LGE), Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris)-École normale supérieure - Paris (ENS Paris)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.STU.TE]Sciences of the Universe [physics]/Earth Sciences/Tectonics ,[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2018
- Full Text
- View/download PDF
6. Imaging lithospheric discontinuities beneath the Northern East African Rift using S -to-P receiver functions
- Author
-
Lavayssière, A., Rychert, C., Harmon, N., Keir, D., Hammond, James O.S., Kendall, J.-M., Doubre, C., and Leroy, S.
- Subjects
es - Abstract
Imaging the lithosphere is key to understand mechanisms of extension as rifting progresses. Continental rifting results in a combination of mechanical stretching and thinning of the lithosphere, decompression upwelling, heating, sometimes partial melting of the asthenosphere, and potentially partial melting of the mantle lithosphere. The northern East African Rift system is an ideal locale to study these processes as it exposes the transition from tectonically active continental rifting to incipient seafloor spreading. Here we use S‐to‐P receiver functions to image the lithospheric structure beneath the northernmost East African Rift system where it forms a triple junction between the Main Ethiopian rift, the Red Sea rift, and the Gulf of Aden rift. We image the Moho at 31 ± 6 km beneath the Ethiopian plateau. The crust is 28 ± 3 km thick beneath the Main Ethiopian rift and thins to 23 ± 2 km in northern Afar. We identify a negative phase, a velocity decrease with depth, at 67 ± 3 km depth beneath the Ethiopian plateau, likely associated with the lithosphere‐asthenosphere boundary (LAB), and a lack of a LAB phase beneath the rift. Using observations and waveform modeling, we show that the LAB phase beneath the plateau is likely defined by a small amount of partial melt. The lack of a LAB phase beneath the rift suggests melt percolation through the base of the lithosphere beneath the northernmost East African Rift system.
- Published
- 2018
7. Rifting Processes at a Continent‐Ocean Transition Rift Revealed by Fault Analysis: Example of Dabbahu‐Manda‐Hararo Rift (Ethiopia)
- Author
-
Dumont, S., primary, Klinger, Y., additional, Socquet, A., additional, Escartín, J., additional, Grandin, R., additional, Jacques, E., additional, Medynski, S., additional, and Doubre, C., additional
- Published
- 2019
- Full Text
- View/download PDF
8. Automatic approach for increasing the location accuracy of slow-moving landslide endogenous seismicity: the APOLoc method
- Author
-
Provost, F, primary, Malet, J-P, additional, Gance, J, additional, Helmstetter, A, additional, and Doubre, C, additional
- Published
- 2018
- Full Text
- View/download PDF
9. Small-scale thermal upwellings under the Northern East African Rift from S travel-time tomography
- Author
-
Civiero, C., Goes, S., Hammond, J. O. S., Fishwick, S., Ahmed, A., Ayele, A., Doubre, C., Goitom, B., Keir, D., Kendal, J-M., Leroy, S., Ogubazghi, G., Rumpker, G., Stuart, G. W., Department of Earth Science and Technology [Imperial College London], Imperial College London, Department of Geology [Leicester], University of Leicester, Institut des Sciences de la Terre de Paris (iSTeP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Addis Ababa University (AAU), Institut de physique du globe de Strasbourg (IPGS), Université de Strasbourg (UNISTRA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), University of Bristol [Bristol], National Ocenalography Centre Southampton, University of Southampton, Department of Earth Sciences, University of Asmara, University of Asmara, Goethe-University Frankfurt am Main, School of Earth and Environment [Leeds] (SEE), University of Leeds, Natural Environment Research Council (NERC), Department of Earth and Planetary Sciences [UCL/Birkbeck], Birkbeck College [University of London], Seismological and Volcanological, Observatory Center, National Oceanography Centre [Southampton] (NOC), and Institute of Geophysics and Tectonics, School of Earth and Environment
- Subjects
es ,[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,transition zone ,ddc:550 ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,cps ,East Africa ,mantle plumes ,S velocity ,tomography ,Geophysics ,Oceanography ,Forestry ,Ecology ,Aquatic Science ,Water Science and Technology ,Soil Science ,Geochemistry and Petrology ,Earth-Surface Processes ,Atmospheric Science ,Earth and Planetary Sciences (miscellaneous) ,Space and Planetary Science ,Paleontology - Abstract
