16 results on '"Doheny, K. F."'
Search Results
2. Design and Anticipated Outcomes of the eMERGE-PGx Project: A Multicenter Pilot for Preemptive Pharmacogenomics in Electronic Health Record Systems
- Author
-
Rasmussen-Torvik, L J, Stallings, S C, Gordon, A S, Almoguera, B, Basford, M A, Bielinski, S J, Brautbar, A, Brilliant, M H, Carrell, D S, Connolly, J J, Crosslin, D R, Doheny, K F, Gallego, C J, Gottesman, O, Kim, D S, Leppig, K A, Li, R, Lin, S, Manzi, S, Mejia, A R, Pacheco, J A, Pan, V, Pathak, J, Perry, C L, Peterson, J F, Prows, C A, Ralston, J, Rasmussen, L V, Ritchie, M D, Sadhasivam, S, Scott, S A, Smith, M, Vega, A, Vinks, A A, Volpi, S, Wolf, W A, Bottinger, E, Chisholm, R L, Chute, C G, Haines, J L, Harley, J B, Keating, B, Holm, I A, Kullo, I J, Jarvik, G P, Larson, E B, Manolio, T, McCarty, C A, Nickerson, D A, Scherer, S E, Williams, M S, Roden, D M, and Denny, J C
- Published
- 2014
- Full Text
- View/download PDF
3. A transcriptome-wide association study of 229,000 women identifies new candidate susceptibility genes for breast cancer
- Author
-
Wu, L. (Lang), Shi, W. (Wei), Long, J. (Jirong), Guo, X. (Xingyi), Michailidou, K. (Kyriaki), Beesley, J. (Jonathan), Bolla, M. K. (Manjeet K.), Shu, X.-O. (Xiao-Ou), Lu, Y. (Yingchang), Cai, Q. (Qiuyin), Al-Ejeh, F. (Fares), Rozali, E. (Esdy), Wang, Q. (Qin), Dennis, J. (Joe), Li, B. (Bingshan), Zeng, C. (Chenjie), Feng, H. (Helian), Gusev, A. (Alexander), Barfield, R. T. (Richard T.), Andrulis, I. L. (Irene L.), Anton-Culver, H. (Hoda), Arndt, V. (Volker), Aronson, K. J. (Kristan J.), Auer, P. L. (Paul L.), Barrdahl, M. (Myrto), Baynes, C. (Caroline), Beckmann, M. W. (Matthias W.), Benitez, J. (Javier), Bermisheva, M. (Marina), Blomqvist, C. (Carl), Bogdanova, N. V. (Natalia V.), Bojesen, S. E. (Stig E.), Brauch, H. (Hiltrud), Brenner, H. (Hermann), Brinton, L. (Louise), Broberg, P. (Per), Brucker, S. Y. (Sara Y.), Burwinkel, B. (Barbara), Caldes, T. (Trinidad), Canzian, F. (Federico), Carter, B. D. (Brian D.), Castelao, J. E. (J. Esteban), Chang-Claude, J. (Jenny), Chen, X. (Xiaoqing), Cheng, T. D. (Ting-Yuan David), Christiansen, H. (Hans), Clarke, C. L. (Christine L.), Collee, M. (Margriet), Cornelissen, S. (Sten), Couch, F. J. (Fergus J.), Cox, D. (David), Cox, A. (Angela), Cross, S. S. (Simon S.), Cunningham, J. M. (Julie M.), Czene, K. (Kamila), Daly, M. B. (Mary B.), Devilee, P. (Peter), Doheny, K. F. (Kimberly F.), Dork, T. (Thilo), dos-Santos-Silva, I. (Isabel), Dumont, M. (Martine), Dwek, M. (Miriam), Eccles, D. M. (Diana M.), Eilber, U. (Ursula), Eliassen, A. H. (A. Heather), Engel, C. (Christoph), Eriksson, M. (Mikael), Fachal, L. (Laura), Fasching, P. A. (Peter A.), Figueroa, J. (Jonine), Flesch-Janys, D. (Dieter), Fletcher, O. (Olivia), Flyger, H. (Henrik), Fritschi, L. (Lin), Gabrielson, M. (Marike), Gago-Dominguez, M. (Manuela), Gapstur, S. M. (Susan M.), Garcia-Closas, M. (Montserrat), Gaudet, M. M. (Mia M.), Ghoussaini, M. (Maya), Giles, G. G. (Graham G.), Goldberg, M. S. (Mark S.), Goldgar, D. E. (David E.), Gonzalez-Neira, A. (Anna), Guenel, P. (Pascal), Hahnen, E. (Eric), Haiman, C. A. (Christopher A.), Hakansson, N. (Niclas), Hall, P. (Per), Hallberg, E. (Emily), Hamann, U. (Ute), Harrington, P. (Patricia), Hein, A. (Alexander), Hicks, B. (Belynda), Hillemanns, P. (Peter), Hollestelle, A. (Antoinette), Hoover, R. N. (Robert N.), Hopper, J. L. (John L.), Huang, G. (Guanmengqian), Humphreys, K. (Keith), Hunter, D. J. (David J.), Jakubowska, A. (Anna), Janni, W. (Wolfgang), John, E. M. (Esther M.), Johnson, N. (Nichola), Jones, K. (Kristine), Jones, M. E. (Michael E.), Jung, A. (Audrey), Kaaks, R. (Rudolf), Kerin, M. J. (Michael J.), Khusnutdinova, E. (Elza), Kosma, V.