845 results on '"Dimitrov, S."'
Search Results
2. Barban-Davenport-Halberstam type theorems for exponential sums and Piatetski-Shapiro primes
3. Lower bounds on expressions dependent on functions $\varphi(n)$, $\psi(n)$ and $\sigma(n)$, II
4. Inequalities involving arithmetic functions
5. The Bombieri-Vinogradov theorem for primes of the form $\mathbf{p=x^2+y^2+1}$
6. A binary additive equation with prime and square-free number
7. Primes of the form [nc] with Square-Free n
8. Consecutive square-free values for some polynomials
9. Exponential sums over Piatetski-Shapiro primes in arithmetic progressions
10. Detection of Delaminations in 3D Composites
11. Primes of the form $[n^c]$ with square-free $n$
12. Square-free values of $\mathbf{n^2+n+1}$
13. Square-Free Numbers of the Form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{x^2+y^2+z^2+z+1}$$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{x^2+y^2+z+1}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{x^2+y^2+z^2+z+1}$$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{x^2+y^2+z+1}$$\end{document}
14. A Tangent Inequality Over Primes
15. On an tangent equation by primes
16. Prime numbers of the form $\mathbf{[n^c tan^\theta(log n)]}$
17. A tangent inequality over primes
18. On an equation by primes with one Linnik prime
19. A quinary diophantine inequality by primes with one of the form $\mathbf{p=x^2+y^2+1}$
20. Square-Free Values of
21. Criteria and Approaches for Optimization of Innovative Methods for STEM Education
22. The quaternary Piatetski-Shapiro inequality with one prime of the form $\mathbf{p=x^2+y^2+1}$
23. A ternary diophantine inequality by primes with one of the form $\mathbf{p=x^2+y^2+1}$
24. A Bombieri -- Vinogradov type result for exponential sums over Piatetski-Shapiro primes
25. Diophantine approximation with one prime of the form $p=x^2+y^2+1$
26. Diophantine approximation by Piatetski-Shapiro primes
27. On the distribution of $\alpha p$ modulo one over Piatetski-Shapiro primes
28. Pairs of square-free values of the type $\mathbf{n^2+1}$, $\mathbf{n^2+2}$
29. On an logarithmic equation by primes
30. A logarithmic inequality involving prime numbers
31. On an equation with prime numbers close to squares
32. A ternary diophantine inequality by primes near to squares
33. Consecutive square-free values of the form $\mathbf{[\alpha p], [\alpha p]+1}$
34. On the distribution of consecutive square-free numbers of the form $\mathbf{[\alpha n], [\alpha n]+1}$
35. On the number of pairs of positive integers $\mathbf{x, y \leq H}$ such that $\mathbf{x^2+y^2+1}$, $\mathbf{x^2+y^2+2}$ are square-free
36. Diophantine approximation by Piatetski-Shapiro primes
37. Square-Free Values of $$[\mathrm {n}^c \tan ^\theta (\log \mathrm {n})]$$
38. On a Logarithmic Equation by Primes
39. The ternary Goldbach problem with prime numbers of a mixed type
40. Diophantine approximation by special primes
41. A quaternary diophantine inequality by prime numbers of a special type
42. Consecutive square-free numbers of a special form
43. AB0940 UPADACITINIB IN AXIAL SPONDYLOARTHRITIS: THERAPEUTIC POSSIBILITIES AND PERSPECTIVES IN REAL WORLD CLINICAL PRACTICE
44. AB0158 PSYCHOEMOTIONAL STATE AND INFLAMMATION AS PREDICTORS FOR MUSCULOSKELETAL PAIN IN PATIENTS WITH INFLAMMATORY ARTHRITIS AND COVID-19
45. AB0235 COMPREHENSIVE CARDIOVASCULAR RISK ASSESSMENT IN ANKYLOSING SPONDYLITIS AND PSORIATIC ARTHRITIS PATIENTS: PRELIMINARY RESULTS OF A COMPARATIVE STUDY
46. Arithmetic progressions of three prime numbers with two primes of the form $\mathbf{p=x^2+y^2+1}$
47. On a Logarithmic Equation by Primes
48. Primes of the form [nc] with Square-Free n.
49. Primes of the form[n c]with square-freen
50. Square-Free Numbers of the Form $$\mathbf{x^2+y^2+z^2+z+1}$$ and $$\mathbf{x^2+y^2+z+1}$$
Catalog
Books, media, physical & digital resources
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.