International audience; There is a long-standing debate over how many and what types of plumes underlie the East African Rift and whether they do or do not drive its extension and consequent magmatism and seismicity. Here we present a new tomographic study of relative teleseismic S and SKS residuals that expands the resolution from previous regional studies below the northern East African Rift to image structure from the surface to the base of the transition zone. The images reveal two low-velocity clusters, below Afar and west of the Main Ethiopian Rift, that extend throughout the upper mantle and comprise several smaller-scale (about 100 km diameter), low-velocity features. These structures support those of our recent P tomographic study below the region. The relative magnitude of S to P residuals is around 3.5, which is consistent with a predominantly thermal nature of the anomalies. The S and P velocity anomalies in the low-velocity clusters can be explained by similar excess temperatures in the range of 100–200°C, consistent with temperatures inferred from other seismic, geochemical, and petrological studies. Somewhat stronger V S anomalies below Afar than west of the Main Ethiopian Rift may include an expression of volatiles and/or melt in this region. These results, together with a comparison with previous larger-scale tomographic models, indicate that these structures are likely small-scale upwellings with mild excess temperatures, rising from a regional thermal boundary layer at the base of the upper mantle.
- Published
- 2016
- Full Text
- View/download PDF
10. Transient deformation in the Asal-Ghoubbet Rift (Djibouti) since the 1978 diking event: Is deformation controlled by magma supply rates?
- Author
-
Smittarello, D., Grandin, R., De Chabalier, J-B, Doubre, C., Deprez, A., Masson, F., Socquet, A., Saad, I, Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), Institut de physique du globe de Strasbourg (IPGS), Université de Strasbourg (UNISTRA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences de la Terre (ISTerre), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Observatoire Géophysique d'Arta, CERD, École normale supérieure - Paris (ENS Paris), Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de La Réunion (UR)-Université Paris Diderot - Paris 7 (UPD7)-IPG PARIS-Institut national des sciences de l'Univers (INSU - CNRS), and Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut national des sciences de l'Univers (INSU - CNRS)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Université Joseph Fourier - Grenoble 1 (UJF)
- Subjects
[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] - Abstract
International audience; The Asal-Ghoubbet Rift (AG Rift) in Djibouti lies in the subaerial continuation of the Aden ridge system, thereby constituting a unique location to study rifting processes and mechanisms involved in continental breakup and oceanic spreading. Continually upgraded and expanded geodetic technology has been used to record the 1978 Asal rifting event and postdiking deformation. In light of recent results obtained for the Manda Hararo-Dabbahu rifting event (2005–2010), we propose that the horizontal and vertical geodetic data can be modeled with a double source, involving a dike-like inflation component aligned along the rift axis and a spherical pressure source located at midsegment below the Fieale caldera. By revisiting the codiking data, we propose that the reservoir below Fieale could have fed, at least partially, the 1978 injection and the contemporaneous Ardoukôba eruption and potentially induced local subsidence due to magma draining out of the central reservoir. As an alternative to previously proposed viscoelastic relaxation models, we reinterpret postdiking observations using a purely elastic rheology. We determine the relative contribution of a midsegment reservoir inflation and a dike-like opening component, together with their respective time evolutions. Our results suggest that interactions between steadily accumulating tectonic strain and temporal variations in melt supply to the shallow magma plumbing system below the AG Rift may entirely explain the geodetic observations and that viscoelastic deformation processes played a minor role in the 30 years following the 1978 rifting event.