-M. (Veli-Matti), Kristensen, V. N. (Vessela N.), Lambrechts, D. (Diether), Le Marchand, L. (Loic), Li, J. (Jingmei), Lindstrom, S. (Sara), Lissowska, J. (Jolanta), Lo, W.-Y. (Wing-Yee), Loibl, S. (Sibylle), Lubinski, J. (Jan), Luccarini, C. (Craig), Lux, M. P. (Michael P.), MacInnis, R. J. (Robert J.), Maishman, T. (Tom), Kostovska, I. M. (Ivana Maleva), Mannermaa, A. (Arto), Manson, J. E. (Joann E.), Margolin, S. (Sara), Mavroudis, D. (Dimitrios), Meijers-Heijboer, H. (Hanne), Meindl, A. (Alfons), Menon, U. (Usha), Meyer, J. (Jeffery), Mulligan, A. M. (Anna Marie), Neuhausen, S. L. (Susan L.), Nevanlinna, H. (Heli), Neven, P. (Patrick), Nielsen, S. F. (Sune F.), Nordestgaard, B. G. (Borge G.), Olopade, O. I. (Olufunmilayo I.), Olson, J. E. (Janet E.), Olsson, H. (Hakan), Peterlongo, P. (Paolo), Peto, J. (Julian), Plaseska-Karanfilska, D. (Dijana), Prentice, R. (Ross), Presneau, N. (Nadege), Pylkäs, K. (Katri), Rack, B. (Brigitte), Radice, P. (Paolo), Rahman, N. (Nazneen), Rennert, G. (Gad), Rennert, H. S. (Hedy S.), Rhenius, V. (Valerie), Romero, A. (Atocha), Romm, J. (Jane), Rudolph, A. (Anja), Saloustros, E. (Emmanouil), Sandler, D. P. (Dale P.), Sawyer, E. J. (Elinor J.), Schmidt, M. K. (Marjanka K.), Schmutzler, R. K. (Rita K.), Schneeweiss, A. (Andreas), Scott, R. J. (Rodney J.), Scott, C. G. (Christopher G.), Seal, S. (Sheila), Shah, M. (Mitul), Shrubsole, M. J. (Martha J.), Smeets, A. (Ann), Southey, M. C. (Melissa C.), Spinelli, J. J. (John J.), Stone, J. (Jennifer), Surowy, H. (Harald), Swerdlow, A. J. (Anthony J.), Tamimi, R. M. (Rulla M.), Tapper, W. (William), Taylor, J. A. (Jack A.), Terry, M. B. (Mary Beth), Tessier, D. C. (Daniel C.), Thomas, A. (Abigail), Thone, K. (Kathrin), Tollenaar, R. A. (Rob A. E. M.), Torres, D. (Diana), Truong, T. (Therese), Untch, M. (Michael), Vachon, C. (Celine), Van den Berg, D. (David), Vincent, D. (Daniel), Waisfisz, Q. (Quinten), Weinberg, C. R. (Clarice R.), Wendt, C. (Camilla), Whittemore, A. S. (Alice S.), Wildiers, H. (Hans), Willett, W. C. (Walter C.), Winqvist, R. (Robert), Wolk, A. (Alicja), Xia, L. (Lucy), Yang, X. R. (Xiaohong R.), Ziogas, A. (Argyrios), Ziv, E. (Elad), Dunning, A. M. (Alison M.), Pharoah, P. D. (Paul D. P.), Simard, J. (Jacques), Milne, R. L. (Roger L.), Edwards, S. L. (Stacey L.), Kraft, P. (Peter), Easton, D. F. (Douglas F.), Chenevix-Trench, G. (Georgia), Zheng, W. (Wei), Wu, L. (Lang), Shi, W. (Wei), Long, J. (Jirong), Guo, X. (Xingyi), Michailidou, K. (Kyriaki), Beesley, J. (Jonathan), Bolla, M. K. (Manjeet K.), Shu, X.-O. (Xiao-Ou), Lu, Y. (Yingchang), Cai, Q. (Qiuyin), Al-Ejeh, F. (Fares), Rozali, E. (Esdy), Wang, Q. (Qin), Dennis, J. (Joe), Li, B. (Bingshan), Zeng, C. (Chenjie), Feng, H. (Helian), Gusev, A. (Alexander), Barfield, R. T. (Richard T.), Andrulis, I. L. (Irene L.), Anton-Culver, H. (Hoda), Arndt, V. (Volker), Aronson, K. J. (Kristan J.), Auer, P. L. (Paul L.), Barrdahl, M. (Myrto), Baynes, C. (Caroline), Beckmann, M. W. (Matthias W.), Benitez, J. (Javier), Bermisheva, M. (Marina), Blomqvist, C. (Carl), Bogdanova, N. V. (Natalia V.), Bojesen, S. E. (Stig E.), Brauch, H. (Hiltrud), Brenner, H. (Hermann), Brinton, L. (Louise), Broberg, P. (Per), Brucker, S. Y. (Sara Y.), Burwinkel, B. (Barbara), Caldes, T. (Trinidad), Canzian, F. (Federico), Carter, B. D. (Brian D.), Castelao, J. E. (J. Esteban), Chang-Claude, J. (Jenny), Chen, X. (Xiaoqing), Cheng, T. D. (Ting-Yuan David), Christiansen, H. (Hans), Clarke, C. L. (Christine L.), Collee, M. (Margriet), Cornelissen, S. (Sten), Couch, F. J. (Fergus J.), Cox, D. (David), Cox, A. (Angela), Cross, S. S. (Simon S.), Cunningham, J. M. (Julie M.), Czene, K. (Kamila), Daly, M. B. (Mary B.), Devilee, P. (Peter), Doheny, K. F. (Kimberly F.), Dork, T. (Thilo), dos-Santos-Silva, I. (Isabel), Dumont, M. (Martine), Dwek, M. (Miriam), Eccles, D. M. (Diana M.), Eilber, U. (Ursula), Eliassen, A. H. (A. Heather), Engel, C. (Christoph), Eriksson, M. (Mikael), Fachal, L. (Laura), Fasching, P. A. (Peter A.), Figueroa, J. (Jonine), Flesch-Janys, D. (Dieter), Fletcher, O. (Olivia), Flyger, H. (Henrik), Fritschi, L. (Lin), Gabrielson, M. (Marike), Gago-Dominguez, M. (Manuela), Gapstur, S. M. (Susan M.), Garcia-Closas, M. (Montserrat), Gaudet, M. M. (Mia M.), Ghoussaini, M. (Maya), Giles, G. G. (Graham G.), Goldberg, M. S. (Mark S.), Goldgar, D. E. (David E.), Gonzalez-Neira, A. (Anna), Guenel, P. (Pascal), Hahnen, E. (Eric), Haiman, C. A. (Christopher A.), Hakansson, N. (Niclas), Hall, P. (Per), Hallberg, E. (Emily), Hamann, U. (Ute), Harrington, P. (Patricia), Hein, A. (Alexander), Hicks, B. (Belynda), Hillemanns, P. (Peter), Hollestelle, A. (Antoinette), Hoover, R. N. (Robert N.), Hopper, J. L. (John L.), Huang, G. (Guanmengqian), Humphreys, K. (Keith), Hunter, D. J. (David J.), Jakubowska, A. (Anna), Janni, W. (Wolfgang), John, E. M. (Esther M.), Johnson, N. (Nichola), Jones, K. (Kristine), Jones, M. E. (Michael E.), Jung, A. (Audrey), Kaaks, R. (Rudolf), Kerin, M. J. (Michael J.), Khusnutdinova, E. (Elza), Kosma, V.-M. (Veli-Matti), Kristensen, V. N. (Vessela N.), Lambrechts, D. (Diether), Le Marchand, L. (Loic), Li, J. (Jingmei), Lindstrom, S. (Sara), Lissowska, J. (Jolanta), Lo, W.-Y. (Wing-Yee), Loibl, S. (Sibylle), Lubinski, J. (Jan), Luccarini, C. (Craig), Lux, M. P. (Michael P.), MacInnis, R. J. (Robert J.), Maishman, T. (Tom), Kostovska, I. M. (Ivana Maleva), Mannermaa, A. (Arto), Manson, J. E. (Joann E.), Margolin, S. (Sara), Mavroudis, D. (Dimitrios), Meijers-Heijboer, H. (Hanne), Meindl, A. (Alfons), Menon, U. (Usha), Meyer, J. (Jeffery), Mulligan, A. M. (Anna Marie), Neuhausen, S. L. (Susan L.), Nevanlinna, H. (Heli), Neven, P. (Patrick), Nielsen, S. F. (Sune F.), Nordestgaard, B. G. (Borge G.), Olopade, O. I. (Olufunmilayo I.), Olson, J. E. (Janet E.), Olsson, H. (Hakan), Peterlongo, P. (Paolo), Peto, J. (Julian), Plaseska-Karanfilska, D. (Dijana), Prentice, R. (Ross), Presneau, N. (Nadege), Pylkäs, K. (Katri), Rack, B. (Brigitte), Radice, P. (Paolo), Rahman, N. (Nazneen), Rennert, G. (Gad), Rennert, H. S. (Hedy S.), Rhenius, V. (Valerie), Romero, A. (Atocha), Romm, J. (Jane), Rudolph, A. (Anja), Saloustros, E. (Emmanouil), Sandler, D. P. (Dale P.), Sawyer, E. J. (Elinor J.), Schmidt, M. K. (Marjanka K.), Schmutzler, R. K. (Rita K.), Schneeweiss, A. (Andreas), Scott, R. J. (Rodney J.), Scott, C. G. (Christopher G.), Seal, S. (Sheila), Shah, M. (Mitul), Shrubsole, M. J. (Martha J.), Smeets, A. (Ann), Southey, M. C. (Melissa C.), Spinelli, J. J. (John J.), Stone, J. (Jennifer), Surowy, H. (Harald), Swerdlow, A. J. (Anthony J.), Tamimi, R. M. (Rulla M.), Tapper, W. (William), Taylor, J. A. (Jack A.), Terry, M. B. (Mary Beth), Tessier, D. C. (Daniel C.), Thomas, A. (Abigail), Thone, K. (Kathrin), Tollenaar, R. A. (Rob A. E. M.), Torres, D. (Diana), Truong, T. (Therese), Untch, M. (Michael), Vachon, C. (Celine), Van