44 results on '"Dikshit HK"'
Search Results
2. Effect of waterlogging on physiological traits and yield in black gram (Vigna mungo L.) in field condition.
- Author
-
Bansal, Ruchi, Dikshit, HK, Singh, A. K., Kumar, Sunil, and Kumar, Ashok
- Subjects
- *
WATERLOGGING (Soils) , *BLACK gram , *PLANT physiology , *CROP yields , *AGRICULTURAL productivity - Abstract
Waterlogging is an important abiotic factor affecting crop productivity worldwide. Black gram (Vigna mungo L.) is very sensitive to waterlogged conditions. A field experiment was conducted in randomized complete block design to evaluate three black gram genotypes for waterlogging tolerance. Stress was imposed by maintaining the water level above the soil surface for 10 days after 30 days of sowing. Different physiological parameters including chlorophyll (Chl), chlorophyll fluorescence, normalized difference vegetation index (NDVI), sugars, along with the yield per plant and thousand grain weight (TW) were recorded in control and stressed plants. Results showed that NDVI, Chl, chlorophyll fluorescence, sugars, seed yield and TW reduced significantly during stress. Stress susceptibility index (SSI) for grain yield varied from 0.32 to 2.38. Linear correlation study showed that SSI was negatively correlated with NDVI (0.43),Chl (0.68) and TW (0.42) and grain yield (0.96). NDVI and sugars were correlated to TW under stress. IC530491 and IC559933 (SSI < 0.5) were waterlogging tolerant under field conditions. The study concluded that identified black gram lines may be utilized as trait donors in breeding program. [ABSTRACT FROM AUTHOR]
- Published
- 2022
3. Development of infectious clones of mungbean yellow mosaic India virus (MYMIV, Begomovirus vignaradiataindiaense) infecting mungbean [Vigna radiata (L.) R. Wilczek] and evaluation of a RIL population for MYMIV resistance.
- Author
-
Kumari N, Aski MS, Mishra GP, Roy A, Dikshit HK, Saxena S, Kohli M, Mandal B, Sinha SK, Mishra DC, Mondal MF, Kumar RR, Kumar A, and Nair RM
- Subjects
- Genotype, Begomovirus genetics, Begomovirus pathogenicity, Begomovirus physiology, Vigna virology, Vigna genetics, Vigna microbiology, Plant Diseases virology, Plant Diseases genetics, Disease Resistance genetics, Agrobacterium tumefaciens genetics
- Abstract
Yellow mosaic disease (YMD) is a major constraint for the low productivity of mungbean, mainly in South Asia. Addressing this issue requires a comprehensive approach, integrating field and challenge inoculation evaluations to identify effective solutions. In this study, an infectious clone of Begomovirus vignaradiataindiaense (MYMIV) was developed to obtain a pure culture of the virus and to confirm resistance in mungbean plants exhibiting resistance under natural field conditions. The infectivity and efficiency of three Agrobacterium tumefaciens strains (EHA105, LBA4404, and GV3101) were evaluated using the susceptible mungbean genotype PS16. Additionally, a recombinant inbred line (RIL) population comprising 175 lines derived from Pusa Baisakhi (MYMIV susceptible) and PMR-1 (MYMIV resistant) cross was developed and assessed for YMD response. Among the tested Agrobacterium tumefaciens strains, EHA105 exhibited the highest infectivity (84.7%), followed by LBA4404 (54.7%) and GV3101 (9.80%). Field resistance was evaluated using the coefficient of infection (CI) and area under disease progress curve (AUDPC), identifying seven RILs with consistent resistant reactions (CI≤9) and low AUDPC (≤190). Upon challenge inoculation, six RILs exhibited resistance, while RIL92 displayed a resistance response, with infection occurring in less than 10% of plants after 24 to 29 days post inoculation (dpi). Despite some plants remaining asymptomatic, MYMIV presence was confirmed through specific PCR amplification of the MYMIV coat protein (AV1) gene. Quantitative PCR revealed a very low relative viral load (0.1-5.1% relative fold change) in asymptomatic RILs and the MYMIV resistant parent (PMR1) compared to the susceptible parent (Pusa Baisakhi). These findings highlight the potential utility of the developed infectious clone and the identified MYMIV-resistant RILs in future mungbean breeding programs aimed at cultivating MYMIV-resistant varieties., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2024 Kumari et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2024
- Full Text
- View/download PDF
4. Combining Fourier-transform infrared spectroscopy and multivariate analysis for chemotyping of cell wall composition in Mungbean (Vigna radiata (L.) Wizcek).
- Author
-
Das S, Bhati V, Dewangan BP, Gangal A, Mishra GP, Dikshit HK, and Pawar PAM
- Abstract
Background: Dissection of complex plant cell wall structures demands a sensitive and quantitative method. FTIR is used regularly as a screening method to identify specific linkages in cell walls. However, quantification and assigning spectral bands to particular cell wall components is still a major challenge, specifically in crop species. In this study, we addressed these challenges using ATR-FTIR spectroscopy as it is a high throughput, cost-effective and non-destructive approach to understand the plant cell wall composition. This method was validated by analysing different varieties of mungbean which is one of the most important legume crops grown widely in Asia., Results: Using standards and extraction of a specific component of cell wall components, we assigned 1050-1060 cm
-1 and 1390-1420 cm-1 wavenumbers that can be widely used to quantify cellulose and lignin, respectively, in Arabidopsis, Populus, rice and mungbean. Also, using KBr as a diluent, we established a method that can relatively quantify the cellulose and lignin composition among different tissue types of the above species. We further used this method to quantify cellulose and lignin in field-grown mungbean genotypes. The ATR-FTIR-based study revealed the cellulose content variation ranges from 27.9% to 52.3%, and the lignin content variation ranges from 13.7% to 31.6% in mungbean genotypes., Conclusion: Multivariate analysis of FT-IR data revealed differences in total cell wall (600-2000 cm-1 ), cellulose (1000-1100 cm-1 ) and lignin (1390-1420 cm-1 ) among leaf and stem of four plant species. Overall, our data suggested that ATR-FTIR can be used for the relative quantification of lignin and cellulose in different plant species. This method was successfully applied for rapid screening of cell wall composition in mungbean stem, and similarly, it can be used for screening other crops or tree species., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF
5. Genetic variation for tolerance to pre-harvest sprouting in mungbean ( Vigna radiata ) genotypes.
- Author
-
Gupta S, Aski M, Mishra GP, Yadav PS, Tripathi K, Lal SK, Jain S, Nair RM, and Dikshit HK
- Subjects
- Seeds genetics, Seeds growth & development, Plant Breeding methods, Vigna genetics, Vigna growth & development, Genotype, Genetic Variation genetics, Germination genetics
- Abstract
Pre-harvest sprouting (PHS) is one of the important abiotic stresses in mungbean which significantly reduces yield and quality of the produce. This study was conducted to evaluate the genetic variability for tolerance to pre-harvest sprouting in diverse mungbean genotypes while simultaneously deciphering the association of yield contributing traits with PHS. Eighty-three diverse mungbean genotypes (23 released varieties, 23 advanced breeding lines and 37 exotic germplasm lines) were investigated for tolerance to PHS, water imbibition capacities by pods, pod and seed physical traits. Wide variation in PHS was recorded which ranged between 17.8% to 81% (mean value 54.34%). Germplasm lines exhibited higher tolerance to PHS than the high-yielding released varieties. Correlation analysis revealed PHS to be positively associated with water imbibition capacity by pods (r = 0.21) and germinated pod % (r = 0.78). Pod length (r = -0.13) and seeds per pod (r = -0.13) were negatively influencing PHS. Positive associations between PHS and water imbibition capacity by pods, germinated pod % and 100-seed weight was further confirmed by multivariate analysis. Small-seeded genotypes having 100-seed weight <3 g exhibited higher tolerance to PHS compared to bold-seeded genotypes having 100-seed weight more than 3.5 g. Fresh seed germination among the selected PHS tolerant and susceptible genotypes ranged from 42% (M 204) to 98% (Pusa 1131). A positive association (r = 0.79) was recorded between fresh seed germination and PHS. Genotypes M 1255, M 145, M 422, M 1421 identified as potential genetic donors against PHS could be utilized in mungbean breeding programs., Competing Interests: The authors declare that they have no competing interests., (© 2024 Gupta et al.)
