1. Repeated-root constacyclic codes of length 6lmpn
- Author
-
Shixin Zhu, Lanqiang Li, Tingting Wu, and Li Liu
- Subjects
Algebra and Number Theory ,Computer Networks and Communications ,Generator (category theory) ,Multiplicative group ,Applied Mathematics ,Characterization (mathematics) ,Microbiology ,Combinatorics ,Finite field ,Disjoint union (topology) ,Discrete Mathematics and Combinatorics ,Coset ,Dual polyhedron ,Primitive element ,Mathematics - Abstract
Let \begin{document}$ \mathbb{F}_{q} $\end{document} be a finite field with character \begin{document}$ p $\end{document} . In this paper, the multiplicative group \begin{document}$ \mathbb{F}_{q}^{*} = \mathbb{F}_{q}\setminus\{0\} $\end{document} is decomposed into a mutually disjoint union of \begin{document}$ \gcd(6l^mp^n,q-1) $\end{document} cosets over subgroup \begin{document}$ $\end{document} , where \begin{document}$ \xi $\end{document} is a primitive element of \begin{document}$ \mathbb{F}_{q} $\end{document} . Based on the decomposition, the structure of constacyclic codes of length \begin{document}$ 6l^mp^n $\end{document} over finite field \begin{document}$ \mathbb{F}_{q} $\end{document} and their duals is established in terms of their generator polynomials, where \begin{document}$ p\neq{3} $\end{document} and \begin{document}$ l\neq{3} $\end{document} are distinct odd primes, \begin{document}$ m $\end{document} and \begin{document}$ n $\end{document} are positive integers. In addition, we determine the characterization and enumeration of all linear complementary dual(LCD) negacyclic codes and self-dual constacyclic codes of length \begin{document}$ 6l^mp^n $\end{document} over \begin{document}$ \mathbb{F}_{q} $\end{document} .
- Published
- 2023
- Full Text
- View/download PDF