den Berg, D. (David), Vincent, D. (Daniel), Waisfisz, Q. (Quinten), Weinberg, C. R. (Clarice R.), Wendt, C. (Camilla), Whittemore, A. S. (Alice S.), Wildiers, H. (Hans), Willett, W. C. (Walter C.), Winqvist, R. (Robert), Wolk, A. (Alicja), Xia, L. (Lucy), Yang, X. R. (Xiaohong R.), Ziogas, A. (Argyrios), Ziv, E. (Elad), Dunning, A. M. (Alison M.), Pharoah, P. D. (Paul D. P.), Simard, J. (Jacques), Milne, R. L. (Roger L.), Edwards, S. L. (Stacey L.), Kraft, P. (Peter), Easton, D. F. (Douglas F.), Chenevix-Trench, G. (Georgia), and Zheng, W. (Wei)
- Abstract
The breast cancer risk variants identified in genome-wide association studies explain only a small fraction of the familial relative risk, and the genes responsible for these associations remain largely unknown. To identify novel risk loci and likely causal genes, we performed a transcriptome-wide association study evaluating associations of genetically predicted gene expression with breast cancer risk in 122,977 cases and 105,974 controls of European ancestry. We used data from the Genotype-Tissue Expression Project to establish genetic models to predict gene expression in breast tissue and evaluated model performance using data from The Cancer Genome Atlas. Of the 8,597 genes evaluated, significant associations were identified for 48 at a Bonferroni-corrected threshold of P < 5.82 × 10−6, including 14 genes at loci not yet reported for breast cancer. We silenced 13 genes and showed an effect for 11 on cell proliferation and/or colony-forming efficiency. Our study provides new insights into breast cancer genetics and biology.
- Published
- 2018
4. Genetic variation in the HLA region is associated with susceptibility to herpes zoster
- Author
-
Crosslin, D R, primary, Carrell, D S, additional, Burt, A, additional, Kim, D S, additional, Underwood, J G, additional, Hanna, D S, additional, Comstock, B A, additional, Baldwin, E, additional, de Andrade, M, additional, Kullo, I J, additional, Tromp, G, additional, Kuivaniemi, H, additional, Borthwick, K M, additional, McCarty, C A, additional, Peissig, P L, additional, Doheny, K F, additional, Pugh, E, additional, Kho, A, additional, Pacheco, J, additional, Hayes, M G, additional, Ritchie, M D, additional, Verma, S S, additional, Armstrong, G, additional, Stallings, S, additional, Denny, J C, additional, Carroll, R J, additional, Crawford, D C, additional, Crane, P K, additional, Mukherjee, S, additional, Bottinger, E, additional, Li, R, additional, Keating, B, additional, Mirel, D B, additional, Carlson, C S, additional, Harley, J B, additional, Larson, E B, additional, and Jarvik, G P, additional
- Published
- 2014
- Full Text
- View/download PDF
5. Genome-wide association scan for childhood caries implicates novel genes
- Author
-
Shaffer, J. R., Feingold, E., Lee, M., Begum, F., Weeks, D. E., Cuenco, K. T., Barmada, M. M., Wendell, S. K., Crosslin, D. R., Laurie, C. C., Doheny, K. F., Pugh, E. W., Feenstra, B., Geller, F., Boyd, H. A., Melbye, M., Murray, J. C., Weyant, R. J., Crout, R., McNeil, D. W., Levy, S. M., Slayton, R. L., Willing, M. C., Broffitt, B., Vieira, A. R., Marazita, M. L., Shaffer, J. R., Feingold, E., Lee, M., Begum, F., Weeks, D. E., Cuenco, K. T., Barmada, M. M., Wendell, S. K., Crosslin, D. R., Laurie, C. C., Doheny, K. F., Pugh, E. W., Feenstra, B., Geller, F., Boyd, H. A., Melbye, M., Murray, J. C., Weyant, R. J., Crout, R., McNeil, D. W., Levy, S. M., Slayton, R. L., Willing, M. C., Broffitt, B., Vieira, A. R., and Marazita, M. L.