- Published
- 2024
- Full Text
- View/download PDF
6. Delineation of loci governing an extra-earliness trait in lentil (Lens culinaris Medik.) using the QTL-Seq approach.
- Author
-
Shivaprasad KM, Dikshit HK, Mishra GP, Sinha SK, Aski M, Kohli M, Mishra DC, Singh AK, Gupta S, Singh A, Tripathi K, Kumar RR, Kumar A, Jha GK, Kumar S, and Varshney RK
- Abstract
Developing early maturing lentil has the potential to minimize yield losses, mainly during terminal drought. Whole-genome resequencing (WGRS) based QTL-seq identified the loci governing earliness in lentil. The genetic analysis for maturity duration provided a good fit to 3:1 segregation (F
2 ), indicating earliness as a recessive trait. WGRS of Globe Mutant (late parent), late-flowering, and early-flowering bulks (from RILs) has generated 1124.57, 1052.24 million raw and clean reads, respectively. The QTL-Seq identified three QTLs (LcqDTF3.1, LcqDTF3.2, and LcqDTF3.3) on chromosome 3 having 246244 SNPs and 15577 insertions/deletions (InDels) and 13 flowering pathway genes. Of these, 11 exhibited sequence variations between bulks and validation (qPCR) revealed a significant difference in the expression of nine candidate genes (LcGA20oxG, LcFRI, LcLFY, LcSPL13a, Lcu.2RBY.3g060720, Lcu.2RBY.3g062540, Lcu.2RBY.3g062760, LcELF3a, and LcEMF1). Interestingly, the LcELF3a gene showed significantly higher expression in late-flowering genotype and exhibited substantial involvement in promoting lateness. Subsequently, an InDel marker (I-SP-383.9; LcELF3a gene) developed from LcqDTF3.2 QTL region showed 82.35% PVE (phenotypic variation explained) for earliness. The cloning, sequencing, and comparative analysis of the LcELF3a gene from both parents revealed 23 SNPs and InDels. Interestingly, a 52 bp deletion was recorded in the LcELF3a gene of L4775, predicted to cause premature termination of protein synthesis after 4 missense amino acids beyond the 351st amino acid due to the frameshift during translation. The identified InDel marker holds significant potential for breeding early maturing lentil varieties., (© 2024 The Author(s). Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.)- Published
- 2024
- Full Text
- View/download PDF
7. Genome-wide discovery of InDels and validation of PCR-Based InDel markers for earliness in a RIL population and genotypes of lentil (Lens culinaris Medik.).
- Author
-
Shivaprasad KM, Aski M, Mishra GP, Sinha SK, Gupta S, Mishra DC, Singh AK, Singh A, Tripathi K, Kumar RR, Kumar A, Kumar S, and Dikshit HK
- Subjects
- Genetic Markers, Polymerase Chain Reaction methods, Chromosome Mapping methods, Lens Plant genetics, Lens Plant growth & development, INDEL Mutation, Genotype, Quantitative Trait Loci, Genome, Plant
- Abstract
The systematic identification of insertion/deletion (InDel) length polymorphisms from the entire lentil genome can be used to map the quantitative trait loci (QTL) and also for the marker-assisted selection (MAS) for various linked traits. The InDels were identified by comparing the whole-genome resequencing (WGRS) data of two extreme bulks (early- and late-flowering bulk) and a parental genotype (Globe Mutant) of lentil. The bulks were made by pooling 20 extreme recombinant inbred lines (RILs) each, derived by crossing Globe Mutant (late flowering parent) with L4775 (early flowering parent). Finally, 734,716 novel InDels were identified, which is nearly one InDel per 5,096 bp of lentil genome. Furthermore, 74.94% of InDels were within the intergenic region and 99.45% displayed modifier effects. Of these, 15,732 had insertions or deletions of 20 bp or more, making them amenable to the development of PCR-based markers. An InDel marker I-SP-356.6 (chr. 3; position 356,687,623; positioned 174.5 Kb from the LcFRI gene) was identified as having a phenotypic variance explained (PVE) value of 47.7% for earliness when validated in a RIL population. Thus, I-SP-356.6 marker can be deployed in MAS to facilitate the transfer of the earliness trait to other elite late-maturing cultivars. Two InDel markers viz., I-SP-356.6 and I-SP-383.9 (chr. 3; linked to LcELF3a gene) when tested in 9 lentil genotypes differing for maturity duration, clearly distinguished three early (L4775, ILL7663, Precoz) and four late genotypes (Globe Mutant, MFX, L4602, L830). However, these InDels could not be validated in two genotypes (L4717, L4727), suggesting either absence of polymorphism and/or presence of other loci causing earliness. The identified InDel markers can act as valuable tools for MAS for the development of early maturing lentil varieties., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2024 Shivaprasad et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2024
- Full Text
- View/download PDF
8. Identification of quantitative trait loci (QTLs) regulating leaf SPAD value and trichome density in mungbean ( Vigna radiata L.) using genotyping-by-sequencing (GBS) approach.
- Author
-
Kumari N, Mishra GP, Dikshit HK, Gupta S, Roy A, Sinha SK, Mishra DC, Das S, Kumar RR, Nair RM, and Aski M
- Subjects
- Chromosome Mapping, Genotype, Soil, Trichomes genetics, Plant Leaves genetics, Quantitative Trait Loci genetics, Vigna genetics
- Abstract
Quantitative trait loci (QTL) mapping is used for the precise localization of genomic regions regulating various traits in plants. Two major QTLs regulating Soil Plant Analysis Development (SPAD) value ( qSPAD-7-1 ) and trichome density ( qTric-7-2 ) in mungbean were identified using recombinant inbred line (RIL) populations (PMR-1×Pusa Baisakhi) on chromosome 7. Functional analysis of QTL region identified 35 candidate genes for SPAD value (16 No) and trichome (19 No) traits. The candidate genes regulating trichome density on the dorsal leaf surface of the mungbean include VRADI07G24840, VRADI07G17780 , and VRADI07G15650, which encodes for ZFP6, TFs bHLH DNA-binding superfamily protein, and MYB102, respectively. Also, candidate genes having vital roles in chlorophyll biosynthesis are VRADIO7G29860, VRADIO7G29450 , and VRADIO7G28520 , which encodes for s-adenosyl-L-methionine, FTSHI1 protein, and CRS2-associated factor, respectively. The findings unfolded the opportunity for the development of customized genotypes having high SPAD value and high trichome density having a possible role in yield and mungbean yellow vein mosaic India virus (MYMIV) resistance in mungbean., Competing Interests: The authors declare there are no competing interests., (©2024 Kumari et al.)
- Published
- 2024
- Full Text
- View/download PDF
9. Genome-wide association studies for earliness, MYMIV resistance, and other associated traits in mungbean ( Vigna radiata L. Wilczek) using genotyping by sequencing approach.
