1. HDAC9 and miR-512 Regulate CAGE-Promoted Anti-Cancer Drug Resistance and Cellular Proliferation
- Author
-
Minjeong Yeon, Nayeon Kwon, Jaewhoon Jeoung, and Dooil Jeoung
- Subjects
anti-cancer drug resistance ,CAGEs ,HDAC9 ,miR-512 ,Biology (General) ,QH301-705.5 - Abstract
Histone deacetylase 9 (HDAC9) is known to be upregulated in various cancers. Cancer-associated antigens (CAGEs) are cancer/testis antigens that play an important role in anti-cancer drug resistance. This study aimed to investigate the relationship between CAGEs and HDAC9 in relation to anti-cancer drug resistance. AGSR cells with an anti-cancer drug-resistant phenotype showed higher levels of CAGEs and HDAC9 than normal AGS cells. CAGEs regulated the expression of HDAC9 in AGS and AGSR cells. CAGEs directly regulated the expression of HDAC9. Rapamycin, an inducer of autophagy, increased HDAC9 expression in AGS, whereas chloroquine decreased HDAC9 expression in AGSR cells. The downregulation of HDAC9 decreased the autophagic flux, invasion, migration, and tumor spheroid formation potential in AGSR cells. The TargetScan analysis predicted that miR-512 was a negative regulator of HDAC9. An miR-512 mimic decreased expression levels of CAGEs and HDAC9. The miR-512 mimic also decreased the autophagic flux, invasion, migration, and tumor spheroid forming potential of AGSR cells. The culture medium of AGSR increased the expression of HDAC9 and autophagic flux in AGS. A human recombinant CAGE protein increased HDAC9 expression in AGS cells. AGSR cells displayed higher tumorigenic potential than AGS cells. Altogether, our results show that CAGE–HDAC9–miR-512 can regulate anti-cancer drug resistance, cellular proliferation, and autophagic flux. Our results can contribute to the understanding of the molecular roles of HDAC9 in anti-cancer drug resistance.
- Published
- 2024
- Full Text
- View/download PDF