- Abstract
Dental caries is the most common chronic disease in children and a major public health concern due to its increasing incidence, serious health and social co-morbidities, and socio-demographic disparities in disease burden. We performed the first genome-wide association scan for dental caries to identify associated genetic loci and nominate candidate genes affecting tooth decay in 1305 US children ages 3-12 yrs. Affection status was defined as 1 or more primary teeth with evidence of decay based on intra-oral examination. No associations met strict criteria for genome-wide significance (p < 10E-7); however, several loci (ACTN2, MTR, and EDARADD, MPPED2, and LPO) with plausible biological roles in dental caries exhibited suggestive evidence for association. Analyses stratified by home fluoride level yielded additional suggestive loci, including TFIP11 in the low-fluoride group, and EPHA7 and ZMPSTE24 in the sufficient-fluoride group. Suggestive loci were tested but not significantly replicated in an independent sample (N = 1695, ages 2-7 yrs) after adjustment for multiple comparisons. This study reinforces the complexity of dental caries, suggesting that numerous loci, mostly having small effects, are involved in cariogenesis. Verification/replication of suggestive loci may highlight biological mechanisms and/or pathways leading to a fuller understanding of the genetic risks for dental caries.
- Published
- 2011
6. Cryptic terminal rearrangement of chromosome 22q13.32 detected by FISH in two unrelated patients.
- Author
-
Doheny, K F, primary, McDermid, H E, additional, Harum, K, additional, Thomas, G H, additional, and Raymond, G V, additional
- Published
- 1997
- Full Text
- View/download PDF
7. Two genes required for the binding of an essential Saccharomyces cerevisiae kinetochore complex to DNA.
- Author
-
Sorger, P. K., primary, Doheny, K. F., additional, Hieter, P., additional, Kopski, K. M., additional, Huffaker, T. C., additional, and Hyman, A. A., additional
- Published
- 1995
- Full Text
- View/download PDF
8. Comprehensive Association Study of Type 2 Diabetes and Related Quantitative Traits With 222 Candidate Genes
- Author
-
Scott, L. J., Jackson, A. U., Tong, M., Narisu, N., Willer, C. J., Pugh, E. W., Collins, F. S., Conneely, K. N., Abecasis, G. R., Doheny, K. F., Tuomilehto, J., Valle, T. T., Li, Y., Gaulton, K. J., Sprau, A. G., Chines, P. S., Luo, J., Boehnke, M., Mohlke, K. L., Duren, W. L., Bergman, R. N., and Bonnycastle, L. L.
- Subjects
3. Good health - Abstract
OBJECTIVE—Type 2 diabetes is a common complex disorder with environmental and genetic components. We used a candidate gene–based approach to identify single nucleotide polymorphism (SNP) variants in 222 candidate genes that influence susceptibility to type 2 diabetes.RESEARCH DESIGN AND METHODS—In a case-control study of 1,161 type 2 diabetic subjects and 1,174 control Finns who are normal glucose tolerant, we genotyped 3,531 tagSNPs and annotation-based SNPs and imputed an additional 7,498 SNPs, providing 99.9% coverage of common HapMap variants in the 222 candidate genes. Selected SNPs were genotyped in an additional 1,211 type 2 diabetic case subjects and 1,259 control subjects who are normal glucose tolerant, also from Finland.RESULTS—Using SNP- and gene-based analysis methods, we replicated previously reported SNP-type 2 diabetes associations in PPARG, KCNJ11, and SLC2A2; identified significant SNPs in genes with previously reported associations (ENPP1 [rs2021966, P = 0.00026] and NRF1 [rs1882095, P = 0.00096]); and implicated novel genes, including RAPGEF1 (rs4740283, P = 0.00013) and TP53 (rs1042522, Arg72Pro, P = 0.00086), in type 2 diabetes susceptibility.CONCLUSIONS—Our study provides an effective gene-based approach to association study design and analysis. One or more of the newly implicated genes may contribute to type 2 diabetes pathogenesis. Analysis of additional samples will be necessary to determine their effect on susceptibility.