- Published
- 2016
- Full Text
- View/download PDF
11. Revisiting the 1992 Landers earthquake: a Bayesian exploration of co-seismic slip and off-fault damage
- Author
-
Gombert, B, primary, Duputel, Z, additional, Jolivet, R, additional, Doubre, C, additional, Rivera, L, additional, and Simons, M, additional
- Published
- 2017
- Full Text
- View/download PDF
12. Seismicity during lateral dike propagation: Insights from new data in the recent Manda Hararo-Dabbahu rifting episode (Afar, Ethiopia)
- Author
-
Grandin, Raphael, Jacques, E., Nercessian, A., Ayele, A, Doubre, C., Socquet, A., Keir, D., Kassim, M., Lemarchand, A., King, G. C. P., Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), Institut d'Électronique et des Technologies du numéRique (IETR), Université de Nantes (UN)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Institut de physique du globe de Strasbourg (IPGS), Université de Strasbourg (UNISTRA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences de la Terre (ISTerre), Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-PRES Université de Grenoble-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), National Oceanography Centre (NOC), Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique du Globe de Paris, Laboratoire de géologie de l'ENS (LGE), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris)-École normale supérieure - Paris (ENS Paris), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), Institute of Geophysics, Space Sciences and Astronomy [Addis Ababa], Addis Ababa University (AAU), Centre National de la Recherche Scientifique (CNRS)-Université de La Réunion (UR)-Université Paris Diderot - Paris 7 (UPD7)-IPG PARIS-Institut national des sciences de l'Univers (INSU - CNRS), Observatoire Géophysique d'Arta, CERD, Laboratoire de tectonique, mécanique de la lithosphère (LTML), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-IPG PARIS, ANR-09-JCJC-0051,DoRA,Dynamics of Rifting in Afar(2009), Laboratoire de géologie de l'ENS (LGENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de tectonique, mécanique de la lithosphère (LTML (UMR_7578)), IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), ANR-09-JCJC-0051,DoRA(2009), Institut d'Electronique et de Télécommunications de Rennes (IETR), Université de Nantes (UN)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut national des sciences de l'Univers (INSU - CNRS)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Université Joseph Fourier - Grenoble 1 (UJF), Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Nantes Université (NU)-Université de Rennes 1 (UR1), and Centre National de la Recherche Scientifique (CNRS)-PRES Université de Grenoble-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])
- Subjects
[SDU.STU.TE]Sciences of the Universe [physics]/Earth Sciences/Tectonics ,Structural Geology: Fractures and faults ,[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,Mid‐ocean ridge ,dike intrusion ,mechanics of the lithosphere ,mid-ocean ridge ,Geophysics ,Geochemistry and Petrology ,Mechanics of the lithosphere ,Dike intrusion ,Geodesy and Gravity: Seismic cycle related deformations ,Seismology: Mid-ocean ridges - Abstract
International audience; Seismicity released during lateral dike intrusions in the Manda Hararo–Dabbahu Rift (Afar, Ethiopia) provides indirect insight into the distribution and evolution of tensile stress along this magma‐assisted divergent plate boundary. In this paper, 5 dike intrusions among the 14 that form the 2005–present rifting episode are analyzed with local and regional seismic data. During dike intrusions, seismicity migrates over distances of 10–15 km at velocities of 0.5–3.0 km/h away from a single reservoir in the center of the rift segment, confirming the analogy with a slow spreading mid‐ocean ridge segment. Comparison with geodetic data shows that the reservoir is located 7 km down rift from the topographic summit of the axial depression. Dikes emplaced toward the north are observed to migrate faster and to be more voluminous than those migrating southward, suggesting an asymmetry of tension in the brittle‐elastic lithosphere. Seismicity during dike injections is concentrated near the propagating crack front. In contrast, faults and fissures in the subsurface appear to slip or open aseismically coeval with the intrusions. The seismic energy released during dike intrusions in the Manda Hararo Rift appears to be primarily modulated by the local magnitude of differential tensile stress and marginally by the rate of stress change induced by the intrusion. The low level of seismic energy accompanying dike intrusions, despite their significant volumes, is likely an indicator of an overall low level of tension in the lithosphere of this nascent plate boundary.
- Published
- 2011
- Full Text
- View/download PDF
13. Magmatism on rift flanks: Insights from ambient noise phase velocity in Afar region
- Author
-
Korostelev, F. (author), Weemstra, C. (author), Leroy, S. (author), Boschi, L. (author), Keir, D. (author), Ren, Y. (author), Molinari, I. (author), Ahmed, A. (author), Stuart, G.W. (author), Rolandone, F. (author), Khanbari, K. (author), Hammond, J.O.S. (author), Kendall, M.K. (author), Doubre, C. (author), Al Ganad, I. (author), Goitom, B. (author), Ayele, A. (author), Korostelev, F. (author), Weemstra, C. (author), Leroy, S. (author), Boschi, L. (author), Keir, D. (author), Ren, Y. (author), Molinari, I. (author), Ahmed, A. (author), Stuart, G.W. (author), Rolandone, F. (author), Khanbari, K. (author), Hammond, J.O.S. (author), Kendall, M.K. (author), Doubre, C. (author), Al Ganad, I. (author), Goitom, B. (author), and Ayele, A. (author)
- Abstract
During the breakup of continents in magmatic settings, the extension of the rift valley is commonly assumed to initially occur by border faulting and progressively migrate in space and time toward the spreading axis. Magmatic processes near the rift flanks are commonly ignored. We present phase velocity maps of the crust and uppermost mantle of the conjugate margins of the southern Red Sea (Afar and Yemen) using ambient noise tomography to constrain crustal modification during breakup. Our images show that the low seismic velocities characterize not only the upper crust beneath the axial volcanic systems but also both upper and lower crust beneath the rift flanks where ongoing volcanism and hydrothermal activity occur at the surface. Magmatic modification of the crust beneath rift flanks likely occurs for a protracted period of time during the breakup process and may persist through to early seafloor spreading., Geoscience & Engineering, Civil Engineering and Geosciences
- Published
- 2015
- Full Text
- View/download PDF
14. Surface displacements on faults triggered by slow magma transfers between dyke injections in the 2005–2010 rifting episode at Dabbahu–Manda–Hararo rift (Afar, Ethiopia)
- Author
-
Dumont, S., primary, Socquet, A., additional, Grandin, R., additional, Doubre, C., additional, and Klinger, Y., additional
- Published
- 2015
- Full Text
- View/download PDF
15. Analysis of a landslide multi-date inventory in a complex mountain landscape: the Ubaye valley case study
- Author
-
Schlögel, R., primary, Malet, J.-P., additional, Reichenbach, P., additional, Remaître, A., additional, and Doubre, C., additional
- Published
- 2015
- Full Text
- View/download PDF
16. Structural control on the kinematics of the deep-seated La Clapière landslide revealed by L-band InSAR observations
- Author
-
Schlögel, R., primary, Malet, J.-P., additional, Doubre, C., additional, and Lebourg, T., additional
- Published
- 2015
- Full Text
- View/download PDF
17. Le pointage est aussi un outil de préservation des races ! Regard sur l'Ardennais et le Cob normand
- Author
-
Danvy, S., Doubre, C., Bois, J.B., Hemery, L., Ricard, André, and ProdInra, Migration
- Subjects
[SDV] Life Sciences [q-bio] ,[SDV]Life Sciences [q-bio] ,LINEAR SCORING ,HORSES ,ComputingMilieux_MISCELLANEOUS - Abstract
National audience
- Published
- 2009
18. Estimating tropospheric phase delay in SAR interferograms using Global Atmospheric Models
- Author
-
Doin, M.-P., Lasserre, Cécile, Peltzer, G., Cavalié, O., Doubre, C., Laboratoire de géologie de l'ENS (LGENS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratoire de Géophysique Interne et Tectonophysique (LGIT), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Central des Ponts et Chaussées (LCPC)-Centre National de la Recherche Scientifique (CNRS), Jet Propulsion Laboratory (JPL), California Institute of Technology (CALTECH)-NASA, Department of Earth and Space Sciences [Los Angeles], University of California [Los Angeles] (UCLA), University of California-University of California, Institut de physique du globe de Strasbourg (IPGS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS), Laboratoire de géologie de l'ENS (LGE), École normale supérieure - Paris (ENS Paris)-École normale supérieure - Paris (ENS Paris), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Laboratoire Central des Ponts et Chaussées (LCPC)-Institut des Sciences de la Terre (ISTerre), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut national des sciences de l'Univers (INSU - CNRS)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR), and NASA-California Institute of Technology (CALTECH)
- Subjects
[SDU]Sciences of the Universe [physics] - Abstract
The main limiting factor on the accuracy of Interferometric SAR (InSAR) measurements comes from phase propagation delays through the Earth's troposphere. The delay can be divided into a stratified component, which correlates with the topography and often dominates the tropospheric signal in InSAR data, and a turbulent component. The stratified delay can be expressed as a function of atmospheric pressure P, temperature T, and water vapor partial pressure e vertical profiles. We compare the stratified delay computed using results from global atmospheric models with the topography-dependent signal observed in interferograms covering three test areas in different geographic and climatic environments: Lake Mead, Nevada, USA, the Haiyuan fault area, Gansu, China, and Afar, Republic of Djibouti. For each site we compute a multi-year series of interferograms. The phase-elevation ratio is estimated for each interferogram and the series is inverted to form a timeline of delay-elevation ratios characterizing each epoch of data acquisition. InSAR derived ratios are in good agreement with the ratios computed from global atmospheric models. This agreement shows that both estimations of the delay-elevation ratio can be used to perform a first order correction of the InSAR phase. Seasonal variations of the atmosphere significantly affect the phase delay throughout the year, aliasing the results of time series inversions using temporal smoothing or data stacking when the acquisitions are not evenly distributed in time. This is particularly critical when the spatial shape of the signal of interest correlates with topography. In the Lake Mead area, the irregular temporal sampling of our SAR data results in an interannual bias of amplitude ~2~cm on range change estimates. In the Haiyuan Fault area, the coarse and uneven data sampling results in a bias of up to ~0.5~cm/yr on the line of sight velocity across the fault. In the Afar area, the seasonal signal exceeds the deformation signal in the phase time series. In all cases, correcting interferograms from the stratified delay helps removing these biases. Finally we suggest that the phase delay correction can potentially be improved by introducing a non-linear dependance to the elevation, as consistent non-linear relationships are observed in many interferograms as well as in global atmospheric models.
- Published
- 2008
19. Revisiting the 1992 Landers earthquake: a Bayesian exploration of co-seismic slip and off-fault damage.
- Author
-
Gombert, B., Duputel, Z., Jolivet, R., Doubre, C., Rivera, L., and Simons, M.
- Subjects
EARTHQUAKES ,BAYESIAN analysis ,GEOLOGIC faults ,MATHEMATICAL regularization ,GREEN'S functions ,GEOMORPHIC cycle - Abstract
Existing models for the distribution of subsurface fault slip associated with the 1992 Landers, CA, earthquake (M
w =7.3) show significant dissimilarities. In particular, they exhibit different amounts of slip at shallow depths (<5 km). These discrepancies can be primarily attributed to the ill-posed nature of the slip inversion problem and to the use of physically unjustifiable smoothing or regularization constraints. In this study, we propose a new coseismic model obtained from the joint inversion of multiple observations in a relatively unregularized and fully Bayesian framework. We use a comprehensive data set including GPS, terrestrial geodesy, multiple SAR interferograms and co-seismic offsets from correlation of aerial images. These observations provide dense coverage of both near- and far-field deformation. To limit the impact of modelling uncertainties, we develop a 3-D fault geometry designed from field observations, co-seismic offsets and the distribution of aftershocks. In addition, we account for uncertainty in the assumed elastic structure used to compute the Green's functions. Our solution includes the ensemble of all plausible models that are consistent with our prior information and fit the available observations within data and prediction uncertainties. Using near-fault high-resolution ground deformation measurements and the density of aftershocks, we investigate the properties of the damage zone and its impact on the inferred slip at depth. We attribute a part of the inferred slip deficit at shallow depth to our models not including the impact of a damage zone associated with a reduction of shear modulus in the vicinity of the fault. [ABSTRACT FROM AUTHOR]- Published
