104 results on '"Doe, T."'
Search Results
2. Using in-situ strain measurements to evaluate the accuracy of stress estimation procedures from fracture injection/shut-in tests
- Author
-
Guglielmi, Yves, McClure, Mark, Burghardt, Jeffrey, Morris, Joseph P, Doe, Thomas, Fu, Pengcheng, Knox, Hunter, Vermeul, Vince, Kneafsey, Tim, Team, The EGS Collab, Ajo-Franklin, J, Baumgartner, T, Beckers, K, Blankenship, D, Bonneville, A, Boyd, L, Brown, S, Burghardt, JA, Chai, C, Chakravarty, A, Chen, T, Chen, Y, Chi, B, Condon, K, Cook, PJ, Crandall, D, Dobson, PF, Doe, T, Doughty, CA, Elsworth, D, Feldman, J, Feng, Z, Foris, A, Frash, LP, Frone, Z, Fu, P, Gao, K, Ghassemi, A, Guglielmi, Y, Haimson, B, Hawkins, A, Heise, J, Hopp, C, Horn, M, Horne, RN, Horner, J, Hu, M, Huang, H, Huang, L, Im, KJ, Ingraham, M, Jafarov, E, Jayne, RS, Johnson, TC, Johnson, SE, Johnston, B, Karra, S, Kim, K, King, DK, Kneafsey, T, Knox, H, Knox, J, Kumar, D, Kutun, K, Lee, M, Li, D, Li, J, Li, K, Li, Z, Maceira, M, Mackey, P, Makedonska, N, Marone, CJ, Mattson, E, McClure, MW, McLennan, J, McLing, T, Medler, C, Mellors, RJ, Metcalfe, E, Miskimins, J, Moore, J, Morency, CE, Morris, JP, Myers, T, Nakagawa, S, Neupane, G, Newman, G, Nieto, A, Paronish, T, Pawar, R, Petrov, P, Pietzyk, B, Podgorney, R, Polsky, Y, Pope, J, Porse, S, Primo, JC, Pyatina, T, and Reimers, C
- Subjects
Engineering ,Resources Engineering and Extractive Metallurgy ,Bioengineering ,DFIT ,Minifrac ,SIMFIP ,Collab ,Civil Engineering ,Mining & Metallurgy ,Civil engineering ,Resources engineering and extractive metallurgy - Abstract
Fracture injection/shut-in tests are commonly used to measure the state of stress in the subsurface. Injection creates a hydraulic fracture (or in some cases, opens a preexisting fracture), and then the pressure after shut-in is monitored to identify fracture closure. Different interpretation procedures have been proposed for estimating closure, and the procedures sometimes yield significantly different results. In this study, direct, in-situ strain measurements are used to observe fracture reopening and closure. The tests were performed as part of the EGS Collab project, a mesoscale project performed at 1.25 and 1.5 km depth at the Sanford Underground Research Facility. The tests were instrumented with the SIMFIP tool, a double-packer probe with a high-resolution three-dimensional borehole displacement sensor. The measurements provide a direct observation of the fracture closure signature, enabling a high-fidelity estimate of the fracture closure stress (ie, the normal stress on the fracture). In two of the four tests, injection created an opening mode fracture, and so the closure stress can be interpreted as the minimum principal stress. In the other two tests, injection probably opened preexisting natural fractures, and so the closure stress can be interpreted as the normal stress on the fractures. The strain measurements are compared against different proposed methods for estimating closure stress from pressure transients. The shut-in transients are analyzed with two techniques that are widely used in the field of petroleum engineering – the ‘tangent’ method and the ‘compliance’ method. In three of the four tests, the tangent method significantly underestimates the closure stress. The compliance method is reasonably accurate in all four tests. Closure stress is also interpreted using two other commonly-used methods – ‘first deviation from linearity’ and the method of (Hayashi and Haimson, 1991). In comparison with the SIMFIP data, these methods tend to overestimate the closure stress, evidently because they identify closure from early-time transient effects, such as near-wellbore tortuosity. In two of the tests, microseismic imaging provides an independent estimate of the size of the fracture created by injection. When combined with a simple mass balance calculation, the SIMFIP stress measurements yield predictions of fracture size that are reasonably consistent with the estimates from microseismic. The calculations imply an apparent fracture toughness 2-3x higher than typical laboratory-derived values.
- Published
- 2023
3. The EGS Collab Project-Stimulations at Two Depths
- Author
-
Kneafsey, TJ, Dobson, PF, Ulrich, C, Hopp, C, Rodríguez-Tribaldos, V, Guglielmi, Y, Blankenship, D, Schwering, PC, Ingraham, M, Burghardt, JA, White, MD, Johnson, TC, Strickland, C, Vermuel, V, Knox, HA, Morris, JP, Fu, P, Smith, M, Wu, H, Ajo-Franklin, JB, Huang, L, Neupane, G, Horne, R, Roggenthen, W, Weers, J, Doe, TW, Pyatina, T, Ajo-Franklin, J, Baumgartner, T, Beckers, K, Bonneville, A, Boyd, L, Brown, S, Chai, C, Chakravarty, A, Chen, T, Chen, Y, Chi, B, Condon, K, Cook, PJ, Crandall, D, Doe, T, Doughty, CA, Elsworth, D, Feldman, J, Feng, Z, Foris, A, Frash, LP, Frone, Z, Gao, K, Ghassemi, A, Haimson, B, Hawkins, A, Heise, J, Horn, M, Horne, RN, Horner, J, Hu, M, Huang, H, Im, KJ, Jafarov, E, Jayne, RS, Johnson, SE, Johnston, B, Karra, S, Kim, K, King, DK, Kneafsey, T, Knox, H, Knox, J, Kumar, D, Kutun, K, Lee, M, Li, D, Li, J, Li, K, Li, Z, Maceira, M, Mackey, P, Makedonska, N, Marone, CJ, Mattson, E, McClure, MW, McLennan, J, McLing, T, Medler, C, Mellors, RJ, Metcalfe, E, Miskimins, J, Moore, J, and Morency, CE
- Abstract
The EGS Collab project, supported by the US Department of Energy, is performing intensively monitored rock stimulation and flow tests at the 10-m scale in an underground research laboratory to address challenges in implementing enhanced geothermal systems (EGS). Data and observations from the field tests are compared to simulations to understand processes and build confidence in numerical modeling of the processes. We have completed Experiment 1 (of 3), which examined hydraulic fracturing in a well-characterized underground fractured phyllite test bed at a depth of approximately 1.5 km at the Sanford Underground Research Facility (SURF) in Lead, South Dakota. Testbed characterization included fracture mapping, borehole acoustic and optical televiewers, full waveform sonic, conductivity, resistivity, temperature, campaign p- and s-wave investigations and electrical resistance tomography. Borehole geophysical techniques including passive seismic, continuous active source seismic monitoring, electrical resistance tomography, fiber-based distributed strain, distributed temperature, and distributed acoustic monitoring, were used to carefully monitor stimulation events and flow tests. More than a dozen stimulations and nearly one year of flow tests were performed. Quality data and detailed observations were collected and analyzed during stimulation and water flow tests using ambient temperature and chilled water. We achieved adaptive control of the tests using real-time monitoring and rapid dissemination of data and near-real-time simulation. More detailed numerical simulation was performed to answer key experimental design questions, forecast fracture propagation trajectories and extents, and analyze and evaluate results. Data are freely available from the Geothermal Data Repository. Experiment 2 examines the potential for hydraulic shearing in amphibolite at a depth of about 1.25 km at SURF. This site has a different set of stress and fracture conditions than Experiment 1. The Experiment 2 testbed consists of nine subhorizontal boreholes configured in two fans of two boreholes which surround the testbed and contain grouted-in electrical resistance tomography, seismic sensors, active seismic sources and distributed fiber sensors. A “five-spot” set of test wells that extends from a custom mined alcove includes an injection well and four production/monitoring wells. The testbed was characterized geophysically and hydrologically, and three stimulations have been performed using the Step-Rate Injection Method for Fracture In-Situ Properties (SIMFIP) tool to measure strains, and a new strain quantifying tool (downhole robotic strain analysis tool -DORSA) was deployed in a monitoring hole during stimulation. Real-time data were broadcast during stimulations to allow real-time response to arising issues.
- Published
- 2022
4. The EGS Collab -Experiment 2 Stimulations at 1.25 km Depth
- Author
-
Kneafsey, T, Blankenship, D, Burghardt, J, Johnson, T, Dobson, P, Schwering, PC, Strickland, C, Vermuel, V, White, M, Morris, JP, Fu, P, Ingraham, M, Roggenthen, W, Hopp, C, Tribaldos, VR, Guglielmi, Y, Knox, H, Cook, P, Soom, F, Doe, T, Ulrich, C, Ajo-Franklin, JB, Huang, L, Neupane, G, Pyatina, T, Weers, J, Baumgartner, T, Beckers, K, Bonneville, A, Boyd, L, Brown, S, Chai, C, Chakravarty, A, Chen, T, Chen, Y, Chi, B, Condon, K, Crandall, D, Doughty, CA, Elsworth, D, Feldman, J, Feng, Z, Foris, A, Frash, LP, Frone, Z, Gao, K, Ghassemi, A, Haimson, B, Hawkins, A, Heise, J, Horn, M, Horne, RN, Horner, J, Hu, M, Huang, H, Im, KJ, Jafarov, E, Jayne, RS, Johnson, SE, Johnston, B, Karra, S, Kim, K, King, DK, Knox, J, Kumar, D, Kutun, K, Lee, M, Li, D, Li, J, Li, K, Li, Z, Maceira, M, Mackey, P, Makedonska, N, Marone, CJ, Mattson, E, McClure, MW, McLennan, J, McLing, T, Medler, C, Mellors, RJ, Metcalfe, E, Miskimins, J, Moore, J, Morency, CE, Myers, T, Nakagawa, S, Newman, G, Nieto, A, Paronish, T, Pawar, R, Petrov, P, Pietzyk, B, Podgorney, R, Polsky, Y, Pope, J, Porse, S, Primo, JC, Reimers, C, and Roberts, BQ
- Subjects
Geochemistry & Geophysics - Abstract
The EGS Collab project is performing well-monitored rock stimulation and flow tests at the 10-m scale in an underground research laboratory to inform challenges in implementing enhanced geothermal systems (EGS). This project, supported by the US Department of Energy, is gathering data and observations from the field tests and comparing these to simulation results to understand processes and to build confidence in numerical modeling of the processes. Experiment 1 (now complete) examined hydraulic fracturing in an underground test bed at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, at a depth of approximately 1.5 km in a well-characterized phyllite. Geophysical monitoring instrumentation in six of eight sub-horizontal boreholes monitored stimulation events and flow tests. The other two boreholes were used to perform and carefully measure water injection and production. More than a dozen stimulations and nearly one year of flow tests in the testbed were performed. Detailed observations of processes occurring during stimulation and dynamic flow tests were collected and analyzed. Flow tests using ambient-temperature and chilled water were performed with intermittent tracer tests to examine system behavior. We achieved adaptive control of the tests using close monitoring of rapidly disseminated data and near-real-time simulation. Numerical simulation was critical in answering key experimental design questions, forecasting fracture behavior, and analyzing results. We were successful in performing many simulations in near-real-time in conjunction with the field experiments, with more detailed simulations performed later. The primary objective of Experiment 2 is to examine hydraulic shearing of natural fractures at a depth of 1.25 km in amphibolite at SURF. The stresses, rock type, and fracture conditions are different than in Experiment 1. The testbed consists of 9 boreholes, in addition to two earlier-drilled characterization boreholes. One borehole is used for injection, two fans of 2 monitoring wells have several geophysical measurement tools grouted in, and four open boreholes surrounding the injection hole are adaptively used for production and monitoring. We have encountered approximately five fracture set orientations in the testbed, and designed our testbed accordingly to maximize the potential for shear stimulation. Three stimulations have been performed to date from the injection borehole, each intersecting at least one production borehole. Different methods have been used for each stimulation, including a ramped flow, a high flow rate, and oscillating pressure.