9. Genetic variation among 82 pharmacogenes: The PGRNseq data from the eMERGE network.
- Author
-
Bush WS, Crosslin DR, Owusu-Obeng A, Wallace J, Almoguera B, Basford MA, Bielinski SJ, Carrell DS, Connolly JJ, Crawford D, Doheny KF, Gallego CJ, Gordon AS, Keating B, Kirby J, Kitchner T, Manzi S, Mejia AR, Pan V, Perry CL, Peterson JF, Prows CA, Ralston J, Scott SA, Scrol A, Smith M, Stallings SC, Veldhuizen T, Wolf W, Volpi S, Wiley K, Li R, Manolio T, Bottinger E, Brilliant MH, Carey D, Chisholm RL, Chute CG, Haines JL, Hakonarson H, Harley JB, Holm IA, Kullo IJ, Jarvik GP, Larson EB, McCarty CA, Williams MS, Denny JC, Rasmussen-Torvik LJ, Roden DM, and Ritchie MD
- Subjects
- Aged, Electronic Health Records, Female, Humans, Male, Middle Aged, Precision Medicine methods, Databases, Genetic, Genetic Variation, Genomics, Pharmacogenetics
- Abstract
Genetic variation can affect drug response in multiple ways, although it remains unclear how rare genetic variants affect drug response. The electronic Medical Records and Genomics (eMERGE) Network, collaborating with the Pharmacogenomics Research Network, began eMERGE-PGx, a targeted sequencing study to assess genetic variation in 82 pharmacogenes critical for implementation of "precision medicine." The February 2015 eMERGE-PGx data release includes sequence-derived data from ∼5,000 clinical subjects. We present the variant frequency spectrum categorized by variant type, ancestry, and predicted function. We found 95.12% of genes have variants with a scaled Combined Annotation-Dependent Depletion score above 20, and 96.19% of all samples had one or more Clinical Pharmacogenetics Implementation Consortium Level A actionable variants. These data highlight the distribution and scope of genetic variation in relevant pharmacogenes, identifying challenges associated with implementing clinical sequencing for drug treatment at a broader level, underscoring the importance for multifaceted research in the execution of precision medicine., (© 2016 The Authors. Clinical Pharmacology & Therapeutics published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.)
- Published
- 2016
- Full Text
- View/download PDF
10. Genome-wide association scan for childhood caries implicates novel genes.
- Author
-
Shaffer JR, Wang X, Feingold E, Lee M, Begum F, Weeks DE, Cuenco KT, Barmada MM, Wendell SK, Crosslin DR, Laurie CC, Doheny KF, Pugh EW, Zhang Q, Feenstra B, Geller F, Boyd HA, Zhang H, Melbye M, Murray JC, Weyant RJ, Crout R, McNeil DW, Levy SM, Slayton RL, Willing MC, Broffitt B, Vieira AR, and Marazita ML
- Subjects
- Child, Child, Preschool, Chromosomes, Human, Pair 1, Chromosomes, Human, Pair 11, Chromosomes, Human, Pair 17, Genetic Loci, HapMap Project, Humans, Polymorphism, Single Nucleotide, United States, Dental Caries genetics, Genetic Predisposition to Disease, Genome-Wide Association Study
- Abstract
Dental caries is the most common chronic disease in children and a major public health concern due to its increasing incidence, serious health and social co-morbidities, and socio-demographic disparities in disease burden. We performed the first genome-wide association scan for dental caries to identify associated genetic loci and nominate candidate genes affecting tooth decay in 1305 US children ages 3-12 yrs. Affection status was defined as 1 or more primary teeth with evidence of decay based on intra-oral examination. No associations met strict criteria for genome-wide significance (p < 10E-7); however, several loci (ACTN2, MTR, and EDARADD, MPPED2, and LPO) with plausible biological roles in dental caries exhibited suggestive evidence for association. Analyses stratified by home fluoride level yielded additional suggestive loci, including TFIP11 in the low-fluoride group, and EPHA7 and ZMPSTE24 in the sufficient-fluoride group. Suggestive loci were tested but not significantly replicated in an independent sample (N = 1695, ages 2-7 yrs) after adjustment for multiple comparisons. This study reinforces the complexity of dental caries, suggesting that numerous loci, mostly having small effects, are involved in cariogenesis. Verification/replication of suggestive loci may highlight biological mechanisms and/or pathways leading to a fuller understanding of the genetic risks for dental caries.
- Published
- 2011
- Full Text
- View/download PDF
11. A study of linkage and association of body mass index in the Old Order Amish.
- Author
-
Platte P, Papanicolaou GJ, Johnston J, Klein CM, Doheny KF, Pugh EW, Roy-Gagnon MH, Stunkard AJ, Francomano CA, and Wilson AF
- Subjects
- Alleles, Body Mass Index, Chromosomes, Human, Pair 7 genetics, Humans, Protestantism, Tandem Repeat Sequences genetics, Ethnicity genetics, Genetic Linkage genetics, Obesity genetics
- Abstract
Obesity is thought to have a genetic component with the estimates of heritability ranging from 0.25-0.40. As part of an ongoing study of obesity in the Old Order Amish, seven two- and three-generation families (157 individuals) were assessed for 21 traits related to obesity, including body mass index (BMI) and BMI-percentile (a standardized distribution of BMI adjusted for age and sex). Genotyping was performed using a panel of 384 short-tandem repeat markers. In this sample, the estimates of heritability ranged from 0.16-0.31 for BMI and from 0.40-0.52 for BMI-percentile. Model-independent linkage analysis identified candidate regions on chromosomes 1, 5, 7, 8, and 11. Given that several markers on 7q were significant for both BMI and BMI-percentile (P < or = 0.001) and that the structural locus for leptin was located on 7q, this region was considered to be the primary candidate region. Subsequent typing of additional flanking markers on 7q corroborated the original findings. Tests of intrafamilial association for alleles at markers in this candidate region were significant at similar levels. Although there is some evidence for linkage and association in the region containing leptin, there appears to be stronger evidence for linkage (P < or = 0.001) and association (P < or = 0.00001) with BMI in a region 10-15 cM further downstream of leptin, flanked by markers D7S1804 and D7S3070 with peak values from D7S495-D7S1798. Evidence from linkage and association studies suggests that this region (D7S1804-D7S3070) may be responsible, at least in part, for variation in BMI and BMI-percentile in the Old Order Amish., (Published 2003 Wiley-Liss, Inc.)