- 2018
- Full Text
- View/download PDF
20. Rifting à l'aplomb dメun point chaud. LメIslande comme analogue des marges passives volcaniques
- Author
-
Bourgeois, O., Dauteuil, O., Doubre, C., Ballandier, A., Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), and Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Published
- 2004
21. Uppermost mantle velocity from Pn tomography in the Gulf of Aden
- Author
-
Corbeau, Jordane, primary, Rolandone, F., additional, Leroy, S., additional, Al-Lazki, A., additional, Stork, A.L., additional, Keir, D., additional, Stuart, G.W., additional, Hammond, J.O.S., additional, Doubre, C., additional, Vergne, J., additional, Ahmed, A., additional, and Khanbari, K., additional
- Published
- 2014
- Full Text
- View/download PDF
22. Recent land subsidence caused by the rapid urban development in the Hanoi region (Vietnam) using ALOS InSAR data
- Author
-
Dang, V. K., primary, Doubre, C., additional, Weber, C., additional, Gourmelen, N., additional, and Masson, F., additional
- Published
- 2014
- Full Text
- View/download PDF
23. Recent land subsidence caused by the rapid urban development in the Hanoi urban region (Vietnam) using ALOS InSAR data
- Author
-
Dang, V. K., primary, Doubre, C., additional, Weber, C., additional, Masson, F., additional, and Gourmelen, N., additional
- Published
- 2013
- Full Text
- View/download PDF
24. Surface displacements on faults triggered by slow magma transfers between dyke injections in the 2005–2010 rifting episode at Dabbahu–Manda–Hararo rift (Afar, Ethiopia).
- Author
-
Dumont, S., Socquet, A., Grandin, R., Doubre, C., and Klinger, Y.
- Subjects
GEOLOGIC faults ,MAGMAS ,DIKES (Geology) ,DEFORMATION of surfaces ,SEISMOLOGICAL research - Abstract
The rifting episode that occurred in Dabbahu–Manda–Hararo (Ethiopia) between 2005 and 2010 during which 14 dyke intrusions were emitted, was a unique opportunity to study interactions between tectonic deformation and magmatic processes. While magmatism has been shown to control primarily the spatial and temporal distribution of dyke intrusions during this accretion sequence, the role of faults in accommodating plate spreading in rift segments is poorly understood. During interdyking periods, transient ground deformation due to magma movement is generally observed. Investigating such a small-scale deformation and in particular the movement along faults during these periods will help understanding the factors that trigger fault movement in magmatic rifts. We analyse fault activity during three interdyking periods: 2006 December–June (d0–d1), 2007 January–July (d5–d6) and 2009 November–January (d10–d11). The time–space evolution of surface displacements along ~700 faults is derived from pairs of ascending and descending SAR interferograms. Surface slip distributions are then compared with codyking ground deformation fields. The results show that faults are mainly activated above the areas affected by magma emplacement during interdyking periods. A detailed analysis of brittle deformation during the six months following the 2005 September intrusion shows asymmetric deformation on the rift shoulders, with significant opening on faults located to the west of the dyke. We explain this feature by the activation of westward dipping pre-existing faults, with block rotations in between. In addition, we observe that the strip encompassing the activated faults narrows by 30?per?cent from co- to interdyking period. This suggests that magma keeps migrating to shallower depths after the dyke intrusion. During a rifting episode, activation of faults in a pre-existing fracture network therefore seems to be mainly controlled by deep magma processes. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
25. Crustal structure and magmato‐tectonic processes in an active rift (Asal‐Ghoubbet, Afar, East Africa): 2. Insights from the 23‐year recording of seismicity since the last rifting event
- Author
-
Doubre, C., primary, Manighetti, I., additional, Dorbath, L., additional, Dorbath, C., additional, Bertil, D., additional, and Delmond, J. C., additional
- Published
- 2007
- Full Text
- View/download PDF
26. Crustal structure and magmato‐tectonic processes in an active rift (Asal‐Ghoubbet, Afar, East Africa): 1. Insights from a 5‐month seismological experiment
- Author
-