- Published
- 2022
5. The EGS Collab project: Status and Accomplishments
- Author
-
Kneafsey, T, Blankenship, D, Dobson, P, White, M, Morris, JP, Fu, P, Schwering, PC, Ajo-Franklin, JB, Huang, L, Knox, HA, Strickland, C, Burghardt, J, Johnson, T, Neupane, G, Weers, J, Horne, R, Roggenthen, W, Doe, T, Mattson, E, Ajo-Franklin, J, Baumgartner, T, Beckers, K, Bonneville, A, Boyd, L, Brown, S, Burghardt, JA, Chai, C, Chakravarty, A, Chen, T, Chen, Y, Chi, B, Condon, K, Cook, PJ, Crandall, D, Doughty, CA, Elsworth, D, Feldman, J, Feng, Z, Foris, A, Frash, LP, Frone, Z, Gao, K, Ghassemi, A, Guglielmi, Y, Haimson, B, Hawkins, A, Heise, J, Hopp, C, Horn, M, Horne, RN, Horner, J, Hu, M, Huang, H, Im, KJ, Ingraham, M, Jafarov, E, Jayne, RS, Johnson, TC, Johnson, SE, Johnston, B, Karra, S, Kim, K, King, DK, Knox, H, Knox, J, Kumar, D, Kutun, K, Lee, M, Li, D, Li, J, Li, K, Li, Z, MacEira, M, MacKey, P, Makedonska, N, Marone, CJ, McClure, MW, McLennan, J, McLing, T, Medler, C, Mellors, RJ, Metcalfe, E, Miskimins, J, Moore, J, Morency, CE, Myers, T, Nakagawa, S, Newman, G, Nieto, A, Paronish, T, and Pawar, R
- Subjects
Geochemistry & Geophysics - Abstract
The EGS Collab project, supported by the US Department of Energy, is addressing challenges in implementing enhanced geothermal systems (EGS). This includes improving understanding of the stimulation of crystalline rock to create appropriate flow pathways, and the ability to effectively simulate both the stimulation and the flow and transport processes in the resulting fracture network. The project is performing intensively monitored rock stimulation and flow tests at the 10-m scale in an underground research laboratory. Data and observations from the field test are compared to simulations to understand processes and to build confidence in numerical modeling of the processes. In Experiment 1, we examined hydraulic fracturing an underground test bed at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, at a depth of approximately 1.5 km. We drilled eight sub-horizontal boreholes in a well-characterized phyllite. Six of the boreholes were instrumented with many sensor types to allow careful monitoring of stimulation events and flow tests, and the other two boreholes were used for water injection and production. We performed a number of stimulations and flow tests in the testbed. Our monitoring systems allowed detailed observations and collection of numerous data sets of processes occurring during stimulation and during dynamic flow tests. Long-term ambient temperature and chilled water flow tests were performed in addition to many tracer tests to examine system behavior. Data were rapidly analyzed, allowing adaptive control of the tests. Numerical simulation was used to answer key experimental design questions, to forecast fracture propagation trajectories and extents, and to analyze and evaluate results. Many simulations were performed in near-real-time in conjunction with the field experiments, with more detailed process study simulations performed on a longer timeframe. Experiment 2 will examine hydraulic shearing in a test bed being built at the SURF at a depth of about 1.25 km in amphibolite under a different set of stress and fracture conditions than Experiment 1. Five sets of fracture orientations were considered in design, and three orientations seem to be consistently observed.
- Published
- 2021
6. Using in-situ strain measurements to evaluate the accuracy of stress estimation procedures from fracture injection/shut-in tests
- Author
-
Ajo-Franklin, J., Baumgartner, T., Beckers, K., Blankenship, D., Bonneville, A., Boyd, L., Brown, S., Burghardt, J.A., Chai, C., Chakravarty, A., Chen, T., Chen, Y., Chi, B., Condon, K., Cook, P.J., Crandall, D., Dobson, P.F., Doe, T., Doughty, C.A., Elsworth, D., Feldman, J., Feng, Z., Foris, A., Frash, L.P., Frone, Z., Fu, P., Gao, K., Ghassemi, A., Guglielmi, Y., Haimson, B., Hawkins, A., Heise, J., Hopp, C., Horn, M., Horne, R.N., Horner, J., Hu, M., Huang, H., Huang, L., Im, K.J., Ingraham, M., Jafarov, E., Jayne, R.S., Johnson, T.C., Johnson, S.E., Johnston, B., Karra, S., Kim, K., King, D.K., Kneafsey, T., Knox, H., Knox, J., Kumar, D., Kutun, K., Lee, M., Li, D., Li, J., Li, K., Li, Z., Maceira, M., Mackey, P., Makedonska, N., Marone, C.J., Mattson, E., McClure, M.W., McLennan, J., McLing, T., Medler, C., Mellors, R.J., Metcalfe, E., Miskimins, J., Moore, J., Morency, C.E., Morris, J.P., Myers, T., Nakagawa, S., Neupane, G., Newman, G., Nieto, A., Paronish, T., Pawar, R., Petrov, P., Pietzyk, B., Podgorney, R., Polsky, Y., Pope, J., Porse, S., Primo, J.C., Pyatina, T., Reimers, C., Roberts, B.Q., Robertson, M., Rodríguez-Tribaldos, V., Roggenthen, W., Rutqvist, J., Rynders, D., Schoenball, M., Schwering, P., Sesetty, V., Sherman, C.S., Singh, A., Smith, M.M., Sone, H., Sonnenthal, E.L., Soom, F.A., Sprinkle, D.P., Sprinkle, S., Strickland, C.E., Su, J., Templeton, D., Thomle, J.N., Ulrich, C., Uzunlar, N., Vachaparampil, A., Valladao, C.A., Vandermeer, W., Vandine, G., Vardiman, D., Vermeul, V.R., Wagoner, J.L., Wang, H.F., Weers, J., Welch, N., White, J., White, M.D., Winterfeld, P., Wood, T., Workman, S., Wu, H., Wu, Y.S., Yildirim, E.C., Zhang, Y., Zhang, Y.Q., Zhou, Q., Zoback, M.D., Guglielmi, Yves, McClure, Mark, Burghardt, Jeffrey, Morris, Joseph P., Doe, Thomas, Fu, Pengcheng, Knox, Hunter, Vermeul, Vince, and Kneafsey, Tim
- Published
- 2023
- Full Text
- View/download PDF
7. Creation of a Mixed-Mode Fracture Network at Mesoscale Through Hydraulic Fracturing and Shear Stimulation
- Author
-
Schoenball, M, Ajo-Franklin, JB, Blankenship, D, Chai, C, Chakravarty, A, Dobson, P, Hopp, C, Kneafsey, T, Knox, HA, Maceira, M, Robertson, MC, Sprinkle, P, Strickland, C, Templeton, D, Schwering, PC, Ulrich, C, Wood, T, Ajo-Franklin, J, Baumgartner, T, Beckers, K, Bonneville, A, Boyd, L, Brown, S, Burghardt, JA, Chen, T, Chen, Y, Chi, B, Condon, K, Cook, PJ, Crandall, D, Dobson, PF, Doe, T, Doughty, CA, Elsworth, D, Feldman, J, Feng, Z, Foris, A, Frash, LP, Frone, Z, Fu, P, Gao, K, Ghassemi, A, Guglielmi, Y, Haimson, B, Hawkins, A, Heise, J, Horn, M, Horne, RN, Horner, J, Hu, M, Huang, H, Huang, L, Im, KJ, Ingraham, M, Jafarov, E, Jayne, RS, Johnson, TC, Johnson, SE, Johnston, B, Karra, S, Kim, K, King, DK, Knox, H, Knox, J, Kumar, D, Kutun, K, Lee, M, Li, K, Li, Z, Mackey, P, Makedonska, N, Marone, CJ, Mattson, E, McClure, MW, McLennan, J, McLing, T, Medler, C, Mellors, RJ, Metcalfe, E, Miskimins, J, Moore, J, Morency, CE, Morris, JP, Myers, T, Nakagawa, S, Neupane, G, Newman, G, Nieto, A, Paronish, T, Pawar, R, Petrov, P, Pietzyk, B, Podgorney, R, and Polsky, Y
- Subjects
induced seismicity ,enhanced geothermal systems ,mesoscale ,Geochemistry ,Geology ,Geophysics - Abstract
Enhanced Geothermal Systems could provide a substantial contribution to the global energy demand if their implementation could overcome inherent challenges. Examples are insufficient created permeability, early thermal breakthrough, and unacceptable induced seismicity. Here we report on the seismic response of a mesoscale hydraulic fracturing experiment performed at 1.5-km depth at the Sanford Underground Research Facility. We have measured the seismic activity by utilizing a 100-kHz, continuous seismic monitoring system deployed in six 60-m length monitoring boreholes surrounding the experimental domain in 3-D. The achieved location uncertainty was on the order of 1 m and limited by the signal-to-noise ratio of detected events. These uncertainties were corroborated by detections of fracture intersections at the monitoring boreholes. Three intervals of the dedicated injection borehole were hydraulically stimulated by water injection at pressures up to 33 MPa and flow rates up to 5 L/min. We located 1,933 seismic events during several injection periods. The recorded seismicity delineates a complex fracture network comprised of multistrand hydraulic fractures and shear-reactivated, preexisting planes of weakness that grew unilaterally from the point of initiation. We find that heterogeneity of stress dictates the seismic outcome of hydraulic stimulations, even when relying on theoretically well-behaved hydraulic fractures. Once hydraulic fractures intersected boreholes, the boreholes acted as a pressure relief and fracture propagation ceased. In order to create an efficient subsurface heat exchanger, production boreholes should not be drilled before the end of hydraulic stimulations.
- Published
- 2020
8. Low Static Shear Modulus Along Foliation and Its Influence on the Elastic and Strength Anisotropy of Poorman Schist Rocks, Homestake Mine, South Dakota
- Author
-
Condon, KJ, Sone, H, Wang, HF, Ajo-Franklin, J, Baumgartner, T, Beckers, K, Blankenship, D, Bonneville, A, Boyd, L, Brown, S, Burghardt, JA, Chai, C, Chen, Y, Chi, B, Condon, K, Cook, PJ, Crandall, D, Dobson, PF, Doe, T, Doughty, CA, Elsworth, D, Feldman, J, Feng, Z, Foris, A, Frash, LP, Frone, Z, Fu, P, Gao, K, Ghassemi, A, Guglielmi, Y, Haimson, B, Hawkins, A, Heise, J, Hopp, C, Horn, M, Horne, RN, Horner, J, Hu, M, Huang, H, Huang, L, Im, KJ, Ingraham, M, Jafarov, E, Jayne, RS, Johnson, SE, Johnson, TC, Johnston, B, Kim, K, King, DK, Kneafsey, T, Knox, H, Knox, J, Kumar, D, Lee, M, Li, K, Li, Z, Maceira, M, Mackey, P, Makedonska, N, Mattson, E, McClure, MW, McLennan, J, Medler, C, Mellors, RJ, Metcalfe, E, Moore, J, Morency, CE, Morris, JP, Myers, T, Nakagawa, S, Neupane, G, Newman, G, Nieto, A, Oldenburg, CM, Paronish, T, Pawar, R, Petrov, P, Pietzyk, B, Podgorney, R, Polsky, Y, Pope, J, Porse, S, Primo, JC, Reimers, C, Roberts, BQ, Robertson, M, Roggenthen, W, Rutqvist, J, Rynders, D, Schoenball, M, Schwering, P, Sesetty, V, Sherman, CS, Singh, A, Smith, MM, Sonnenthal, EL, Soom, FA, Sprinkle, P, and Strickland, CE
- Subjects
Anisotropy ,Schist ,Young's modulus ,EGS Collab ,Geological & Geomatics Engineering ,Civil Engineering ,Resources Engineering and Extractive Metallurgy - Abstract
We investigate the influence of foliation orientation and fine-scale folding on the static and dynamic elastic properties and unconfined strength of the Poorman schist. Measurements from triaxial and uniaxial laboratory experiments reveal a significant amount of variability in the static and dynamic Young’s modulus depending on the sample orientation relative to the foliation plane. Dynamic P-wave modulus and S-wave modulus are stiffer in the direction parallel to the foliation plane as expected for transversely isotropic mediums with average Thomsen parameters values 0.133 and 0.119 for epsilon and gamma, respectively. Static Young’s modulus varies significantly between 21 and 117 GPa, and a peculiar trend is observed where some foliated sample groups show an anomalous decrease in the static Young’s modulus when the symmetry axis (x3-axis) is oriented obliquely to the direction of loading. Utilizing stress and strain relationships for transversely isotropic medium, we derive the analytical expression for Young’s modulus as a function of the elastic moduli E1, E3, ν31, and G13 and sample orientation to fit the static Young’s modulus measurements. Regression of the equation to the Young’s modulus data reveals that the decrease in static Young’s modulus at oblique symmetry axis orientations is directly influenced by a low shear modulus, G13, which we attribute to shear sliding along foliation planes during static deformation that occurs as soon as the foliation is subject to shear stress. We argue that such difference between dynamic and static anisotropy is a characteristic of near-zero porosity anisotropic rocks. The uniaxial compressive strength also shows significant variability ranging from 21.9 to 194.6 MPa across the five sample locations and is the lowest when the symmetry axis is oriented 45° or 60° from the direction of loading, also a result of shear sliding along foliation planes during static deformation.
- Published
- 2020
9. The EGS collab project: Stimulating and simulating experiments in crystalline rock in an underground research site
- Author
-
Kneafsey, T, Blankenship, D, Dobson, PF, Morris, J, Fu, P, White, M, Schwering, P, Knox, H, Guglielmi, Y, Schoenball, M, Ajo-Franklin, J, Huang, L, Neupane, G, Horne, R, Zhang, Y, Roggenthen, W, and Doe, T
- Subjects
Geochemistry & Geophysics - Abstract
The primary objective of the EGS Collab Project sponsored by DOE is to increase the understanding needed to efficiently implement enhanced geothermal systems (EGS). The EGS Collab project is a collaborative research environment studying stimulation of crystalline rock at the 10-meter scale. High-quality characterization and monitoring data are collected during stimulation and flow tests to allow comparison to numerical coupled process models in an effort to build confidence in the codes and improve modeling techniques. The Experiment 1 test bed, located at the Sanford Underground Research Facility (SURF) in Lead, SD at a depth of approximately 1.5 km is being used to examine hydraulic fracturing. The testbed was characterized using numerous field-based geophysical and geologic techniques and laboratory testing, and a well-instrumented test bed was created to allow us to carefully monitor fracture stimulation events and flow tests. A number of hydraulic stimulation tests at several locations in one well were performed, creating new fractures that connect to existing fractures between the injection and production boreholes. Long-term ambient and chilled water injection tests have been performed as an analog to EGS, and system changes resulting from these water injections have been monitored using geophysical monitoring, flow, temperature, and pressure measurements, tracer tests, and microbiology. Here, we summarize the tests performed, issues identified including poroelastic and thermoelastic effects, Joule-Thomson effects, restarting effects, indications of flow channeling, and the scientific findings to date from Experiment 1. We are currently designing a second test bed aimed at investigating shear stimulation (Experiment 2).
- Published
- 2020
10. Optimal design of 3D borehole seismic arrays for microearthquake monitoring in anisotropic media during stimulations in the EGS collab project
- Author
-
Chen, Yu, Huang, Lianjie, Ajo-Franklin, J, Bauer, SJ, Baumgartner, T, Beckers, K, Blankenship, D, Bonneville, A, Boyd, L, Brown, ST, Burghardt, JA, Chen, T, Chen, Y, Condon, K, Cook, PJ, Dobson, PF, Doe, T, Doughty, CA, Elsworth, D, Feldman, J, Foris, A, Frash, LP, Frone, Z, Fu, P, Gao, K, Ghassemi, A, Gudmundsdottir, H, Guglielmi, Y, Guthrie, G, Haimson, B, Hawkins, A, Heise, J, Herrick, CG, Horn, M, Horne, RN, Horner, J, Hu, M, Huang, H, Huang, L, Im, K, Ingraham, M, Johnson, TC, Johnston, B, Karra, S, Kim, K, King, DK, Kneafsey, T, Knox, H, Knox, J, Kumar, D, Kutun, K, Lee, M, Li, K, Lopez, R, Maceira, M, Makedonska, N, Marone, C, Mattson, E, McClure, MW, McLennan, J, McLing, T, Mellors, RJ, Metcalfe, E, Miskimins, J, Morris, JP, Nakagawa, S, Neupane, G, Newman, G, Nieto, A, Oldenburg, CM, Pan, W, Pawar, R, Petrov, P, Pietzyk, B, Podgorney, R, Polsky, Y, Porse, S, Richard, S, Roberts, BQ, Robertson, M, Roggenthen, W, Rutqvist, J, Rynders, D, Santos-Villalobos, H, Schoenball, M, Schwering, P, Sesetty, V, Singh, A, Smith, MM, Sone, H, Strickland, CE, Su, J, Ulrich, C, Uzunlar, N, Vachaparampil, A, Valladao, CA, Vandermeer, W, Vandine, G, Vardiman, D, and Vermeul, VR
- Subjects
Anisotropic media ,Borehole monitoring ,Enhanced geothermal systems ,Focal mechanism ,Hypocenter location ,Microearthquake ,Optimal design ,Geochemistry & Geophysics ,Geology ,Geophysics ,Resources Engineering and Extractive Metallurgy - Published
- 2019
11. EGS Collab project: Status, tests, and data
- Author
-
Kneafsey, TJ, Dobson, PF, Ajo-Franklin, JB, Guglielmi, Y, Valladao, CA, Blankenship, DA, Schwering, PC, Knox, HA, White, MD, Johnson, TC, Strickland, CE, Vermuel, VR, Morris, JP, Fu, P, Mattson, E, Neupane, GH, Podgorney, RK, Doe, TW, Huang, L, Frash, LP, Ghassemi, A, Roggenthen, W, Bauer, SJ, Baumgartner, T, Beckers, K, Blankenship, D, Bonneville, A, Boyd, L, Brown, S, Brown, ST, Burghardt, JA, Chen, T, Chen, Y, Condon, K, Cook, PJ, Crandall, D, Doe, T, Doughty, CA, Elsworth, D, Feldman, J, Foris, A, Frone, Z, Gao, K, Gudmundsdottir, H, Guthrie, G, Haimson, B, Hawkins, A, Heise, J, Horn, M, Horne, RN, Horner, J, Hu, M, Huang, H, Im, KJ, Ingraham, M, Jayne, RS, Johnston, B, Karra, S, Kim, K, King, DK, Knox, H, Knox, J, Kumar, D, Kutun, K, Lee, M, Li, K, Lopez, R, Maceira, M, Mackey, P, Makedonska, N, Marone, CJ, McClure, MW, McLennan, J, McLing, T, Medler, C, Mellors, RJ, Metcalfe, E, Miskimins, J, Moore, J, Nakagawa, S, Neupane, G, Newman, G, Nieto, A, Oldenburg, CM, Pan, W, Paronish, T, Pawar, R, Petrov, P, and Pietzyk, B
- Abstract
Copyright 2019 ARMA, American Rock Mechanics Association. The EGS (Enhanced Geothermal Systems) Collab project is performing stimulation and flow experiments in highly-monitored and well-characterized intermediate-scale (approximately10 to 20 meter) field test beds at a depth of approximately 1,500 meters in the Sanford Underground Research Facility (SURF) in the Black Hills of South Dakota. Our fracture stimulation and interwell flow tests are performed to better understand processes that control formation of effective subsurface heat exchangers that are critical to the development and success of EGS. Different EGS Collab stimulations will be performed under dissimilar stress conditions to produce data for model comparisons that better differentiate stimulation mechanisms and the evolution of permeability enhancement in crystalline rock. EGS Collab experiments provide a means of testing tools, concepts, and strategies that could later be employed under geothermal reservoir conditions at DOE’s Frontier Observatory for Research in Geothermal Energy (FORGE) and other enhanced geothermal systems. Key to the project is using numerical simulations in the experiment design and interpretation of