- Published
- 2003
- Full Text
- View/download PDF
12. Homozygosity mapping places the acrodermatitis enteropathica gene on chromosomal region 8q24.3.
- Author
-
Wang K, Pugh EW, Griffen S, Doheny KF, Mostafa WZ, al-Aboosi MM, el-Shanti H, and Gitschier J
- Subjects
- Acrodermatitis complications, Acrodermatitis pathology, Alleles, Alopecia complications, Alopecia genetics, Alopecia pathology, Child, Preschool, Chromosome Mapping, Consanguinity, Diarrhea complications, Diarrhea genetics, Egypt, Female, Genes, Recessive genetics, Growth Disorders complications, Growth Disorders genetics, Haplotypes, Humans, Jordan, Lod Score, Male, Microsatellite Repeats genetics, Nuclear Family, Pedigree, Software, Zinc deficiency, Zinc metabolism, Acrodermatitis genetics, Chromosomes, Human, Pair 8 genetics, Homozygote
- Abstract
Acrodermatitis enteropathica (AE) is a rare autosomal recessive pediatric disease characterized by dermatitis, diarrhea, alopecia, and growth failure. The disease results from insufficient uptake of zinc by the intestine and can be fatal unless the diet is supplemented with zinc. To map the gene responsible for AE, a genomewide screen was performed on 17 individuals, including 4 affected individuals, in a consanguineous Jordanian family. Three markers-D8S373, D10S212, and D6S1021-had a pattern consistent with tight linkage to a recessive disease: one allele in the affected sibs and multiple alleles in unaffected sibs and parents. Two-point parametric linkage analysis using FASTLINK identified one region, D8S373, with a maximum LOD score >1.5 (1.94 at D8S373: recombination fraction.001). Twelve additional markers flanking D8S373 were used to genotype the extended family, to fine-map the AE gene. All five affected individuals-including one who was not genotyped in the genomewide screen-were found to be homozygous for a common haplotype, spanning approximately 3.5 cM, defined by markers D8S1713 and D8S2334 on chromosomal region 8q24.3. To support these mapping data, seven consanguineous Egyptian families with eight patients with AE were genotyped using these markers, and six patients from five families were found to be homozygous in this region. Multipoint analysis with all consanguineous families, by Mapmaker/Homoz, resulted in a maximum LOD score of 3.89 between D8S1713 and D8S373. Sliding three-point analysis resulted in a maximum LOD score of 5.16 between markers D8S1727 and D8S1744.
- Published
- 2001
- Full Text
- View/download PDF
13. Autosomal dominant macrothrombocytopenia with leukocyte inclusions (May-Hegglin anomaly) is linked to chromosome 22q12-13.
- Author
-
Kelley MJ, Jawien W, Lin A, Hoffmeister K, Pugh EW, Doheny KF, and Korczak JF
- Subjects
- Adult, Aged, Child, Chromosome Mapping, Female, Genetic Linkage, Genetic Markers, Genotype, Humans, Inclusion Bodies pathology, Lod Score, Male, Middle Aged, Pedigree, Thrombocytopenia blood, Blood Platelets pathology, Chromosomes, Human, Pair 22 genetics, Leukocytes pathology, Thrombocytopenia genetics
- Abstract
Macrothrombocytopenia with leukocyte inclusions (May-Hegglin anomaly) is a rare autosomal dominant disorder characterized by thrombocytopenia, giant platelets, and Döhle body-like inclusions in leukocytes. To determine the genetic basis of this disorder, we performed a genome-wide screen for linkage in three families with May-Hegglin anomaly. For the pooled analysis of the three families, three markers on chromosome 22 had two-point logarithm-of-difference (lod) scores greater than 3, with a maximum lod score of 3.91 at a recombination fraction (theta) of 0.076 for marker D22S683. Within the largest family (MHA-1), the maximum lod score was 5.36 at theta=0 at marker D22S445. Fine mapping of recombination events using eight adjacent markers indicated that the minimal disease region of family MHA-1 alone is in the approximately 26 cM region from D22S683 to the telomere. The maximum lod score for the three families combined was 5.84 at theta=0 for marker IL2RB. With the assumption of locus homogeneity, haplotype analysis of family MHA-4 indicated the disease region is centromeric to marker D22S1045. These data best support a minimal disease region from D22S683 to D22S1045, a span of about 1 Mb of DNA that contains 17 known genes and 4 predicted genes. Further analysis of this region will identify the genetic basis of May-Hegglin anomaly, facilitating subsequent characterization of the biochemical role of the disease gene in platelet formation.