- Author
-
Kohli M, Bansal H, Mishra GP, Dikshit HK, Reddappa SB, Roy A, Sinha SK, Shivaprasad KM, Kumari N, Kumar A, Kumar RR, Nair RM, and Aski M
- Subjects
- Genome-Wide Association Study, Genotype, Bayes Theorem, Plant Breeding, Vigna genetics
- Abstract
Yellow mosaic disease (YMD) remains a major constraint in mungbean ( Vigna radiata (L.)) production; while short-duration genotypes offer multiple crop cycles per year and help in escaping terminal heat stress, especially during summer cultivation. A comprehensive genotyping by sequencing (GBS)-based genome-wide association studies (GWAS) analysis was conducted using 132 diverse mungbean genotypes for traits like flowering time, YMD resistance, soil plant analysis development (SPAD) value, trichome density, and leaf area. The frequency distribution revealed a wide range of values for all the traits. GBS studies identified 31,953 high-quality single nucleotide polymorphism (SNPs) across all 11 mungbean chromosomes and were used for GWAS. Structure analysis revealed the presence of two genetically distinct populations based on ΔK. The linkage disequilibrium (LD) varied throughout the chromosomes and at r
2 = 0.2, the mean LD decay was estimated as 39.59 kb. Two statistical models, mixed linear model (MLM) and Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) identified 44 shared SNPs linked with various candidate genes. Notable candidate genes identified include FPA for flowering time (VRADI10G01470; chr. 10), TIR-NBS-LRR for mungbean yellow mosaic India virus (MYMIV) resistance (VRADI09G06940; chr. 9), E3 ubiquitin-protein ligase RIE1 for SPAD value (VRADI07G28100; chr. 11), WRKY family transcription factor for leaf area (VRADI03G06560; chr. 3), and LOB domain-containing protein 21 for trichomes (VRADI06G04290; chr. 6). In-silico validation of candidate genes was done through digital gene expression analysis using Arabidopsis orthologous (compared with Vigna radiata genome). The findings provided valuable insight for marker-assisted breeding aiming for the development of YMD-resistant and early-maturing mungbean varieties., Competing Interests: The authors declare there are no competing interests., (©2024 Kohli et al.)- Published
- 2024
- Full Text
- View/download PDF
10. Delineation of novel genomic loci and putative candidate genes associated with seed iron and zinc content in lentil (Lens culinaris Medik.).
- Author
-
Singh B, Singh S, Mahato AK, Dikshit HK, Tripathi K, and Bhatia S
- Subjects
- Chromosome Mapping, Zinc metabolism, Quantitative Trait Loci genetics, Genome-Wide Association Study, Plant Breeding, Seeds metabolism, Genomics, Iron metabolism, Lens Plant genetics, Lens Plant metabolism
- Abstract
The use of molecular breeding approaches for development of lentil genotypes biofortified with essential micro-nutrients such as iron and zinc, could serve as a promising solution to address the problem of global malnutrition. Thus, genome-wide association study (GWAS) strategy was adopted in this study to identify the genomic regions associated with seed iron and zinc content in lentil. A panel of 95 diverse lentil genotypes, grown across three different geographical locations and evaluated for seed iron and zinc content, exhibited a wide range of variation. Genotyping-by-sequencing (GBS) analysis of the panel identified 33,745 significant single nucleotide polymorphisms (SNPs) that were distributed across all the 7 lentil chromosomes. Association mapping revealed 23 SNPs associated with seed iron content that were distributed across all the chromosomes except chromosome 3. Similarly, 14 SNPs associated with seed zinc content were also identified that were distributed across chromosomes 1, 2, 4, 5 and 6. Further, 80 genes were identified in the proximity of iron associated markers and 36 genes were identified in the proximity of zinc associated markers. Functional annotation of these genes revealed their putative involvement in iron and zinc metabolism. For seed iron content, two highly significant SNPs were found to be located within two putative candidate genes namely iron-sulfur cluster assembly (ISCA) and flavin binding monooxygenase (FMO) respectively. For zinc content, a highly significant SNP was detected in a gene encoding UPF0678 fatty acid-binding protein. Expression analysis of these genes and their putative interacting partners suggests their involvement in iron and zinc metabolism in lentil. Overall, in this study we have identified markers, putative candidate genes and predicted putative interacting protein partners significantly associated with iron and zinc metabolism that could be utilized in future breeding studies of lentil for nutrient biofortification., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
11. Genome-wide association studies for phenological and agronomic traits in mungbean ( Vigna radiata L. Wilczek).
- Author
-
Manjunatha PB, Aski MS, Mishra GP, Gupta S, Devate NB, Singh A, Bansal R, Kumar S, Nair RM, and Dikshit HK
- Abstract
Mungbean ( Vigna radiata L. Wilczek) is one of the important warm-season food legumes, contributing substantially to nutritional security and environmental sustainability. The genetic complexity of yield-associated agronomic traits in mungbean is not well understood. To dissect the genetic basis of phenological and agronomic traits, we evaluated 153 diverse mungbean genotypes for two phenological (days to heading and days to maturity) and eight agronomic traits (leaf nitrogen status using SPAD, plant height, number of primary branches, pod length, number of pods per plant, seeds per pod, 100-seed weight, and yield per plant) under two environmental conditions. A wide array of phenotypic variability was apparent among the studied genotypes for all the studied traits. The broad sense of heritability of traits ranged from 0.31 to 0.95 and 0.21 to 0.94 at the Delhi and Ludhiana locations, respectively. A total of 55,634 genome-wide single nucleotide polymorphisms (SNPs) were obtained by the genotyping-by-sequencing method, of which 15,926 SNPs were retained for genome-wide association studies (GWAS). GWAS with Bayesian information and linkage-disequilibrium iteratively nested keyway (BLINK) model identified 50 SNPs significantly associated with phenological and agronomic traits. In total, 12 SNPs were found to be significantly associated with phenological traits across environments, explaining 7%-18.5% of phenotypic variability, and 38 SNPs were significantly associated with agronomic traits, explaining 4.7%-27.6% of the phenotypic variability. The maximum number of SNPs (15) were located on chromosome 1, followed by seven SNPs each on chromosomes 2 and 8. The BLAST search identified 19 putative candidate genes that were involved in light signaling, nitrogen responses, phosphorus (P) transport and remobilization, photosynthesis, respiration, metabolic pathways, and regulating growth and development. Digital expression analysis of 19 genes revealed significantly higher expression of 12 genes, viz . VRADI01G08170 , VRADI11G09170 , VRADI02G00450 , VRADI01G00700 , VRADI07G14240 , VRADI03G06030 , VRADI02G14230 , VRADI08G01540 , VRADI09G02590 , VRADI08G00110 , VRADI02G14240 , and VRADI02G00430 in the roots, cotyledons, seeds, leaves, shoot apical meristems, and flowers. The identified SNPs and putative candidate genes provide valuable genetic information for fostering genomic studies and marker-assisted breeding programs that improve yield and agronomic traits in mungbean., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Manjunatha, Aski, Mishra, Gupta, Devate, Singh, Bansal, Kumar, Nair and Dikshit.)
- Published
- 2023
- Full Text
- View/download PDF
12. Strategies for identifying stable lentil cultivars ( Lens culinaris Medik) for combating hidden hunger, malnourishment, and climate variability.
- Author
-
Aski MS, Mishra GP, Tokkas JP, Yadav PS, Rai N, Bansal R, Singh A, Gupta S, Kumar J, Parihar A, Kumar S, Kumar V, Saxsena AK, Das TR, Kumar A, and Dikshit HK
- Abstract
Iron and zinc malnutrition is a global humanitarian concern that mostly affects newborns, children, and women in low- and middle-income countries where plant-based diets are regularly consumed. This kind of malnutrition has the potential to result in a number of immediate and long-term implications, including stunted growth, an elevated risk of infectious diseases, and poor development, all of which may ultimately cause children to not develop to the fullest extent possible. A determination of the contributions from genotype, environment, and genotype by environment interactions is necessary for the production of nutrient-dense lentil varieties that offer greater availability of iron and zinc with a high level of trait stability. Understanding the genotype and environmental parameters that affect G x E (Genotype x Environment) interactions is essential for plant breeding. We used GGE(Genotype, Genotype x Environment interactions) and AMMI (Additive Main effects and Multiplicative Interaction) models to study genetic stability and GE(Genotype x Environment interactions) for grain Fe, Zn, Al, and anti-nutritional factors like phytic acid content in sixteen commercially produced lentil cultivars over several different six geographical locations across India. Significant genetic variability was evident in the Fe and Zn levels of different genotypes of lentils. The amounts of grain iron, zinc, and phytic acid varied from 114.10 to 49.90 mg/kg, 74.62 to 21.90 mg/kg, and 0.76 to 2.84 g/100g (dw) respectively. The environment and GE (Genotype x Environment interactions) had an impact on the concentration of grain Fe, Zn, and phytic acid (PA). Heritability estimations ranged from low to high (53.18% to 99.48%). The study indicated strong correlation between the contents of Fe and Zn, a strategy for simultaneously increasing Fe and Zn in lentils may be recommended. In addition, our research revealed that the stable and ideal lentil varieties L4076 (Pusa Shivalik) for Fe concentration and L4717 (Pusa Ageti) for Zn content, which have lower phytic acid contents, will not only play an essential role as stable donors in the lentil bio-fortification but will also enable the expansion of the growing area of bio-fortified crops for the security of health and nutrition., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Aski, Mishra, Tokkas, Yadav, Rai, Bansal, Singh, Gupta, Kumar, Parihar, Kumar, Kumar, Saxsena, Das, Kumar and Dikshit.)
- Published
- 2023
- Full Text
- View/download PDF
13. Seed nutritional quality in lentil ( Lens culinaris ) under different moisture regimes.
- Author
-
Bansal R, Bana RS, Dikshit HK, Srivastava H, Priya S, Kumar S, Aski MS, Kumari NKP, Gupta S, and Kumar S
- Abstract
The world's most challenging environmental issue is climate change. Agricultural productivity and nutritional quality are both substantially threatened by extreme and unpredicted climate events. To develop climate resilient cultivars, stress tolerance along with the grain quality needs to be prioritized. Present study was planned to assess the effect of water limitation on seed quality in lentil, a cool season legume crop. A pot experiment was carried out with 20 diverse lentil genotypes grown under normal (80% field capacity) and limited (25% field capacity) soil moisture. Seed protein, Fe, Zn, phytate, protein and yield were recorded in both the conditions. Seed yield and weight were reduced by 38.9 and 12.1%, respectively, in response to stress. Seed protein, Fe, Zn, its availability as well as antioxidant properties also reduced considerably, while genotype dependent variation was noted with respect to seed size traits. Positive correlation was observed between seed yield and antioxidant activity, seed weight and Zn content and availability in stress. Based on principal component analysis and clustering, IG129185, IC559845, IC599829, IC282863, IC361417, IG334, IC560037, P8114 and L5126 were promising genotypes for seed size, Fe and protein content, while, FLIP-96-51, P3211 and IC398019 were promising for yield, Zn and antioxidant capacity. Identified lentil genotypes can be utilized as trait donors for quality improvement in lentil breeding., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Bansal, Bana, Dikshit, Srivastava, Priya, Kumar, Aski, Kumari, Gupta and Kumar.)
- Published
- 2023
- Full Text
- View/download PDF
14. Evaluation of sowing dates for managing yellow mosaic disease caused by mungbean yellow mosaic India virus in mungbean.
- Author
-
Swamy SM, Sandra N, Lal SK, Kumar A, Dikshit HK, Mandal B, and Munshi AD
- Abstract
Yellow mosaic disease, a most important destructive disease of mungbean production caused by Mungbean yellow mosaic India virus (MYMIV) under North Indian conditions. However , management of this deadly disease is still becoming the biggest challenge due to breaking of resistance under changing climatic conditions. Hence, a field experiment was conducted at IARI, New Delhi, India during Kharif 2021 and Spring-Summer 2022 to understand the sowing date influence on incidence of MYMIV in mungbean resistant (Pusa 1371) and susceptible (Pusa 9531) cultivars. The results revealed the higher disease incidence percentage (PDI) in the first sowing (15-20th July) of Kharif and third sowing (5-10th April) of Spring-Summer season. The mean PDI ranged from 25-41% to 11.80-13.54% for resistant followed by 23.13-49.84% and 14.40-21.45% in susceptible cultivar during Kharif and Spring-Summer season respectively. The detection of MYMIV through DAC-ELISA at 405 nm showed the absorbance values of 0.40-0.60 in susceptible and < 0.45 in resistant cultivar during the Kharif and 0.40-0.45 in Spring-Summer season. The PCR analysis with MYMIV and MYMV specific primers indicated the presence of only MYMIV and absence of MYMV in the present studied mungbean cultivars. The PCR analysis with DNA-B specific primers resulted in the amplification of 850 bp from both susceptible and resistant cultivars during the first sowing of Kharif whereas amplification was observed only in susceptible cultivar with second and third sowings of Kharif and all the three sowings of Spring-Summer season. The experiment results revealed that the most suitable date of sowing for mungbean will be before 30th March during Spring-Summer and after third week of July (30th July to 10th August) during the Kharif season under Delhi conditions., Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03621-z., Competing Interests: Conflict of interestThe authors declare that they have no conflict of interest in the publication., (© King Abdulaziz City for Science and Technology 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.)
- Published
- 2023
- Full Text
- View/download PDF
15. Morpho-biochemical characterization of a RIL population for seed parameters and identification of candidate genes regulating seed size trait in lentil ( Lens culinaris Medik.).
- Author
-
Dutta H, K M S, Aski MS, Mishra GP, Sinha SK, Vijay D, C T MP, Das S, Pawar PA, Mishra DC, Singh AK, Kumar A, Tripathi K, Kumar RR, Gupta S, Kumar S, and Dikshit HK
- Abstract
The seed size and shape in lentil ( Lens culinaris Medik.) are important quality traits as these influences the milled grain yield, cooking time, and market class of the grains. Linkage analysis was done for seed size in a RIL (F
5:6 ) population derived by crossing L830 (20.9 g/1000 seeds) with L4602 (42.13 g/1000 seeds) which consisted of 188 lines (15.0 to 40.5 g/1000 seeds). Parental polymorphism survey using 394 SSRs identified 31 polymorphic primers, which were used for the bulked segregant analysis (BSA). Marker PBALC449 differentiated the parents and small seed size bulk only, whereas large seeded bulk or the individual plants constituting the large-seeded bulk could not be differentiated. Single plant analysis identified only six recombinant and 13 heterozygotes, of 93 small-seeded RILs (<24.0 g/1000 seed). This clearly showed that the small seed size trait is very strongly regulated by the locus near PBLAC449; whereas, large seed size trait seems governed by more than one locus. The PCR amplified products from the PBLAC449 marker (149bp from L4602 and 131bp from L830) were cloned, sequenced and BLAST searched using the lentil reference genome and was found amplified from chromosome 03. Afterward, the nearby region on chromosome 3 was searched, and a few candidate genes like ubiquitin carboxyl-terminal hydrolase, E3 ubiquitin ligase, TIFY-like protein, and hexosyltransferase having a role in seed size determination were identified. Validation study in another RIL mapping population which is differing for seed size, showed a number of SNPs and InDels among these genes when studied using whole genome resequencing (WGRS) approach. Biochemical parameters like cellulose, lignin, and xylose content showed no significant differences between parents and the extreme RILs, at maturity. Various seed morphological traits like area, length, width, compactness, volume, perimeter, etc., when measured using VideometerLab 4.0 showed significant differences for the parents and RILs. The results have ultimately helped in better understanding the region regulating the seed size trait in genomically less explored crops like lentils., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Dutta, K. M., Aski, Mishra, Sinha, Vijay, C. T., Das, Pawar, Mishra, Singh, Kumar, Tripathi, Kumar, Gupta, Kumar and Dikshit.)- Published
- 2023
- Full Text
- View/download PDF
16. Genome wide association analysis for grain micronutrients and anti-nutritional traits in mungbean [ Vigna radiata (L.) R. Wilczek] using SNP markers.
- Author
-
Sinha MK, Aski MS, Mishra GP, Kumar MBA, Yadav PS, Tokas JP, Gupta S, Pratap A, Kumar S, Nair RM, Schafleitner R, and Dikshit HK
- Abstract
Mungbean is an important food grain legume for human nutrition and nutritional food due to its nutrient-dense seed, liked palatability, and high digestibility. However, anti-nutritional factors pose a significant risk to improving nutritional quality for bio-fortification. In the present study, genetic architecture of grain micronutrients (grain iron and zinc concentration) and anti-nutritional factors (grain phytic acid and tannin content) in association mapping panel of 145 diverse mungbean were evaluated. Based on all four parameters genotypes PUSA 1333 and IPM 02-19 were observed as desired genotypes as they had high grain iron and zinc concentration but low grain phytic acid and tannin content. The next generation sequencing (NGS)-based genotyping by sequencing (GBS) identified 14,447 genome-wide SNPs in a diverse selected panel of 127 mungbean genotypes. Population admixture analysis revealed the presence of four different ancestries among the genotypes and LD decay of ∼57.6 kb kb physical distance was noted in mungbean chromosomes. Association mapping analysis revealed that a total of 20 significant SNPs were shared by both GLM and Blink models associated with grain micronutrient and anti-nutritional factor traits, with Blink model identifying 35 putative SNPs. Further, this study identified the 185 putative candidate genes. Including potential candidate genes Vradi07g30190 , Vradi01g09630 , and Vradi09g05450 were found to be associated with grain iron concentration, Vradi10g04830 with grain zinc concentration, Vradi08g09870 and Vradi01g11110 with grain phytic acid content and Vradi04g11580 and Vradi06g15090 with grain tannin content. Moreover, two genes Vradi07g15310 and Vradi09g05480 showed significant variation in protein structure between native and mutated versions. The identified SNPs and candidate genes are potential powerful tools to provide the essential information for genetic studies and marker-assisted breeding program for nutritional improvement in mungbean., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Sinha, Aski, Mishra, Kumar, Yadav, Tokas, Gupta, Pratap, Kumar, Nair, Schafleitner and Dikshit.)
- Published
- 2023
- Full Text
- View/download PDF
17. Rust ( Uromyces viciae-fabae Pers. de-Bary) of Pea ( Pisum sativum L.): Present Status and Future Resistance Breeding Opportunities.
- Author
-
Singh AK, Kushwaha C, Shikha K, Chand R, Mishra GP, Dikshit HK, Devi J, Aski MS, Kumar S, Gupta S, and Nair RM
- Subjects
- Chromosome Mapping, Plant Breeding, Pisum sativum genetics, Plant Diseases microbiology
- Abstract
Uromyces viciae - fabae Pers. de-Bary is an important fungal pathogen causing rust in peas ( Pisum sativum L.). It is reported in mild to severe forms from different parts of the world where the pea is grown. Host specificity has been indicated in this pathogen in the field but has not yet been established under controlled conditions. The uredinial states of U. viciae - fabae are infective under temperate and tropical conditions. Aeciospores are infective in the Indian subcontinent. The genetics of rust resistance was reported qualitatively. However, non-hypersensitive resistance responses and more recent studies emphasized the quantitative nature of pea rust resistance. Partial resistance/slow rusting had been described as a durable resistance in peas. Such resistance is of the pre-haustorial type and expressed as longer incubation and latent period, poor infection efficiency, a smaller number of aecial cups/pustules, and lower units of AUDPC (Area Under Disease Progress Curve). Screening techniques dealing with slow rusting should consider growth stages and environment, as both have a significant influence on the disease scores. Our knowledge about the genetics of rust resistance is increasing, and now molecular markers linked with gene/QTLs (Quantitative Trait Loci) of rust resistance have been identified in peas. The mapping efforts conducted in peas came out with some potent markers associated with rust resistance, but they must be validated under multi-location trails before use in the marker-assisted selection of rust resistance in pea breeding programs.
- Published
- 2023
- Full Text
- View/download PDF
18. Multi-location evaluation of mungbean ( Vigna radiata L.) in Indian climates: Ecophenological dynamics, yield relation, and characterization of locations.
- Author
-
Parihar AK, Gupta S, Hazra KK, Lamichaney A, Sen Gupta D, Singh D, Kumar R, Singh AK, Vaishnavi R, Jaberson MS, Das SP, Dev J, Yadav RK, Jamwal BS, Choudhary BR, Khedar OP, Prakash V, Dikshit HK, Panwar RK, Katiyar M, Kumar P, Mahto CS, Borah HK, Singh MN, Das A, Patil AN, Nanda HC, Kumar V, Rajput SD, Chauhan DA, Patel MH, Kanwar RR, Kumar J, Mishra SP, Kumar H, Swarup I, Mogali S, Kumaresan D, Manivannan N, Gowda MB, Pandiyan M, Rao PJ, Shivani D, Prusti AM, Mahadevu P, Iyanar K, and Das S
- Abstract
Crop yield varies considerably within agroecology depending on the genetic potential of crop cultivars and various edaphic and climatic variables. Understanding site-specific changes in crop yield and genotype × environment interaction are crucial and needs exceptional consideration in strategic breeding programs. Further, genotypic response to diverse agro-ecologies offers identification of strategic locations for evaluating traits of interest to strengthen and accelerate the national variety release program. In this study, multi-location field trial data have been used to investigate the impact of environmental conditions on crop phenological dynamics and their influence on the yield of mungbean in different agroecological regions of the Indian subcontinent. The present attempt is also intended to identify the strategic location(s) favoring higher yield and distinctiveness within mungbean genotypes. In the field trial, a total of 34 different mungbean genotypes were grown in 39 locations covering the north hill zone ( n = 4), northeastern plain zone ( n = 6), northwestern plain zone ( n = 7), central zone ( n = 11) and south zone ( n = 11). The results revealed that the effect of the environment was prominent on both the phenological dynamics and productivity of the mungbean. Noticeable variations (expressed as coefficient of variation) were observed for the parameters of days to 50% flowering (13%), days to maturity (12%), reproductive period (21%), grain yield (33%), and 1000-grain weight (14%) across the environments. The genotype, environment, and genotype × environment accounted for 3.0, 54.2, and 29.7% of the total variation in mungbean yield, respectively ( p < 0.001), suggesting an oversized significance of site-specific responses of the genotypes. Results demonstrated that a lower ambient temperature extended both flowering time and the crop period. Linear mixed model results revealed that the changes in phenological events (days to 50 % flowering, days to maturity, and reproductive period) with response to contrasting environments had no direct influence on crop yields ( p > 0.05) for all the genotypes except PM 14-11. Results revealed that the south zone environment initiated early flowering and an extended reproductive period, thus sustaining yield with good seed size. While in low rainfall areas viz ., Sriganganagar, New Delhi, Durgapura, and Sagar, the yield was comparatively low irrespective of genotypes. Correlation results and PCA indicated that rainfall during the crop season and relative humidity significantly and positively influenced grain yield. Hence, the present study suggests that the yield potential of mungbean is independent of crop phenological dynamics; rather, climatic variables like rainfall and relative humidity have considerable influence on yield. Further, HA-GGE biplot analysis identified Sagar, New Delhi, Sriganganagar, Durgapura, Warangal, Srinagar, Kanpur, and Mohanpur as the ideal testing environments, which demonstrated high efficiency in the selection of new genotypes with wider adaptability., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Parihar, Gupta, Hazra, Lamichaney, Sen Gupta, Singh, Kumar, Singh, Vaishnavi, Jaberson, Das, Dev, Yadav, Jamwal, Choudhary, Khedar, Prakash, Dikshit, Panwar, Katiyar, Kumar, Mahto, Borah, Singh, Das, Patil, Nanda, Kumar, Rajput, Chauhan, Patel, Kanwar, Kumar, Mishra, Kumar, Swarup, Mogali, Kumaresan, Manivannan, Gowda, Pandiyan, Rao, Shivani, Prusti, Mahadevu, Iyanar and Das.)
- Published
- 2022
- Full Text
- View/download PDF
19. Comparative transcriptome analysis, unfolding the pathways regulating the seed-size trait in cultivated lentil ( Lens culinaris Medik.).