- Published
- 2019
12. Using in-situ strain measurements to evaluate the accuracy of stress estimation procedures from fracture injection/shut-in tests
- Author
-
Guglielmi, Yves, primary, McClure, Mark, additional, Burghardt, Jeffrey, additional, Morris, Joseph P., additional, Doe, Thomas, additional, Fu, Pengcheng, additional, Knox, Hunter, additional, Vermeul, Vince, additional, Kneafsey, Tim, additional, Ajo-Franklin, J., additional, Baumgartner, T., additional, Beckers, K., additional, Blankenship, D., additional, Bonneville, A., additional, Boyd, L., additional, Brown, S., additional, Burghardt, J.A., additional, Chai, C., additional, Chakravarty, A., additional, Chen, T., additional, Chen, Y., additional, Chi, B., additional, Condon, K., additional, Cook, P.J., additional, Crandall, D., additional, Dobson, P.F., additional, Doe, T., additional, Doughty, C.A., additional, Elsworth, D., additional, Feldman, J., additional, Feng, Z., additional, Foris, A., additional, Frash, L.P., additional, Frone, Z., additional, Fu, P., additional, Gao, K., additional, Ghassemi, A., additional, Guglielmi, Y., additional, Haimson, B., additional, Hawkins, A., additional, Heise, J., additional, Hopp, C., additional, Horn, M., additional, Horne, R.N., additional, Horner, J., additional, Hu, M., additional, Huang, H., additional, Huang, L., additional, Im, K.J., additional, Ingraham, M., additional, Jafarov, E., additional, Jayne, R.S., additional, Johnson, T.C., additional, Johnson, S.E., additional, Johnston, B., additional, Karra, S., additional, Kim, K., additional, King, D.K., additional, Kneafsey, T., additional, Knox, H., additional, Knox, J., additional, Kumar, D., additional, Kutun, K., additional, Lee, M., additional, Li, D., additional, Li, J., additional, Li, K., additional, Li, Z., additional, Maceira, M., additional, Mackey, P., additional, Makedonska, N., additional, Marone, C.J., additional, Mattson, E., additional, McClure, M.W., additional, McLennan, J., additional, McLing, T., additional, Medler, C., additional, Mellors, R.J., additional, Metcalfe, E., additional, Miskimins, J., additional, Moore, J., additional, Morency, C.E., additional, Morris, J.P., additional, Myers, T., additional, Nakagawa, S., additional, Neupane, G., additional, Newman, G., additional, Nieto, A., additional, Paronish, T., additional, Pawar, R., additional, Petrov, P., additional, Pietzyk, B., additional, Podgorney, R., additional, Polsky, Y., additional, Pope, J., additional, Porse, S., additional, Primo, J.C., additional, Pyatina, T., additional, Reimers, C., additional, Roberts, B.Q., additional, Robertson, M., additional, Rodríguez-Tribaldos, V., additional, Roggenthen, W., additional, Rutqvist, J., additional, Rynders, D., additional, Schoenball, M., additional, Schwering, P., additional, Sesetty, V., additional, Sherman, C.S., additional, Singh, A., additional, Smith, M.M., additional, Sone, H., additional, Sonnenthal, E.L., additional, Soom, F.A., additional, Sprinkle, D.P., additional, Sprinkle, S., additional, Strickland, C.E., additional, Su, J., additional, Templeton, D., additional, Thomle, J.N., additional, Ulrich, C., additional, Uzunlar, N., additional, Vachaparampil, A., additional, Valladao, C.A., additional, Vandermeer, W., additional, Vandine, G., additional, Vardiman, D., additional, Vermeul, V.R., additional, Wagoner, J.L., additional, Wang, H.F., additional, Weers, J., additional, Welch, N., additional, White, J., additional, White, M.D., additional, Winterfeld, P., additional, Wood, T., additional, Workman, S., additional, Wu, H., additional, Wu, Y.S., additional, Yildirim, E.C., additional, Zhang, Y., additional, Zhang, Y.Q., additional, Zhou, Q., additional, and Zoback, M.D., additional
- Published
- 2023
- Full Text
- View/download PDF
13. The EGS Collab Project – Stimulations at Two Depths
- Author
-
Kneafsey, T. J., additional, Dobson, P. F., additional, Ulrich, C., additional, Hopp, C., additional, Rodríguez-Tribaldos, V., additional, Guglielmi, Y., additional, Blankenship, D., additional, Schwering, P. C., additional, Ingraham, M., additional, Burghardt, J. A., additional, White, M. D., additional, Johnson, T. C., additional, Strickland, C., additional, Vermuel, V., additional, Knox, H. A., additional, Morris, J. P., additional, Fu, P., additional, Smith, M., additional, Wu, H., additional, Ajo-Franklin, J. B., additional, Huang, L., additional, Neupane, G., additional, Horne, R., additional, Roggenthen, W., additional, Weers, J., additional, Doe, T. W., additional, Pyatina, T., additional, and Team, EGS Collab, additional
- Published
- 2022
- Full Text
- View/download PDF
14. EGS Stimulation Design with Uncertainty Quantification at the EGS Collab Site
- Author
-
Burghardt, J., additional, Knox, H. A., additional, Doe, T., additional, Blankenship, D., additional, Schwering, P. C., additional, Ingraham, M., additional, Kneafsey, T. J., additional, Dobson, P. F., additional, Ulrich, C., additional, Guglielmi, Y., additional, and Roggenthen, W., additional
- Published
- 2022
- Full Text
- View/download PDF
15. Characterizing Rock Fractures and Physical Properties for Experiment 2 of the EGS Collab Project, Sanford Underground Research Facility
- Author
-
Ulrich, C., additional, Dobson, P. F., additional, Kneafsey, T. J., additional, Roggenthen, W. M., additional, Uzunlar, N., additional, Doe, T. W., additional, Neupane, G., additional, Artz, T., additional, Dobler, K., additional, Schwering, P., additional, Smith, M., additional, and Burghardt, J. A., additional
- Published
- 2022
- Full Text
- View/download PDF
16. Intermediate-Scale Hydraulic Fracturing in a Deep Mine - kISMET Project Summary 2016
- Author
-
Oldenburg, C. M., primary, Dobson, P. F., additional, Wu, Y., additional, Cook, P. J., additional, Kneafsey, T. J., additional, Nakagawa, S., additional, Ulrich, C., additional, Siler, D. L., additional, Guglielmi, Y., additional, Ajo-Franklin, J. B., additional, Rutqvist, J., additional, Daley, T. M., additional, Birkholzer, J. T., additional, Wang, H. F., additional, Lord, N. E., additional, Haimson, B. C., additional, Sone, H., additional, Vigilante, P., additional, Roggenthen, W. M., additional, Doe, T. W., additional, Lee, M. Y., additional, Ingraham, M., additional, Huang, H., additional, Mattson, E. D., additional, Zhou, J., additional, Johnson, T. J., additional, Morris, J. P., additional, White, J. A., additional, Johnson, P. A., additional, Coblentz, D. D., additional, Heise, J., additional, and Zoback, M. D., additional
- Published
- 2016
- Full Text
- View/download PDF
17. Accurate Model for Fluorescence Resonance Energy Transfer between Gold Nanoparticles and Cy3 Orange Beads
- Author
-
Lea, Anh Thi, primary, Hoangc, Manh Ha, additional, Nguyend, Minh Hoa, additional, Doe, T. Anh Thu, additional, and Manb, Minh Tan, additional
- Published
- 2020
- Full Text
- View/download PDF
18. Deterministic and Statistical Modeling of a New Thermal Breakout Technology for Measuring the Maximum Horizontal In-Situ Stress
- Author
-
Voegeli, S., primary, Nopola, J., additional, Moos, D., additional, and Doe, T., additional
- Published
- 2020
- Full Text
- View/download PDF
19. The EGS collab project: Stimulating and simulating experiments in crystalline rock in an underground research site
- Author
-
Kneafsey, T., Blankenship, D., Dobson, P. F., Morris, J., Fu, P., White, M., Schwering, P., Knox, H., Guglielmi, Y., Schoenball, M., Ajo-Franklin, J., Huang, L., Neupane, G., Horne, R., Zhang, Y., Roggenthen, W., and Doe, T.
- Subjects
Geochemistry & Geophysics - Abstract
The primary objective of the EGS Collab Project sponsored by DOE is to increase the understanding needed to efficiently implement enhanced geothermal systems (EGS). The EGS Collab project is a collaborative research environment studying stimulation of crystalline rock at the 10-meter scale. High-quality characterization and monitoring data are collected during stimulation and flow tests to allow comparison to numerical coupled process models in an effort to build confidence in the codes and improve modeling techniques. The Experiment 1 test bed, located at the Sanford Underground Research Facility (SURF) in Lead, SD at a depth of approximately 1.5 km is being used to examine hydraulic fracturing. The testbed was characterized using numerous field-based geophysical and geologic techniques and laboratory testing, and a well-instrumented test bed was created to allow us to carefully monitor fracture stimulation events and flow tests. A number of hydraulic stimulation tests at several locations in one well were performed, creating new fractures that connect to existing fractures between the injection and production boreholes. Long-term ambient and chilled water injection tests have been performed as an analog to EGS, and system changes resulting from these water injections have been monitored using geophysical monitoring, flow, temperature, and pressure measurements, tracer tests, and microbiology. Here, we summarize the tests performed, issues identified including poroelastic and thermoelastic effects, Joule-Thomson effects, restarting effects, indications of flow channeling, and the scientific findings to date from Experiment 1. We are currently designing a second test bed aimed at investigating shear stimulation (Experiment 2).
