1. Effect of Impact Velocity and Angle on Impact Wear Behavior of Zr-4 Alloy Cladding Tube
- Author
-
Shi-Jia Yu, Yong Hu, Xin Liu, Dong-Xing Li, Li-Ping He, Jun Wang, and Zhen-Bing Cai
- Subjects
cladding tube ,Zr-4 alloy ,dynamic response ,impact wear mechanism ,Technology ,Electrical engineering. Electronics. Nuclear engineering ,TK1-9971 ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Microscopy ,QH201-278.5 ,Descriptive and experimental mechanics ,QC120-168.85 - Abstract
In the pressurized water reactor nuclear power plant, 316L SS chips were captured by the support grid and continued to affect the Zr-4 cladding tube, causing the fuel rods to wear and perforate. In this work, a 60° acute angle cone of 316L SS was used to simulate the cyclic impact of debris on a Zr-4 alloy tube with different initial impact velocities and impact angles. Results showed that increasing the initial impact velocity will generate a wear debris accumulation layer with a wear-reducing effect, but also promote the extension and expansion of fatigue cracks, resulting in the delamination of Zr-4 alloy tubes. The inclination of the impact angle increases the energy loss. The energy loss rate of the 45° impact is as high as 69.68%, of which 78% is generated by the impact-sliding stage. The normal force is mainly responsible for the wear removal and plastic deformation of Zr-4 alloy tubes. Tangential forces cause severe cutting in Zr-4 alloys and pushes the resulting wear debris away from the contact surfaces.
- Published
- 2022
- Full Text
- View/download PDF