- Published
- 2000
- Full Text
- View/download PDF
14. Segregation of a familial balanced (12;10) insertion resulting in Dup(10)(q21.2q22.1) and Del(10)(q21.2q22.1) in first cousins.
- Author
-
Doheny KF, Rasmussen SA, Rutberg J, Semenza GL, Stamberg J, Schwartz M, Batista DA, Stetten G, and Thomas GH
- Subjects
- Family, Female, Humans, Infant, Pedigree, Phenotype, Chromosomes, Human, Pair 10 genetics, Chromosomes, Human, Pair 12 genetics, Translocation, Genetic
- Abstract
An interchromosomal insertion in 3 generations of a family was ascertained through two developmentally delayed first cousins. Cytogenetic analysis using G-banding and chromosome painting showed an apparently balanced direct insertion of chromosome 10 material into chromosome 12, ins(12;10)(q15;q21.2q22.1), in the mothers and grandfather of these children. The proposita inherited only the derivative 10 chromosome, resulting in deletion of 10q21.2 --> 22.1 while her cousin inherited only the derivative 12, resulting in duplication of 10q21.2 --> 22.1. A comparison of the proposita with published deletion cases suggests a pattern of anomalies attributable to deletion of the 10q21 --> q22 region: developmental delay, hypotonia, a heart murmur, telecanthus, broad nasal root and ear abnormalities. This is the first report of a nontandem duplication of the 10q21 --> q22 region. The phenotype of the cousin with the duplication does not overlap greatly with published tandem 10q duplications. Finally, this report reaffirms the importance of obtaining family studies of patients with interstitial chromosomal abnormalities.
- Published
- 1997
15. Cognitive, behavioral, and neuroanatomical assessment of two unrelated male children expressing FRAXE.
- Author
-
Abrams MT, Doheny KF, Mazzocco MM, Knight SJ, Baumgardner TL, Freund LS, Davies KE, and Reiss AL
- Subjects
- Blotting, Southern, Brain pathology, Child Behavior, Child, Preschool, Cognition, CpG Islands, Developmental Disabilities genetics, Female, Fragile X Mental Retardation Protein, Fragile X Syndrome pathology, Fragile X Syndrome psychology, Humans, Infant, Magnetic Resonance Imaging, Male, Mutation, Nerve Tissue Proteins genetics, Pedigree, Fragile X Syndrome genetics, Nuclear Proteins, Proteins genetics, RNA-Binding Proteins, Trans-Activators
- Abstract
Standardized cognitive, behavioral, and neuroanatomical data are presented on 2 unrelated boys with the FRAXE (FMR2) GCC expansion mutation. In the context of normal IQ, both boys had a history of developmental delay, including significant problems with communication, attention, and overactivity. Additionally, one child was diagnosed with autistic disorder. Data from these 2 cases are compared to analogous information from previous reports about individuals with the FRAXE or FRAXA (FMR1) mutation. These comparisons support the idea that FRAXE is associated with nonspecific developmental delay and possibly high-functioning autism.
- Published
- 1997
- Full Text
- View/download PDF
16. Identification of essential components of the S. cerevisiae kinetochore.
- Author
-
Doheny KF, Sorger PK, Hyman AA, Tugendreich S, Spencer F, and Hieter P
- Subjects
- Amino Acid Sequence, Base Sequence, Cloning, Molecular, DNA-Binding Proteins genetics, Kinetochores, Molecular Sequence Data, Mutation, Phenotype, Centromere physiology, Fungal Proteins genetics, Nuclear Proteins genetics, Saccharomyces cerevisiae cytology, Saccharomyces cerevisiae Proteins
- Abstract
We have designed and utilized two in vivo assays of kinetochore integrity in S. cerevisiae. One assay detects relaxation of a transcription block formed at centromeres; the other detects an increase in the mitotic stability of a dicentric test chromosome. ctf13-30 and ctf14-42 were identified as putative kinetochore mutants by both assays. CTF14 is identical to NDC10/CBF2, a recently identified essential gene that encodes a 110 kd kinetochore component. CTF13 is an essential gene that encodes a predicted 478 amino acid protein with no homology to known proteins. ctf13 mutants missegregate chromosomes at permissive temperature and transiently arrest at nonpermissive temperature as large-budded cells with a G2 DNA content and a short spindle. Antibodies recognizing epitope-tagged CTF13 protein decrease the electrophoretic mobility of a CEN DNA-protein complex formed in vitro. Together, the genetic and biochemical data indicate that CTF13 is an essential kinetochore protein.
- Published
- 1993
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.