- Published
- 2020
20. HYDRAULIC FRACTURING AND OVERCORING STRESS MEASUREMENTS IN A DEEP BOREHOLE AT THE STRIPA TEST MINE, SWEDEN
- Author
-
Doe, T.
- Subjects
General and Miscellaneous - Published
- 1981
21. InAs/GaAs quantum dot infrared photodetectors on on‐axis Si (100) substrates
- Author
-
Yoshikawa, H., primary, Kwoen, J., additional, Doe, T., additional, Izumi, M., additional, Iwamoto, S., additional, and Arakawa, Y., additional
- Published
- 2018
- Full Text
- View/download PDF
22. 亀裂ネットワークコードの開発
- Author
-
Dershowitz, W., Doe, T., Lee, G., Geier, J., Wallmann, P. C., Thomas, A., and Foxford, T.
- Abstract
Discrete Fracture Network Code Development Heisei-5 Progress Report, 著者所属: 日本原子力研究開発機構(JAEA)
- Published
- 1995
23. 亀裂ネットワークコードの開発
- Author
-
Doe, T. W., Dershowitz, W. S., Lee, G. C., LaPointe, P. R., and Wallmann, P. C.
- Abstract
Discrete Fracture Network Code Development Heisei-4 Progress Report, 著者所属: 日本原子力研究開発機構(JAEA)
- Published
- 1994
24. 亀裂ネットワークコードの開発
- Author
-
Doe, T., Dershowitz, W., Wallmann, P. C., Lee, G., LaPointe, P., Hitchcock, S., and Chakrabaryty, C.
- Abstract
Discrete Fracture Network Code Development Heisei-6 Progress Report, 著者所属: 日本原子力研究開発機構(JAEA)
- Published
- 1993
25. 亀裂ネットワークコードの開発
- Author
-
Dershowitz, W., Doe, T., Shuttle, D., Eiben, T., Fox, A., Emsley, S., and Ahlstrom, E.
- Abstract
None, 本報告書は、亀裂流動モデルの開発と性能評価への適用性に関する平成10年度のGolder Associates Inc.の研究結果を報告するものである。平成10年度のGolder Associatesの研究目的は、第2次取りまとめ(性能評価報告書)に理論的及びモデリングについて支援することである。加えて、Golder AssociatesはJNCのAspoプロジェクトについて技術的にサポートする。性能評価の支援のための主な研究は、流れと移行のシミユレーション、移行経路の簡素化の解析、掘削影響領域による影響の調査、ソフトウェアの検証及び比較検証、モンテカルロシミユレーションの信頼性の解析である。また、フィックの拡散のアルゴリズムを、Laplace Transform Galerkin solute transportに適用したアルゴリズム改良を施した。Aspoプロジェクトに対する支援項目は、TRUE-1での岩石ブロック中での収着性トレーサの移行予測のためのモデリング、TASK5での1kmスケールの地化学的な移行経路解析、TRUEブロックスケール試験のデータ解析と試験計画である。技術的情報については、本報告書に示した。
- Published
- 1999
26. None
- Author
-
Shimo, Michito, Yamamoto, Hajime, Takahara, Hiroyuki, and Doe, T.
- Abstract
花崗岩に代表される結晶質岩中の水理・物質移行には、割れ目の分布や連続性が大きく係わっていることが知られているが、その定量的な評価に必要な原位置試験データの蓄積は十分とはいえない。そこで、本研究では、釜石鉱山550mレベルの約100m$\times$60mの領域を対象として、割れ目調査、水理試験および比収着性トレーサーによる原位置トレーサー試験を実施した。平成6年度は、水理地質構造調査の一環として、100mのボーリング孔(KH-20孔)の掘削と既存のKH-19孔での圧力応答観測、およびボーリング孔の水理地質調査を行った。平成7年度は、引き続き3本のボーリング孔(KH-23孔、KH-21孔、KH-25孔、各80m)を掘削し、削孔時の既存孔における圧力応答観測およびボーリング孔の水理地質調査を行なうとともに、KH-25孔の簡易単孔透水試験を実施した。平成8年度は、試験区域の中央および西側境界に2本のボーリング孔、KH-24孔およびKH-22孔(各80m)を掘削しトレーサー試験に必要なボーリング孔配置を完成させた。また、孔間透水試験及び予備的トレーサー試験を実施し、その結果をもとにトレーサー試験の実施対象とする透水割れ目を抽出した。その後、それまでに得られた地質データおよび水理試験データを総合的に評価して、マルチパッカーシステムの更新を行なった。最終年度となる本年度は、試験対象割れ目(単一割れ目2箇所、亀裂ネットワーク部1箇所)において、非吸着性トレーサー試験を実施した。また、得られた試験結果について準理論解を用いた解析を行ない、透水性割れ目の水理物質移行パラメータを評価した。また、これと並行して、平成8年度に動燃殿が実施した孔間透水試験結果の解析的な検討を行ない、試験対象エリアの水理地質構造について考察した。, None
- Published
- 1998
27. None
- Author
-
Shimo, Michito, Yamamoto, Hajime, Takahara, Hiroyuki, and Doe, T.
- Abstract
本研究の目的は、結晶質岩中における水理地質構造モデルを構築することであり、このための物質移行経路となる透水割れ目の分布および連結性を試錘孔掘削等の水理応答観測、ボアホールテレビ検層、コア観察等の調査により把握するとともに、水理試験、非収着性トレーサー試験を行い、水理・物質移行パラメータを取得することである。平成6年度は、この非収着性トレーサー試験を実施するための準備の初年度の作業として、100mのボーリング孔(KH-20孔)の掘削とこれに伴う既存のKH-19孔での圧力応答観測、およびボーリング孔の水理地質調査を行うことによりKH-19孔とKH-20孔間の水理地質構造を推定した。平成7年度は、平成6年度に引き続き3本のボーリング孔(各80m)を掘削し、ボーリング孔掘削時の既存孔における圧力応答観測およびボーリング孔の水理地質調査、簡易的な水理試験を実施し、平成6年度に取得されたデータとともに総合的に解析して試験対象領域の水理地質構造モデルを検討した。平成8年度は、新たに2本のボーリング孔、KH-24孔およびKH-22孔(各80m)を掘削しトレーサー試験に必要なボーリング孔配置を完成させるとともに、トレーサー試験用にマルチパッカーシステムのパッカー配置と配管を更新した。また、トレーサー試験対象割れ目の水理物質移行特性を概略的に把握するために孔間透水試験ならびに予備的トレーサー試験を組み合わせて実施し、平成9年度に実施する非収着性トレーサー試験に用いる透水性割れ目を抽出した。, None
- Published
- 1997
28. None
- Author
-
Shimo, Michito, Yamamoto, Hajime, Takahara, Hiroyuki, Negi, Tateyuki, and Doe, T.
- Abstract
本研究の目的は、結晶質岩中における水理地質構造モデルを構築することであり、このための物質移行経路となる透水性割れ目の分布および連結性を試錘孔掘削時の水理応答観測、ボアホールテレビ検層、コア観察等の調査により把握するとともに、水理試験、非収着性トレーサー試験を行い、水理・物質移行パラメータを取得することである。平成6年度は、試験の準備段階として、100mのボーリング孔(KH-20孔)の掘削とこれに伴う既存のKH-19孔での圧力応答観測、およびBTV観察、コア観察、流量検層等を実施し、KH-19孔とKH-20孔間の水理地質構造を推定した。平成7年度は、調査対象領域を広げると共に、試験の中心となる領域の水理地質構造をより詳細に把握するために、平成6年度に引き続き3本のボーリング孔(KH-21、KH-23、KH-25孔)を掘削し、既存ボーリング孔での圧力応答観測およびボーリング孔の水理地質調査を行なった。これらのボーリング孔では、BTV観察および岩芯観察による割れ目特性の把握を行なった。また、最後に削孔したKH-25孔においてビルドアップ透水試験を行った。これらの調査試験により得られた、亀裂分布、水圧分布、水圧応答経路から、平成6年度の結果を見直し、試験エリアの岩盤内の詳細な水理地質構造モデルを構築した。, None
- Published
- 1996
29. Well Testing and Fracture Network Modeling
- Author
-
W. Doe, T., primary
- Published
- 2011
- Full Text
- View/download PDF
30. 70 Hypoxia and DNA-dsb signalling and repair in prostate cancer xenografts
- Author
-
Phan, T., primary, Meng, A., additional, Doe, T., additional, Nicklee, T., additional, Ho, J., additional, Cole, H., additional, Sweet, J., additional, Hedley, D., additional, and Bristow, R., additional
- Published
- 2006
- Full Text
- View/download PDF
31. Applications of Flow Logging at Radioactive Waste Research Laboratories in France and Sweden
- Author
-
Rouhiainen, P., primary, Doe, T., additional, and Distinguin, M., additional
- Published
- 2004
- Full Text
- View/download PDF
32. Geohydrological studies for nuclear waste isolation at the Hanford Reservation. Volume II. Final report
- Author
-
Apps, J., primary, Doe, T., additional, and Doty, B., additional
- Published
- 1979
- Full Text
- View/download PDF
33. Rock mass characterization for storage of nuclear waste in granite
- Author
-
Witherspoon, P.A., primary, Nelson, P., additional, Doe, T., additional, Thorpe, R., additional, Paulsson, B., additional, Gale, J., additional, and Forster, C., additional
- Published
- 1979
- Full Text
- View/download PDF
34. Geohydrological studies for nuclear waste isolation at the Hanford Reservation. Volume I. Executive summary
- Author
-
Apps, J., primary, Doe, T., additional, and Doty, B., additional
- Published
- 1979
- Full Text
- View/download PDF
35. Analysis of heterogeneously connected rock masses by forward modeling of fractional dimension flow behavior
- Author
-
Dershowitz, W., primary and Doe, T., additional
- Published
- 1997
- Full Text
- View/download PDF
36. Rock Mass Characterization for Storage of Nuclear Waste in Granite.
- Author
-
Witherspoon, P. A., Nelson, P., Doe, T., Thorpe, R., Paulsson, B., Gale, J., and Forster, C.
