1. Performance of Human Annotators in Object Detection and Segmentation of Remotely Sensed Data
- Author
-
Blushtein-Livnon, Roni, Svoray, Tal, and Dorman, Michael
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
This study introduces a laboratory experiment designed to assess the influence of annotation strategies, levels of imbalanced data, and prior experience, on the performance of human annotators. The experiment focuses on labeling aerial imagery, using ArcGIS Pro tools, to detect and segment small-scale photovoltaic solar panels, selected as a case study for rectangular objects. The experiment is conducted using images with a pixel size of 0.15\textbf{$m$}, involving both expert and non-expert participants, across different setup strategies and target-background ratio datasets. Our findings indicate that human annotators generally perform more effectively in object detection than in segmentation tasks. A marked tendency to commit more Type II errors (False Negatives, i.e., undetected objects) than Type I errors (False Positives, i.e. falsely detecting objects that do not exist) was observed across all experimental setups and conditions, suggesting a consistent bias in detection and segmentation processes. Performance was better in tasks with higher target-background ratios (i.e., more objects per unit area). Prior experience did not significantly impact performance and may, in some cases, even lead to overestimation in segmentation. These results provide evidence that human annotators are relatively cautious and tend to identify objects only when they are confident about them, prioritizing underestimation over overestimation. Annotators' performance is also influenced by object scarcity, showing a decline in areas with extremely imbalanced datasets and a low ratio of target-to-background. These findings may enhance annotation strategies for remote sensing research while efficient human annotators are crucial in an era characterized by growing demands for high-quality training data to improve segmentation and detection models., Comment: 14 pages, 10 figures, 2 tables
- Published
- 2024