- Author
-
Dutta H, Mishra GP, Aski MS, Bosamia TC, Mishra DC, Bhati J, Sinha SK, Vijay D, C T MP, Das S, Pawar PA, Kumar A, Tripathi K, Kumar RR, Yadava DK, Kumar S, and Dikshit HK
- Abstract
Market class, cooking time, quality, and milled grain yield are largely influenced by the seed size and shape of the lentil ( Lens culinaris Medik.); thus, they are considered to be important quality traits. To unfold the pathways regulating seed size in lentils, a transcriptomic approach was performed using large-seeded (L4602) and small-seeded (L830) genotypes. The study has generated nearly 375 million high-quality reads, of which 98.70% were properly aligned to the reference genome. Among biological replicates, very high similarity in fragments per kilobase of exon per million mapped fragments values (R > 0.9) showed the consistency of RNA-seq results. Various differentially expressed genes associated mainly with the hormone signaling and cell division pathways, transcription factors, kinases, etc. were identified as having a role in cell expansion and seed growth. A total of 106,996 unigenes were used for differential expression (DE) analysis. String analysis identified various modules having certain key proteins like Ser/Thr protein kinase, seed storage protein, DNA-binding protein, microtubule-associated protein, etc. In addition, some growth and cell division-related micro-RNAs like miR3457 (cell wall formation), miR1440 (cell proliferation and cell cycles), and miR1533 (biosynthesis of plant hormones) were identified as having a role in seed size determination. Using RNA-seq data, 5254 EST-SSR primers were generated as a source for future studies aiming for the identification of linked markers. In silico validation using Genevestigator
® was done for the Ser/Thr protein kinase, ethylene response factor, and Myb transcription factor genes. It is of interest that the xyloglucan endotransglucosylase gene was found differentially regulated, suggesting their role during seed development; however, at maturity, no significant differences were recorded for various cell wall parameters including cellulose, lignin, and xylose content. This is the first report on lentils that has unfolded the key seed size regulating pathways and unveiled a theoretical way for the development of lentil genotypes having customized seed sizes., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Dutta, Mishra, Aski, Bosamia, Mishra, Bhati, Sinha, Vijay, C. T., Das, Pawar, Kumar, Tripathi, Kumar, Yadava, Kumar and Dikshit.)- Published
- 2022
- Full Text
- View/download PDF
20. Morphological, Molecular, and Biochemical Characterization of a Unique Lentil ( Lens culinaris Medik.) Genotype Showing Seed-Coat Color Anomalies Due to Altered Anthocyanin Pathway.
- Author
-
Mishra GP, Ankita, Aski MS, Tontang MT, Choudhary P, Tripathi K, Singh A, Kumar RR, Thimmegowda V, Stobdan T, Kumar A, Bhardwaj R, Praveen S, Yadava DK, Kumar S, and Dikshit HK
- Abstract
This study reports the identification of a unique lentil ( Lens culinaris Medik.) genotype L4717-NM, a natural mutant (NM) derived from a variety L4717, producing brown, black, and spotted seed-coat colored seeds in a single plant, generation after generation, in different frequencies. The genetic similarity of L4717 with that of L4717-NM expressing anomalous seed-coat color was established using 54 SSR markers. In addition, various biochemical parameters such as TPC (total phenolic content), TFC (total flavonoid content), DPPH (2,2-diphenyl-1-picrylhydrazyl), FRAP (ferric reducing antioxidant power), H
2 O2 (peroxide quantification), TCC (total carotenoids content), TAC (total anthocyanin content), and TAA (total ascorbic acid) were also studied in the seeds, sprouts, and seedlings of L4717, brown, black, and spotted seed-coat colored seeds. Stage-specific variations for the key biochemical parameters were recorded, and seedling stage was found the best for many parameters. Moreover, seeds with black seed coat showed better nutraceutical values for most of the studied traits. A highly significant ( p ≤ 0.01) and positive correlation was observed between DPPH and TPC, TAA, TFC, etc., whereas, protein content showed a negative correlation with the other studied parameters. The seed coat is maternal tissue and we expect expression of seed-coat color as per the maternal genotype. However, such an anomalous seed-coat expression, which seems to probably be governed by some transposable element in the identified genotype, warrants more detailed studies involving exploitation of the anthocyanin pathway.- Published
- 2022
- Full Text
- View/download PDF
21. Yield optimization, microbial load analysis, and sensory evaluation of mungbean (Vigna radiata L.), lentil (Lens culinaris subsp. culinaris), and Indian mustard (Brassica juncea L.) microgreens grown under greenhouse conditions.
- Author
-
Priti, Sangwan S, Kukreja B, Mishra GP, Dikshit HK, Singh A, Aski M, Kumar A, Taak Y, Stobdan T, Das S, Kumar RR, Yadava DK, Praveen S, Kumar S, and Nair RM
- Subjects
- Escherichia coli, Fungi, Humans, Mustard Plant, Salmonella, Fabaceae, Lens Plant microbiology, Listeria, Vigna
- Abstract
Microgreens have been used for raw consumption and are generally viewed as healthy food. This study aimed to optimize the yield parameters, shelf life, sensory evaluation and characterization of total aerobic bacteria (TAB), yeast and mold (Y&M), Escherichia coli, Salmonella spp., and Listeria spp. incidence in mungbean (Vigna radiata (L.) Wilczek), lentil (Lens culinaris Medikus subsp. culinaris), and Indian mustard (Brassica juncea (L.) Czern & Coss.) microgreens. In mungbean and lentil, seeding-density of three seed/cm2, while in Indian mustard, eight seed/cm2 were recorded as optimum. The optimal time to harvest mungbean, Indian mustard, and lentil microgreens were found as 7th, 8th, and 9th day after sowing, respectively. Interestingly, seed size was found highly correlated with the overall yield in both mungbeans (r2 = .73) and lentils (r2 = .78), whereas no such relationship has been recorded for Indian mustard microgreens. The target pathogenic bacteria such as Salmonella spp. and Listeria spp. were not detected; while TAB, Y&M, Shigella spp., and E. coli were recorded well within the limit to cause any human illness in the studied microgreens. Washing with double distilled water for two minutes has shown some reduction in the overall microbial load of these microgreens. The results provided evidence that microgreens if grown and stored properly, are generally safe for human consumption. This is the first study from India on the safety of mungbean, lentils, and Indian mustard microgreens., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2022
- Full Text
- View/download PDF
22. Genotypic variation in root architectural traits under contrasting phosphorus levels in Mediterranean and Indian origin lentil genotypes.
- Author
-
Aski M, Mehra R, Mishra GP, Singh D, Yadav P, Rai N, Reddy VRP, Mb AK, Pandey R, Singh MP, Gayacharan, Bansal R, Tripathi K, Udupa SM, Kumar S, Sarker A, and Dikshit HK
- Subjects
- Phosphorus, Plant Breeding, Phenotype, Genotype, Lens Plant genetics
- Abstract
The development of phosphorus-efficient crop cultivars boosts productivity while lowering eutrophication in the environment. It is feasible to improve the efficiency of phosphorus (P) absorption in lentils by enhancing phosphorus absorption through root architectural traits. The root architectural traits of 110 diverse lentil genotypes of Indian and Mediterranean origin were assessed, and the relationships between traits were investigated. In a hydroponics experiment, the lentil lines were examined at the seedling stage under two conditions: adequate P supply and deficient P supply. The Pearson correlation coefficients between root architectural traits and genetic diversity among lentil lines were assessed. To estimate variance components, a model (fixed factor) was used. In this experiment, both phosphorus (P) and genotype were fixed variables. Our lentil lines showed significant genetic variability and considerable genetic diversity for all traits under both treatments. The TRL (total root length) and PRL (primary root length) showed strong positive associations with all other characteristics excluding root average diameter (RAD) in both P treatments. In both P treatments, the RAD revealed a negative significant association with Total Root Tips (TRT), as well as total root volume (TRV) and total root forks (TRF) in the deficit conditions of P. Total root volume (TRV), total surface area (TSA), and total root tips had higher coefficient variance values. The first two principal components represented 67.88% and 66.19% of the overall variance in the adequate and deficit P treatments respectively. The Shannon-Weaver diversity index (H') revealed that RAD, PRL, and TSA had more variability than TRT and TRF under both treatments. According to the Comprehensive Phosphorus Efficiency Measure (CPEM), the best five highly efficient genotypes are PLL 18-09, PLS 18-01, PLL 18-25, PLS 18-23, and PLL 18-07, while IG112131, P560206, IG334, L11-231, and PLS18-67 are highly inefficient genotypes. The above contrasting diverse lentil genotypes can be utilized to produce P-efficient lentil cultivars. The lentil germplasm with potentially favorable root traits can be suggested to evaluated for other abiotic stress to use them in crop improvement programme. The scientific breakthroughs in root trait phenotyping have improved the chances of establishing trait-allele relationships. As a result, genotype-to-phenotype connections can be predicted and verified with exceptional accuracy, making it easier to find and incorporate favourable nutrition-related genes/QTLs in to breeding programme., Competing Interests: The authors declare that they have no competing interests., (© 2022 Aski et al.)