- Published
- 1980
- Full Text
- View/download PDF
37. Evaluation of Hydrojacking Tests for an Unlined Pressure Tunnel
- Author
-
Hartmaier, H. H., Doe, T. W., and Dixon, G.
- Published
- 1998
- Full Text
- View/download PDF
38. EGS Collab project: Status, tests, and data
- Author
-
Kneafsey, T. J., Dobson, P. F., Ajo-Franklin, J. B., Guglielmi, Y., Valladao, C. A., Blankenship, D. A., Schwering, P. C., Knox, H. A., White, M. D., Johnson, T. C., Strickland, C. E., Vermuel, V. R., Morris, J. P., Fu, P., Mattson, E., Neupane, G. H., Podgorney, R. K., Doe, T. W., Huang, L., Frash, L. P., Ghassemi, A., Roggenthen, W., Ajo-Franklin, J., Bauer, S. J., Baumgartner, T., Beckers, K., Blankenship, D., Bonneville, A., Boyd, L., Brown, S., Brown, S. T., Burghardt, J. A., Chen, T., Chen, Y., Condon, K., Cook, P. J., Crandall, D., Doe, T., Doughty, C. A., Elsworth, D., Feldman, J., Foris, A., Frone, Z., Gao, K., Gudmundsdottir, H., Guthrie, G., Haimson, B., Hawkins, A., Heise, J., Horn, M., Horne, R. N., Horner, J., Hu, M., Huang, H., Im, K. J., Ingraham, M., Jayne, R. S., Johnston, B., Satish Karra, Kim, K., King, D. K., Kneafsey, T., Knox, H., Knox, J., Kumar, D., Kutun, K., Lee, M., Li, K., Lopez, R., Maceira, M., Mackey, P., Makedonska, N., Marone, C. J., Mcclure, M. W., Mclennan, J., Mcling, T., Medler, C., Mellors, R. J., Metcalfe, E., Miskimins, J., Moore, J., Nakagawa, S., Neupane, G., Newman, G., Nieto, A., Oldenburg, C. M., Pan, W., Paronish, T., Pawar, R., Petrov, P., Pietzyk, B., Podgorney, R., Polsky, Y., Popejoy, J., Porse, S., Roberts, B. Q., Robertson, M., Rutqvist, J., Rynders, D., Santos-Villalobos, H., Schoenball, M., Schwering, P., Sesetty, V., Sherman, C. S., Singh, A., Smith, M. M., Sone, H., Soom, F. A., Su, J., Templeton, D., Thomle, J. N., Ulrich, C., Uzunlar, N., Vachaparampil, A., Vandermeer, W., Vandine, G., Vardiman, D., Vermeul, V. R., Wagoner, J. L., Wang, H. F., Weers, J., White, J., Winterfeld, P., Wood, T., Workman, S., Wu, H., Wu, Y. S., Wu, Y., Yildirim, E. C., Zhang, Y., Zhang, Y. Q., Zhou, J., Zhou, Q., and Zoback, M. D.
39. Natural fractures and their relationship to the EGS Collab Project in the underground of the Sanford Underground Research Facility (SURF)
- Author
-
Roggenthen, W. M., Doe, T. W., Ajo-Franklin, J., Bauer, S. J., Baumgartner, T., Beckers, K., Blankenship, D., Bonneville, A., Boyd, L., Brown, S. T., Burghardt, J. A., Chen, T., Chen, Y., Condon, K., Cook, P. J., Dobson, P. F., Doe, T., Doughty, C. A., Elsworth, D., Feldman, J., Foris, A., Frash, L. P., Frone, Z., Fu, P., Gao, K., Ghassemi, A., Halldora Gudmundsdottir, Guglielmi, Y., Guthrie, G., Haimson, B., Hawkins, A., Heise, J., Herrick, C. G., Horn, M., Horne, R. N., Horner, J., Hu, M., Huang, H., Huang, L., Im, K., Ingraham, M., Johnson, T. C., Johnston, B., Karra, S., Kim, K., King, D. K., Kneafsey, T., Knox, H., Knox, J., Kumar, D., Kutun, K., Lee, M., Li, K., Lopez, R., Maceira, M., Makedonska, N., Marone, C., Mattson, E., Mcclure, M. W., Mclennan, J., Mcling, T., Mellors, R. J., Metcalfe, E., Miskimins, J., Morris, J. P., Nakagawa, S., Neupane, G., Newman, G., Nieto, A., Oldenburg, C. M., Pan, W., Pawar, R., Petrov, P., Pietzyk, B., Podgorney, R., Polsky, Y., Porse, S., Richard, S., Roberts, B. Q., Robertson, M., Roggenthen, W., Rutqvist, J., Rynders, D., Santos-Villalobos, H., Schoenball, M., Schwering, P., Sesetty, V., Singh, A., Smith, M. M., Sone, H., Strickland, C. E., Su, J., Ulrich, C., Uzunlar, N., Vachaparampil, A., Valladao, C. A., Vandermeer, W., Vandine, G., Vardiman, D., Vermeul, V. R., Wagoner, J. L., Wang, H. F., Weers, J., White, J., White, M. D., Winterfeld, P., Wood, T., Wu, H., Wu, Y. S., Wu, Y., Zhang, Y., Zhang, Y. Q., Zhou, J., Zhou, Q., and Zoback, M. D.
40. EGS Collab Earth modeling: Integrated 3D model of the testbed
- Author
-
Neupane, G., Podgorney, R. K., Huang, H., Mattson, E. D., Kneafsey, T. J., Dobson, P. F., Schoenball, M., Ajo-Franklin, J. B., Ulrich, C., Schwering, P. C., Knox, H. A., Blankenship, D. A., Johnson, T. C., Strickland, C. E., Vermeul, V. R., White, M. D., Roggenthen, W., Uzunlar, N., Doe, T. W., Ajo-Franklin, J., Baumgartner, T., Beckers, K., Blankenship, D., Bonneville, A., Boyd, L., Brown, S., Brown, S. T., Burghardt, J. A., Chen, T., Chen, Y., Condon, K., Cook, P. J., Crandall, D., Doe, T., Doughty, C. A., Elsworth, D., Feldman, J., Foris, A., Frash, L. P., Frone, Z., Fu, P., Gao, K., Ghassemi, A., Gudmundsdottir, H., Guglielmi, Y., Guthrie, G., Haimson, B., Hawkins, A., Heise, J., Horn, M., Horne, R. N., Horner, J., Hu, M., Huang, L., Im, K. J., Ingraham, M., Jayne, R. S., Johnston, B., Karra, S., Kim, K., King, D. K., Kneafsey, T., Knox, H., Knox, J., Kumar, D., Kutun, K., Lee, M., Li, K., Li, Z., Lopez, R., Maceira, M., Mackey, P., Makedonska, N., Marone, C. J., Mattson, E., Mcclure, M. W., Mclennan, J., Mcling, T., Medler, C., Mellors, R. J., Metcalfe, E., Miskimins, J., Moore, J., Morency, C. E., Morris, J. P., Nakagawa, S., Newman, G., Nieto, A., Oldenburg, C. M., Pan, W., Paronish, T., Pawar, R., Petrov, P., Pietzyk, B., Podgorney, R., Polsky, Y., Pope, J., Porse, S., Roberts, B. Q., Robertson, M., Rutqvist, J., Rynders, D., Santos-Villalobos, H., Schwering, P., Sesetty, V., Sherman, C. S., Singh, A., Smith, M. M., Sone, H., Soom, F. A., Sprinkle, P., Su, J., Dennise Templeton, Thomle, J. N., Vachaparampil, A., Valladao, C. A., Vandermeer, W., Vandine, G., Vardiman, D., Wagoner, J. L., Wang, H. F., Weers, J., Welch, N., White, J., Winterfeld, P., Wood, T., Workman, S., Wu, H., Wu, Y. S., Wu, Y., Yildirim, E. C., Zhang, Y., Zhang, Y. Q., Zhou, Q., and Zoback, M. D.
41. Slip tendency analysis of fracture networks to determine suitability of candidate testbeds for the EGS collab hydroshear experiment
- Author
-
Singh, A., Zoback, M., Neupane, G., Dobson, P. F., Kneafsey, T. J., Schoenball, M., Guglielmi, Y., Ulrich, C., Roggenthen, W., Uzunlar, N., Morris, J., Fu, P., Schwering, P. C., Knox, H. A., Frash, L., Doe, T. W., Wang, H., Condon, K., Johnston, B., Ajo-Franklin, J., Baumgartner, T., Beckers, K., Blankenship, D., Bonneville, A., Boyd, L., Brown, S., Brown, S. T., Burghardt, J. A., Chen, T., Chen, Y., Cook, P. J., Crandall, D., Doe, T., Doughty, C. A., Elsworth, D., Feldman, J., Foris, A., Frash, L. P., Frone, Z., Gao, K., Ghassemi, A., Gudmundsdottir, H., Guthrie, G., Haimson, B., Hawkins, A., Heise, J., Horn, M., Horne, R. N., Horner, J., Hu, M., Huang, H., Huang, L., Im, K. J., Ingraham, M., Jayne, R. S., Johnson, T. C., Satish Karra, Kim, K., King, D. K., Kneafsey, T., Knox, H., Knox, J., Kumar, D., Kutun, K., Lee, M., Li, K., Li, Z., Lopez, R., Maceira, M., Mackey, P., Makedonska, N., Marone, C. J., Mattson, E., Mcclure, M. W., Mclennan, J., Mcling, T., Medler, C., Mellors, R. J., Metcalfe, E., Miskimins, J., Moore, J., Morency, C. E., Morris, J. P., Nakagawa, S., Newman, G., Nieto, A., Oldenburg, C. M., Pan, W., Paronish, T., Pawar, R., Petrov, P., Pietzyk, B., Podgorney, R., Polsky, Y., Pope, J., Porse, S., Roberts, B. Q., Robertson, M., Rutqvist, J., Rynders, D., Santos-Villalobos, H., Schwering, P., Sesetty, V., Sherman, C. S., Smith, M. M., Sone, H., Soom, F. A., Sprinkle, P., Strickland, C. E., Su, J., Templeton, D., Thomle, J. N., Vachaparampil, A., Valladao, C. A., Vandermeer, W., Vandine, G., Vardiman, D., Vermeul, V. R., Wagoner, J. L., Wang, H. F., Weers, J., Welch, N., White, J., White, M. D., Winterfeld, P., Wood, T., Workman, S., Wu, H., Wu, Y. S., Wu, Y., Yildirim, E. C., Zhang, Y., Zhang, Y. Q., Zhou, Q., and Zoback, M. D.