Doubre, C., primary, Manighetti, I., additional, Dorbath, C., additional, Dorbath, L., additional, Jacques, E., additional, and Delmond, J. C., additional
- Published
- 2007
- Full Text
- View/download PDF
27. Slip accumulation and lateral propagation of active normal faults in Afar
- Author
-
Manighetti, I., primary, King, G. C. P., additional, Gaudemer, Y., additional, Scholz, C. H., additional, and Doubre, C., additional
- Published
- 2001
- Full Text
- View/download PDF
28. FMHex20: An earthquake focal mechanism database for seismotectonic analyses in metropolitan France and bordering regions
- Author
-
Mazzotti Stephane, Aubagnac Clémence, Bollinger Laurent, Coca Oscanoa Karla, Delouis Bertrand, Do Paco Denis, Doubre Cécile, Godano Maxime, Jomard Hervé, Larroque Christophe, Laurendeau Aurore, Masson Frédéric, Sylvander Matthieu, and Trilla Aurélie
- Subjects
focal mechanism ,earthquake ,seismotectonics ,metropolitan france ,Geology ,QE1-996.5 - Abstract
We present a compilation of over 1700 focal mechanisms for nearly 1300 earthquakes in metropolitan France and bordering regions of Western Europe. It is based on both published and unpublished sources (articles, reports, observatory websites) for which the focal mechanism solutions have been verified for internal consistency, corrected in cases of minor errors and rejected in cases of major inconsistencies between the parameters. The database, labeled FMHex20, is a first version and should be regularly updated in the future as part of an ongoing effort within the Seismicity Transverse Action of the French Résif research infrastructure. We also present first-order seismotectonic analyses for the whole metropolitan France and for two regions (Western France and Northern Alps-Jura-Vosges) to illustrate how the FMHex20 database can serve as a basis for geodynamic or seismic hazard zonation studies. Combined with complementary datasets, it can improve our understanding of the kinematics of potentially active faults, including in very-low-strain-rate regions as is the case for most of France.
- Published
- 2021
- Full Text
- View/download PDF
29. Imaging Lithospheric Discontinuities Beneath the Northern East African Rift Using S -to- P Receiver Functions.
- Author
-
Lavayssière A, Rychert C, Harmon N, Keir D, Hammond JOS, Kendall JM, Doubre C, and Leroy S
- Abstract
Imaging the lithosphere is key to understand mechanisms of extension as rifting progresses. Continental rifting results in a combination of mechanical stretching and thinning of the lithosphere, decompression upwelling, heating, sometimes partial melting of the asthenosphere, and potentially partial melting of the mantle lithosphere. The northern East African Rift system is an ideal locale to study these processes as it exposes the transition from tectonically active continental rifting to incipient seafloor spreading. Here we use S -to- P receiver functions to image the lithospheric structure beneath the northernmost East African Rift system where it forms a triple junction between the Main Ethiopian rift, the Red Sea rift, and the Gulf of Aden rift. We image the Moho at 31 ± 6 km beneath the Ethiopian plateau. The crust is 28 ± 3 km thick beneath the Main Ethiopian rift and thins to 23 ± 2 km in northern Afar. We identify a negative phase, a velocity decrease with depth, at 67 ± 3 km depth beneath the Ethiopian plateau, likely associated with the lithosphere-asthenosphere boundary (LAB), and a lack of a LAB phase beneath the rift. Using observations and waveform modeling, we show that the LAB phase beneath the plateau is likely defined by a small amount of partial melt. The lack of a LAB phase beneath the rift suggests melt percolation through the base of the lithosphere beneath the northernmost East African Rift system.
- Published
- 2018
- Full Text
- View/download PDF
30. The AlpArray Seismic Network: A Large-Scale European Experiment to Image the Alpine Orogen.
- Author
-
Hetényi G, Molinari I, Clinton J, Bokelmann G, Bondár I, Crawford WC, Dessa JX, Doubre C, Friederich W, Fuchs F, Giardini D, Gráczer Z, Handy MR, Herak M, Jia Y, Kissling E, Kopp H, Korn M, Margheriti L, Meier T, Mucciarelli M, Paul A, Pesaresi D, Piromallo C, Plenefisch T, Plomerová J, Ritter J, Rümpker G, Šipka V, Spallarossa D, Thomas C, Tilmann F, Wassermann J, Weber M, Wéber Z, Wesztergom V, and Živčić M
- Abstract
The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps-Apennines-Carpathians-Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.