- Published
- 2022
- Full Text
- View/download PDF
23. Agro-Morphological Characterization of Lentil Germplasm of Indian National Genebank and Development of a Core Set for Efficient Utilization in Lentil Improvement Programs.
- Author
-
Tripathi K, Kumari J, Gore PG, Mishra DC, Singh AK, Mishra GP, Gayacharan C, Dikshit HK, Singh N, Semwal DP, Mehra R, Bhardwaj R, Bansal R, Rana JC, Kumar A, Gupta V, Singh K, and Sarker A
- Abstract
Lentil ( Lens culinaris Medik.) is one of the major cool-season pulse crops worldwide. Its increasing demand as a staple pulse has led to the unlocking of diverse germplasm collections conserved in the genebanks to develop its superior varieties. The Indian National Genebank, housed at the Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India, currently has 2,324 accessions comprising 1,796 indigenous and 528 exotic collections. This study was conducted to unveil the potential of lentil germplasm by assessing its agro-morphological characteristics and diversity, identifying trait-specific germplasm, and developing a core set. The complete germplasm set was characterized for two years, i.e., 2017-2018 and 2018-2019, and data were recorded on 26 agro-morphological traits. High phenotypic variability was observed for nine quantitative and 17 qualitative traits. A core set comprising 170 accessions (137 Indian and 33 exotic) was derived based on the characterization data as well as geographical origin using a heuristic method and PowerCore software. This core set was found to be sufficiently diverse and representative of the entire collection based on the comparison made using Shannon-Weaver diversity indices and χ
2 test. These results were further validated by summary statistics. The core set displayed high genetic diversity as evident from a higher coefficient of variance in comparison to the entire set for individual traits and overall Shannon-Weaver diversity indices (entire: 1.054; core: 1.361). In addition, the total variation explained by the first three principal components was higher in the core set (70.69%) than in the entire collection (68.03%). Further, the conservation of pairwise correlation values among descriptors in the entire and core set reflected the maintenance of the structure of the whole set. Based on the results, this core set is believed to represent the entire collection, completely. Therefore, it constitutes a potential set of germplasm that can be used in the genetic enhancement of lentils., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Tripathi, Kumari, Gore, Mishra, Singh, Mishra, C, Dikshit, Singh, Semwal, Mehra, Bhardwaj, Bansal, Rana, Kumar, Gupta, Singh and Sarker.)- Published
- 2022
- Full Text
- View/download PDF
24. Insights into the genetic diversity of an underutilized Indian legume, Vigna stipulacea (Lam.) Kuntz., using morphological traits and microsatellite markers.
- Author
-
Gore PG, Gupta V, Singh R, Tripathi K, Kumar R, Kumari G, Madhavan L, Dikshit HK, Venkateswaran K, Pandey A, Singh N, Bhat KV, Nair RM, and Pratap A
- Subjects
- Fabaceae genetics, Genetic Variation genetics, Genotype, India, Microsatellite Repeats genetics, Phenotype, Phylogeny, Plant Breeding, Polymorphism, Genetic genetics, Vigna metabolism, Vigna cytology, Vigna genetics
- Abstract
Vigna stipulacea (Lam.) Kuntz., commonly known as Minni payaru is an underutilized legume species and has a great potential to be utilized as food crop. To evaluate and select the best germplasm to be harnessed in the breeding programme, we assessed the genetic diversity of V. stipulacea (94 accessions) conserved in the Indian National Genebank, based on morphological traits and microsatellite markers. Significant variation was recorded for the morphological traits studied. Euclidean distance using UPGMA method grouped all accessions into two major clusters. Accessions were identified for key agronomic traits such as, early flowering (IC331436, IC251436, IC331437); long peduncle length (IC553518, IC550531, IC553557, IC553540, IC550532, IC553564); and more number of seeds per pod (IC553529, IC622865, IC622867, IC553528). To analyse the genetic diversity among the germplasm 33 SSR primers were used anda total of 116 alleles were detected. The number of alleles varied from two to seven, with an average of 3.52 per loci. The polymorphic information content values varied from 0.20 to 0.74, with a mean of 0.40. The high number of alleles per locus and the allelic diversity in the studied germplasm indicated a relatively wider genetic base of V. stipulacea. Phylogenetic analysis clustered accessions into seven clades. Population structure analysis grouped them into five genetic groups, which were partly supported by PCoA and phylogenetic tree. Besides, PCoA and AMOVA also decoded high genetic diversity among the V. stipulacea accessions. Thus, morphological and microsatellite markers distinguished V. stipulacea accessions and assessed their genetic diversity efficiently. The identified promising accessions can be utilized in Vigna improvement programme through introgression breeding and/or can be used for domestication and enhanced utilization of V. stipulacea., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2022
- Full Text
- View/download PDF
25. Insights into the Host-Pathogen Interaction Pathways through RNA-Seq Analysis of Lens culinaris Medik. in Response to Rhizoctonia bataticola Infection.
- Author
-
Mishra GP, Aski MS, Bosamia T, Chaurasia S, Mishra DC, Bhati J, Kumar A, Javeria S, Tripathi K, Kohli M, Kumar RR, Singh AK, Devi J, Kumar S, and Dikshit HK
- Subjects
- Disease Resistance genetics, Gene Expression Regulation, Plant, Lens Plant genetics, Lens Plant microbiology, Plant Diseases genetics, Plant Diseases microbiology, Plant Proteins genetics, RNA-Seq methods, Disease Resistance immunology, Host-Pathogen Interactions, Lens Plant immunology, Plant Diseases immunology, Plant Proteins metabolism, Rhizoctonia physiology, Transcriptome
- Abstract
Dry root rot ( Rhizoctonia bataticola ) is an important disease of lentils ( Lens culinaris Medik.).To gain an insight into the molecular aspects of host-pathogen interactions, the RNA-seq approach was used in lentils following inoculation with R. bataticola . The RNA-Seq has generated >450 million high-quality reads (HQRs) and nearly 96.97% were properly aligned to the reference genome. Very high similarity in FPKM (fragments per kilobase of exon per million mapped fragments) values ( R > 0.9) among biological replicates showed the consistency of the RNA-Seq results. The study revealed various DEGs (differentially expressed genes) that were associated with changes in phenolic compounds, transcription factors (TFs), antioxidants, receptor kinases, hormone signals which corresponded to the cell wall modification enzymes, defense-related metabolites, and jasmonic acid (JA)/ethylene (ET) pathways. Gene ontology (GO) categorization also showed similar kinds of significantly enriched similar GO terms. Interestingly, of the total unigenes (42,606), 12,648 got assembled and showed significant hit with Rhizoctonia species. String analysis also revealed the role of various disease responsive proteins viz., LRR family proteins, LRR-RLKs, protein kinases, etc. in the host-pathogen interaction. Insilico validation analysis was performed using Genevestigator
® and DEGs belonging to six major defense-response groups viz., defense-related enzymes, disease responsive genes, hormones, kinases, PR (pathogenesis related) proteins, and TFs were validated. For the first time some key miRNA targets viz. miR156, miR159, miR167, miR169, and miR482 were identified from the studied transcriptome, which may have some vital role in Rhizoctonia -based responses in lentils. The study has revealed the molecular mechanisms of the lentil/ R. bataticola interactions and also provided a theoretical approach for the development of lentil genotypes resistant to R. bataticola .- Published
- 2021
- Full Text
- View/download PDF
26. Understanding G × E Interaction for Nutritional and Antinutritional Factors in a Diverse Panel of Vigna stipulacea (Lam.) Kuntz Germplasm Tested Over the Locations.