42. Deterministic Discrete Fracture Network (DFN) Model for the EGS Collab Project on the 4850 Level of the Sanford Underground Research Facility (SURF)
- Author
-
Schwering, P. C., Doe, T. W., Roggenthen, W. M., Neupane, G. H., Johnston, H., Dobson, P. F., Ulrich, C., Singh, A., Uzunlar, N., Reimers, C., Ajo-Franklin, J., Baumgartner, T., Beckers, K., Blankenship, D., Bonneville, A., Boyd, L., Brown, S., Burghardt, J. A., Chai, C., Chen, Y., Chi, B., Condon, K., Cook, P. J., Crandall, D., Doe, T., Doughty, C. A., Elsworth, D., Feldman, J., Feng, Z., Foris, A., Frash, L. P., Frone, Z., Fu, P., Gao, K., Ghassemi, A., Guglielmi, Y., Haimson, B., Hawkins, A., Heise, J., Hopp, C., Horn, M., Horne, R. N., Horner, J., Hu, M., Huang, H., Huang, L., Im, K. J., Ingraham, M., Jafarov, E., Jayne, R. S., Johnson, S. E., Johnson, T. C., Johnston, B., Kim, K., King, D. K., Kneafsey, T., Knox, H., Knox, J., Kumar, D., Lee, M., Li, K., Li, Z., Maceira, M., Mackey, P., Makedonska, N., Mattson, E., Mcclure, M. W., Mclennan, J., Medler, C., Mellors, R. J., Metcalfe, E., Moore, J., Morency, C. E., Morris, J. P., Myers, T., Nakagawa, S., Neupane, G., Newman, G., Nieto, A., Oldenburg, C. M., Paronish, T., Pawar, R., Petrov, P., Pietzyk, B., Podgorney, R., Polsky, Y., Pope, J., Porse, S., Primo, J. C., Roberts, B. Q., Robertson, M., Roggenthen, W., Rutqvist, J., Rynders, D., Schoenball, M., Schwering, P., Sesetty, V., Sherman, C. S., Smith, M. M., Sone, H., Sonnenthal, E. L., Soom, F. A., Sprinkle, P., Strickland, C. E., Su, J., Dennise Templeton, Thomle, J. N., Tribaldos, V. R., Vachaparampil, A., Valladao, C. A., Vandermeer, W., Vandine, G., Vardiman, D., Vermeul, V. R., Wagoner, J. L., Wang, H. F., Weers, J., Welch, N., White, J., White, M. D., Winterfeld, P., Wood, T., Workman, S., Wu, H., Wu, Y. S., Yildirim, E. C., Zhang, Y., Zhang, Y. Q., Zhou, Q., and Zoback, M. D.
43. InAs/GaAs quantum dot infrared hotodetectors on on-axis i (100) substrates.
- Author
-
Yoshikawa, H., Kwoen, J., Doe, T., Izumi, M., Iwamoto, S., and Arakawa, Y.
- Subjects
QUANTUM dots ,PHOTODETECTORS ,INDIUM arsenide ,GALLIUM arsenide ,PHOTOLUMINESCENCE ,FABRICATION (Manufacturing) - Abstract
Quantum dot infrared photodetectors (QDIPs) are receiving attention as next generation infrared photodetectors that offer high-sensitivity and high-temperature operation. The realisation of QDIPs on silicon (Si) substrates offer further great advantages in terms of cost reduction and higher-resolution focal plane arrays. Indium arsenide/gallium arsenide QDIPs grown directly on on-axis Si (100) substrates are demonstrated. These are expected to further reduce fabrication costs by utilising both the monolithic integration of QDIPs with Si readout integrated circuits and also the bare substrate cost (compared with offcut Si substrates). In the device, the peak detectivity at a temperature of 32 K is measured to be 5.8 × 10
7 cm Hz1/2 /W of 6.2 μm at a bias 0.6 V, with a corresponding responsivity of 27 mA/W. This result indicates that QD structures directly grown on on-axis Si substrates are very promising for the realisation of high-performance QDIPs with low fabrication cost. [ABSTRACT FROM AUTHOR]- Published
- 2018
- Full Text
- View/download PDF
44. Integrated research & development for advancing EGS commercialization - Tipping the scales
- Author
-
Strickland, C., Burghardt, J., Knox, H., Fu, P., Schwering, P., Johnson, T., Kneafsey, T., Ajo-Franklin, J., Bauer, S. J., Baumgartner, T., Beckers, K., Blankenship, D., Bonneville, A., Boyd, L., Brown, S. T., Burghardt, J. A., Chen, T., Chen, Y., Condon, K., Cook, P. J., Dobson, P. F., Doe, T., Doughty, C. A., Elsworth, D., Feldman, J., Foris, A., Frash, L. P., Frone, Z., Gao, K., Ghassemi, A., Gudmundsdottir, H., Guglielmi, Y., Guthrie, G., Haimson, B., Hawkins, A., Heise, J., Herrick, C. G., Horn, M., Horne, R. N., Horner, J., Hu, M., Huang, H., Huang, L., Im, K., Ingraham, M., Johnson, T. C., Johnston, B., Satish Karra, Kim, K., King, D. K., Knox, J., Kumar, D., Kutun, K., Lee, M., Li, K., Lopez, R., Maceira, M., Makedonska, N., Marone, C., Mattson, E., Mcclure, M. W., Mclennan, J., Mcling, T., Mellors, R. J., Metcalfe, E., Miskimins, J., Morris, J. P., Nakagawa, S., Neupane, G., Newman, G., Nieto, A., Oldenburg, C. M., Pan, W., Pawar, R., Petrov, P., Pietzyk, B., Podgorney, R., Polsky, Y., Porse, S., Richard, S., Roberts, B. Q., Robertson, M., Roggenthen, W., Rutqvist, J., Rynders, D., Santos-Villalobos, H., Schoenball, M., Sesetty, V., Singh, A., Smith, M. M., Sone, H., Strickland, C. E., Su, J., Ulrich, C., Uzunlar, N., Vachaparampil, A., Valladao, C. A., Vandermeer, W., Vandine, G., Vardiman, D., Vermeul, V. R., Wagoner, J. L., Wang, H. F., Weers, J., White, J., White, M. D., Winterfeld, P., Wood, T., Wu, H., Wu, Y. S., Wu, Y., Zhang, Y., Zhang, Y. Q., Zhou, J., Zhou, Q., and Zoback, M. D.
45. The EGS Collab project: Status and Accomplishments
- Author
-
Kneafsey, T., Blankenship, D., Dobson, P., White, M., Morris, J. P., Fu, P., Schwering, P. C., Ajo-Franklin, J. B., Huang, L., Knox, H. A., Strickland, C., Burghardt, J., Johnson, T., Neupane, G., Weers, J., Horne, R., Roggenthen, W., Doe, T., Mattson, E., Ajo-Franklin, J., Baumgartner, T., Beckers, K., Bonneville, A., Boyd, L., Brown, S., Burghardt, J. A., Chai, C., Chakravarty, A., Chen, T., Chen, Y., Chi, B., Condon, K., Cook, P. J., Crandall, D., Dobson, P. F., Doughty, C. A., Elsworth, D., Feldman, J., Feng, Z., Foris, A., Frash, L. P., Frone, Z., Gao, K., Ghassemi, A., Guglielmi, Y., Haimson, B., Hawkins, A., Heise, J., Hopp, C., Horn, M., Horne, R. N., Horner, J., Hu, M., Huang, H., Im, K. J., Ingraham, M., Jafarov, E., Jayne, R. S., Johnson, T. C., Johnson, S. E., Johnston, B., Karra, S., Kim, K., King, D. K., Knox, H., Knox, J., Kumar, D., Kutun, K., Lee, M., Li, D., Li, J., Li, K., Li, Z., Maceira, M., Mackey, P., Makedonska, N., Marone, C. J., Mcclure, M. W., Mclennan, J., Mcling, T., Medler, C., Mellors, R. J., Metcalfe, E., Miskimins, J., Moore, J., Morency, C. E., Myers, T., Nakagawa, S., Newman, G., Nieto, A., Paronish, T., Pawar, R., Petrov, P., Pietzyk, B., Podgorney, R., Polsky, Y., Pope, J., Porse, S., Primo, J. C., Reimers, C., Roberts, B. Q., Robertson, M., Rodriguez-Tribaldos, V., Rutqvist, J., Rynders, D., Schoenball, M., Schwering, P., Sesetty, V., Sherman, C. S., Singh, A., Smith, M. M., Sone, H., Sonnenthal, E. L., Soom, F. A., Sprinkle, D. P., Sprinkle, S., Strickland, C. E., Su, J., Dennise Templeton, Thomle, J. N., Ulrich, C., Uzunlar, N., Vachaparampil, A., Valladao, C. A., Vandermeer, W., Vandine, G., Vardiman, D., Vermeul, V. R., Wagoner, J. L., Wang, H. F., Welch, N., White, J., White, M. D., Winterfeld, P., Wood, T., Workman, S., Wu, H., Wu, Y. S., Yildirim, E. C., Zhang, Y., Zhang, Y. Q., Zhou, Q., and Zoback, M. D.
