1. Immunohistochemical distribution of cannabinoid receptor type 1 (CB1) and type 2 (CB2) in the rat carotid body.
- Author
-
Saito H, Yokoyama T, Nakamuta N, and Yamamoto Y
- Subjects
- Animals, Male, Rats, Rats, Wistar, Tyrosine 3-Monooxygenase metabolism, Dopamine beta-Hydroxylase metabolism, Carotid Body metabolism, Receptor, Cannabinoid, CB1 metabolism, Immunohistochemistry, Receptor, Cannabinoid, CB2 metabolism
- Abstract
The carotid body is a hypoxia-sensitive chemoreceptor that induces sensory long-term facilitation after exposure to chronic intermittent hypoxia. However, the mechanisms underlying synaptic plasticity in the carotid body remain unknown. In the present study, we examined the immunohistochemical distribution of cannabinoid receptor type 1 (CB1) and type 2 (CB2), which are candidate molecules involved in the modulation of synaptic transmission. Dot-like CB1 immunoreactivity was distributed in the perinuclear cytoplasm of chemoreceptor cells immunoreactive for the catecholamine-synthesizing enzymes, tyrosine hydroxylase and dopamine beta-hydroxylase. Furthermore, CB1 immunoreactivity was observed in sensory nerve endings immunoreactive for P2X
3 purinoceptors that colocalized with vesicular glutamate transporter 2. On the other hand, immunoreactivity for CB2 was mainly distributed in chemoreceptor cells, and was weakly observed in sensory nerve endings immunoreactive for P2X2 purinoceptors. The present results suggest that CB1 and CB2 regulate the release of catecholamines and glutamate from chemoreceptor cells and sensory nerve endings, respectively. Therefore, CB1 and CB2 may be involved in synaptic plasticity in the carotid body., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier GmbH.. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF