1. Ballistic transport spectroscopy of spin-orbit-coupled bands in monolayer graphene on WSe2
- Author
-
Qing Rao, Wun-Hao Kang, Hongxia Xue, Ziqing Ye, Xuemeng Feng, Kenji Watanabe, Takashi Taniguchi, Ning Wang, Ming-Hao Liu, and Dong-Keun Ki
- Subjects
Science - Abstract
Abstract Van der Waals interactions with transition metal dichalcogenides were shown to induce strong spin-orbit coupling (SOC) in graphene, offering great promises to combine large experimental flexibility of graphene with unique tuning capabilities of the SOC. Here, we probe SOC-driven band splitting and electron dynamics in graphene on WSe2 by measuring ballistic transverse magnetic focusing. We found a clear splitting in the first focusing peak whose evolution in charge density and magnetic field is well reproduced by calculations using the SOC strength of ~ 13 meV, and no splitting in the second peak that indicates stronger Rashba SOC. Possible suppression of electron-electron scatterings was found in temperature dependence measurement. Further, we found that Shubnikov-de Haas oscillations exhibit a weaker band splitting, suggesting that it probes different electron dynamics, calling for a new theory. Our study demonstrates an interesting possibility to exploit ballistic electron motion pronounced in graphene for emerging spin-orbitronics.
- Published
- 2023
- Full Text
- View/download PDF