46. Fracture and flow designs for the collab/SIGMA-V project
- Author
-
Knox, H., Fu, P., Morris, J., Guglielmi, Y., Vermeul, V., Ajo-Franklin, J., Strickland, C., Johnson, T., Cook, P., Herrick, C., Lee, M., Bauer, S. J., Baumgartner, T., Blankenship, D., Bonneville, A., Boyd, L., Brown, S. T., Burghardt, J. A., Carroll, S. A., Chen, T., Condon, C., Cook, P. J., Dobson, P. F., Doe, T., Doughty, C. A., Derek Elsworth, Frash, L. P., Frone, Z., Ghassemi, A., Gudmundsdottir, H., Guthrie, G., Haimson, B., Heise, J., Herrick, C. G., Horn, M., Horne, R. N., Hu, M., Huang, H., Huang, L., Johnson, T. C., Johnston, B., Karra, S., Kim, K., King, D. K., Kneafsey, T., Kumar, D., Li, K., Maceira, M., Makedonska, N., Marone, C., Mattson, E., Mcclure, M. W., Mclennan, J., Mcling, T., Mellors, R. J., Metcalfe, E., Miskimins, J., Morris, J. P., Nakagawa, S., Neupane, G., Newman, G., Nieto, A., Oldenburg, C. M., Pawar, R., Petrov, P., Pietzyk, B., Podgorney, R., Polsky, Y., Porse, S., Roggenthen, B., Rutqvist, J., Santos-Villalobos, H., Schwering, P., Sesetty, V., Singh, A., Smith, M. M., Snyder, N., Sone, H., Sonnenthal, E. L., Spycher, N., Strickland, C. E., Su, J., Suzuki, A., Ulrich, C., Valladao, C. A., Vandermeer, W., Vardiman, D., Vermeul, V. R., Wagoner, J. L., Wang, H. F., Weers, J., White, J., White, M. D., Winterfeld, P., Wu, Y. S., Wu, Y., Zhang, Y., Zhang, Y. Q., Zhou, J., Zhou, Q., and Zoback, M. D.
47. Design of a long term hydraulic fracture and flow system
- Author
-
Ingraham, M. D., King, D. K., Knox, H. A., Strickland, C. E., Vermeul, V. R., Guglielmi, Y., Cook, P., Doe, T., Ajo-Franklin, J., Bauer, S. J., Baumgartner, T., Beckers, K., Blankenship, D., Bonneville, A., Boyd, L., Brown, S. T., Burghardt, J. A., Chen, T., Chen, Y., Condon, K., Dobson, P. F., Doughty, C. A., Derek Elsworth, Feldman, J., Foris, A., Frash, L. P., Frone, Z., Fu, P., Gao, K., Ghassemi, A., Gudmundsdottir, H., Guthrie, G., Haimson, B., Hawkins, A., Heise, J., Herrick, C. G., Horn, M., Horne, R. N., Horner, J., Hu, M., Huang, H., Huang, L., Im, K., Johnson, T. C., Johnston, B., Karra, S., Kim, K., Kneafsey, T., Knox, J., Kumar, D., Kutun, K., Lee, M., Li, K., Lopez, R., Maceira, M., Makedonska, N., Marone, C., Mattson, E., Mcclure, M. W., Mclennan, J., Mcling, T., Mellors, R. J., Metcalfe, E., Miskimins, J., Morris, J. P., Nakagawa, S., Neupane, G., Newman, G., Nieto, A., Oldenburg, C. M., Pan, W., Pawar, R., Petrov, P., Pietzyk, B., Podgorney, R., Polsky, Y., Porse, S., Richard, S., Roberts, B. Q., Robertson, M., Roggenthen, W., Rutqvist, J., Rynders, D., Santos-Villalobos, H., Schoenball, M., Schwering, P., Sesetty, V., Singh, A., Smith, M. M., Sone, H., Su, J., Ulrich, C., Uzunlar, N., Vachaparampil, A., Valladao, C. A., Vandermeer, W., Vandine, G., Vardiman, D., Wagoner, J. L., Wang, H. F., Weers, J., White, J., White, M. D., Winterfeld, P., Wood, T., Wu, H., Wu, Y. S., Wu, Y., Zhang, Y., Zhang, Y. Q., Zhou, J., Zhou, Q., and Zoback, M. D.
48. Geomechanical evaluation of natural shear fractures in the EGS Collab experiment 1 test bed
- Author
-
Frash, L. P., Welch, N. J., Carey, J. W., Ajo-Franklin, J., Bauer, S. J., Baumgartner, T., Beckers, K., Blankenship, D., Bonneville, A., Boyd, L., Brown, S. T., Burghardt, J. A., Chen, T., Chen, Y., Condon, K., Cook, P. J., Dobson, P. F., Doe, T., Doughty, C. A., Elsworth, D., Feldman, J., Foris, A., Frone, Z., Fu, P., Gao, K., Ghassemi, A., Gudmundsdottir, H., Guglielmi, Y., Guthrie, G., Haimson, B., Hawkins, A., Heise, J., Herrick, C. G., Horn, M., Horne, R. N., Horner, J., Hu, M., Huang, H., Huang, L., Im, K., Ingraham, M., Johnson, T. C., Johnston, B., Satish Karra, Kim, K., King, D. K., Kneafsey, T., Knox, H., Knox, J., Kumar, D., Kutun, K., Lee, M., Li, K., Lopez, R., Maceira, M., Makedonska, N., Marone, C., Mattson, E., Mcclure, M. W., Mclennan, J., Mcling, T., Mellors, R. J., Metcalfe, E., Miskimins, J., Morris, J. P., Nakagawa, S., Neupane, G., Newman, G., Nieto, A., Oldenburg, C. M., Pan, W., Pawar, R., Petrov, P., Pietzyk, B., Podgorney, R., Polsky, Y., Porse, S., Richard, S., Roberts, B. Q., Robertson, M., Roggenthen, W., Rutqvist, J., Rynders, D., Santos-Villalobos, H., Schoenball, M., Schwering, P., Sesetty, V., Singh, A., Smith, M. M., Sone, H., Strickland, C. E., Su, J., Ulrich, C., Uzunlar, N., Vachaparampil, A., Valladao, C. A., Vandermeer, W., Vandine, G., Vardiman, D., Vermeul, V. R., Wagoner, J. L., Wang, H. F., Weers, J., White, J., White, M. D., Winterfeld, P., Wood, T., Wu, H., Wu, Y. S., Wu, Y., Zhang, Y., Zhang, Y. Q., Zhou, J., Zhou, Q., and Zoback, M. D.
49. The distribution, orientation, and characteristics of natural fractures for experiment 1 of the EGS collab project, Sanford underground research facility
- Author
-
Ulrich, C., Dobson, P. F., Kneafsey, T. J., Roggenthen, W. M., Uzunlar, N., Doe, T. W., Neupane, G., Podgorney, R., Schwering, P., Frash, L., Singh, A., Ajo-Franklin, J., Bauer, S. J., Baumgartner, T., Beckers, K., Blankenship, D., Bonneville, A., Boyd, L., Brown, S. T., Burghardt, J. A., Chen, T., Chen, Y., Condon, K., Cook, P. J., Doughty, C. A., Elsworth, D., Feldman, J., Foris, A., Frone, Z., Fu, P., Gao, K., Ghassemi, A., Gudmundsdottir, H., Guglielmi, Y., Guthrie, G., Haimson, B., Hawkins, A., Heise, J., Herrick, C. G., Horn, M., Horne, R. N., Horner, J., Hu, M., Huang, H., Huang, L., Im, K., Ingraham, M., Johnson, T. C., Johnston, B., Karra, S., Kim, K., King, D. K., Knox, H., Knox, J., Kumar, D., Kutun, K., Lee, M., Li, K., Lopez, R., Maceira, M., Makedonska, N., Marone, C., Mattson, E., Mcclure, M. W., Mclennan, J., Mcling, T., Mellors, R. J., Metcalfe, E., Miskimins, J., Joseph Morris, Nakagawa, S., Newman, G., Nieto, A., Oldenburg, C. M., Pan, W., Pawar, R., Petrov, P., Pietzyk, B., Polsky, Y., Porse, S., Richard, S., Roberts, B. Q., Robertson, M., Rutqvist, J., Rynders, D., Santos-Villalobos, H., Schoenball, M., Sesetty, V., Smith, M. M., Sone, H., Strickland, C. E., Su, J., Vachaparampil, A., Valladao, C. A., Vandermeer, W., Vandine, G., Vardiman, D., Vermeul, V. R., Wagoner, J. L., Wang, H. F., Weers, J., White, J., White, M. D., Winterfeld, P., Wood, T., Wu, H., Wu, Y. S., Wu, Y., Zhang, Y., Zhang, Y. Q., Zhou, J., Zhou, Q., and Zoback, M. D.
50. Co-evolution of fracture permeability and friction in rocks from the egs collab experiment 1 site
- Author
-
Yildirim, E. C., Im, K., Derek Elsworth, Ajo-Franklin, J., Bauer, S. J., Baumgartner, T., Beckers, K., Blankenship, D., Bonneville, A., Boyd, L., Brown, S. T., Burghardt, J. A., Chen, T., Chen, Y., Condon, K., Cook, P. J., Dobson, P. F., Doe, T., Doughty, C. A., Feldman, J., Foris, A., Frash, L. P., Frone, Z., Fu, P., Gao, K., Ghassemi, A., Gudmundsdottir, H., Guglielmi, Y., Guthrie, G., Haimson, B., Hawkins, A., Heise, J., Herrick, C. G., Horn, M., Horne, R. N., Horner, J., Hu, M., Huang, H., Huang, L., Ingraham, M., Johnson, T. C., Johnston, B., Karra, S., Kim, K., King, D. K., Kneafsey, T., Knox, H., Knox, J., Kumar, D., Kutun, K., Lee, M., Li, K., Lopez, R., Maceira, M., Makedonska, N., Marone, C., Mattson, E., Mcclure, M. W., Mclennan, J., Mcling, T., Mellors, R. J., Metcalfe, E., Miskimins, J., Morris, J. P., Nakagawa, S., Neupane, G., Newman, G., Nieto, A., Oldenburg, C. M., Pan, W., Pawar, R., Petrov, P., Pietzyk, B., Podgorney, R., Polsky, Y., Porse, S., Richard, S., Roberts, B. Q., Robertson, M., Roggenthen, W., Rutqvist, J., Rynders, D., Santos-Villalobos, H., Schoenball, M., Schwering, P., Sesetty, V., Singh, A., Smith, M. M., Sone, H., Strickland, C. E., Su, J., Ulrich, C., Uzunlar, N., Vachaparampil, A., Valladao, C. A., Vandermeer, W., Vandine, G., Vardiman, D., Vermeul, V. R., Wagoner, J. L., Wang, H. F., Weers, J., White, J., White, M. D., Winterfeld, P., Wood, T., Wu, H., Wu, Y. S., Wu, Y., Zhang, Y., Zhang, Y. Q., Zhou, J., Zhou, Q., and Zoback, M. D.
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.