- Author
-
Gore PG, Das A, Bhardwaj R, Tripathi K, Pratap A, Dikshit HK, Bhattacharya S, Nair RM, and Gupta V
- Abstract
Micronutrient malnutrition or hidden hunger is a serious challenge toward societal well-being. Vigna stipulacea (Lam.) Kuntz (known locally as Minni payaru ), is an underutilized legume that has the potential to be a global food legume due to its rich nutrient profile. In the present study, 99 accessions of V. stipulacea were tested for iron (Fe), zinc (Zn), calcium (Ca), protein, and phytate concentrations over two locations for appraisal of stable nutrient-rich sources. Analysis of variance revealed significant effects of genotype for all the traits over both locations. Fe concentration ranged from 29.35-130.96 mg kg
-1 whereas Zn concentration ranged from 19.44 to 74.20 mg kg-1 across both locations. The highest grain Ca concentration was 251.50 mg kg-1 whereas the highest grain protein concentration was recorded as 25.73%. In the case of grain phytate concentration, a genotype with the lowest value is desirable. IC622867 (G-99) was the lowest phytate containing accession at both locations. All the studied traits revealed highly significant genotypic variances and highly significant genotype × location interaction though less in magnitude than the genotypic variance. GGE Biplot analysis detected that, for grain Fe, Zn, and Ca concentration the 'ideal' genotypes were IC331457 (G-75), IC331610 (G-76), and IC553564 (G-60), respectively, whereas for grain protein concentration IC553521 (G-27) was the most "ideal type." For phytate concentration, IC351407 (G-95) and IC550523 (G-99) were considered as 'ideal' and 'desirable,' respectively. Based on the desirability index, Location 1 (Kanpur) was identified as ideal for Fe, Zn, Ca, and phytate, and for grain protein concentration, Location 2 (New Delhi) was the ideal type. A significant positive correlation was detected between grain Fe as well as grain Zn and protein concentration considering the pooled analysis over both the locations where as a significant negative association was observed between phytate and protein concentration over the locations. This study has identified useful donors and enhanced our knowledge toward the development of biofortified Vigna cultivars. Promoting domestication of this nutrient-rich semi-domesticated, underutilized species will boost sustainable agriculture and will contribute toward alleviating hidden hunger., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Gore, Das, Bhardwaj, Tripathi, Pratap, Dikshit, Bhattacharya, Nair and Gupta.)- Published
- 2021
- Full Text
- View/download PDF
27. Genetic Variation for Traits Related to Phosphorus Use Efficiency in Lens Species at the Seedling Stage.
- Author
-
Ramtekey V, Bansal R, Aski MS, Kothari D, Singh A, Pandey R, Tripathi K, Mishra GP, Kumar S, and Dikshit HK
- Abstract
Phosphorus (P) is an essential, non-renewable resource critical for crop productivity across the world. P is immobile in nature and, therefore, the identification of novel genotypes with efficient P uptake and utilization under a low P environment is extremely important. This study was designed to characterize eighty genotypes of different Lens species for shoot and root traits at two contrasting levels of P. A significant reduction in primary root length (PRL), total surface area (TSA), total root tips (TRT), root forks (RF), total dry weight (TDW), root dry weight (RDW) and shoot dry weight (SDW) in response to P deficiency was recorded. A principal component analysis revealed that the TDW, SDW and RDW were significantly correlated to P uptake and utilization efficiency in lentils. Based on total dry weight (TDW) under low P, L4727, EC718309, EC714238, PL-97, EC718348, DPL15, PL06 and EC718332 were found promising. The characterization of different Lens species revealed species-specific variations for the studied traits. Cultivated lentils exhibited higher P uptake and utilization efficiency as compared to the wild forms. The study, based on four different techniques, identified EC714238 as the most P use-efficient genotype. The genotypes identified in this study can be utilized for developing mapping populations and deciphering the genetics for breeding lentil varieties suited for low P environments.
- Published
- 2021
- Full Text
- View/download PDF
28. Root Trait Variation in Lentil ( Lens culinaris Medikus) Germplasm under Drought Stress.
- Author
-
Priya S, Bansal R, Kumar G, Dikshit HK, Kumari J, Pandey R, Singh AK, Tripathi K, Singh N, Kumari NKP, Kumar S, and Kumar A
- Abstract
Drought is the most critical environmental factor across the continents affecting food security. Roots are the prime organs for water and nutrient uptake. Fine tuning between water uptake, efficient use and loss determines the genotypic response to water limitations. Targeted breeding for root system architecture needs to be explored to improve water use efficiency in legumes. Hence, the present study was designed to explore root system architecture in lentil germplasm in response to drought. A set of 119 lentil ( Lens culinaris Medik.) genotypes was screened in controlled conditions to assess the variability in root traits in relation to drought tolerance at seedling stage. We reported significant variation for different root traits in lentil germplasm. Total root length, surface area, root volume and root diameter were correlated to the survival and growth under drought. Among the studied genotypes, the stress tolerance index varied 0.19-1.0 for survival and 0.09-0.90 for biomass. Based on seedling survival and biomass under control and drought conditions, 11 drought tolerant genotypes were identified, which may be investigated further at a physiological and molecular level for the identification of the genes involved in drought tolerance. Identified lines may also be utilised in a lentil breeding program.
- Published
- 2021
- Full Text
- View/download PDF
29. Comparison of different selection traits for identification of phosphorus use efficient lines in mungbean.
- Author
-
Reddy VRP, Dikshit HK, Mishra GP, Aski M, Singh A, Bansal R, Pandey R, and Nair RM
- Abstract
Phosphorus (P) is one of the major constraints for crop growth and development, owing to low availability and least mobility in many tropical soil conditions. Categorization of existing germplasm under P deficient conditions is a prerequisite for the selection and development of P efficient genotypes in the mungbean. In the present investigation, 36 diverse genotypes were categorized for phosphorus use efficiency traits using four different techniques for identification of phosphorus use efficient mungbean genotypes. The studied genotypes were categorized for P efficiency based on efficiency, responsiveness, and stress tolerance score of genotypes under normal and low P conditions. The mean values of traits, root dry mass, root to shoot ratio, and P utilization efficiency are significantly higher under low P conditions indicating the high responsiveness of traits to P deficiency. The presence of significant interaction between genotypes and P treatment indicates the evaluated genotypes were significantly affected by P treatment for studied traits. The total P uptake showed significant and positive correlations with root dry mass, shoot dry mass, total dry mass,and P concentration under both P regimes. Out of the four techniques used for the categorization of genotypes for P efficiency, three techniques revealed that the genotype PUSA 1333, followed by Pusa Vishal, PUSA 1031, and Pusa Ratna is efficient. The categorization based on stress tolerance score is the finest way to study variation and for the selection of contrasting genotypes for P efficiency. The identified P efficient genotypes would be valuable resources for genetic enhancement of P use efficiency in mungbean breeding., Competing Interests: Dr. Ramakrishnan Madhavan Nair is employed by the World Vegetable Centre., (©2021 Reddy et al.)
- Published
- 2021
- Full Text
- View/download PDF
30. Growth and Antioxidant Responses in Iron-Biofortified Lentil under Cadmium Stress.
- Author
-
Bansal R, Priya S, Dikshit HK, Jacob SR, Rao M, Bana RS, Kumari J, Tripathi K, Kumar A, Kumar S, and H M Siddique K
- Abstract
Cadmium (Cd) is a hazardous heavy metal, toxic to our ecosystem even at low concentrations. Cd stress negatively affects plant growth and development by triggering oxidative stress. Limited information is available on the role of iron (Fe) in ameliorating Cd stress tolerance in legumes. This study assessed the effect of Cd stress in two lentil ( Lens culinaris Medik.) varieties differing in seed Fe concentration (L4717 (Fe-biofortified) and JL3) under controlled conditions. Six biochemical traits, five growth parameters, and Cd uptake were recorded at the seedling stage (21 days after sowing) in the studied genotypes grown under controlled conditions at two levels (100 μM and 200 μM) of cadmium chloride (CdCl
2 ). The studied traits revealed significant genotype, treatment, and genotype × treatment interactions. Cd-induced oxidative damage led to the accumulation of hydrogen peroxide (H2 O2 ) and malondialdehyde in both genotypes. JL3 accumulated 77.1% more H2 O2 and 75% more lipid peroxidation products than L4717 at the high Cd level. Antioxidant enzyme activities increased in response to Cd stress, with significant genotype, treatment, and genotype × treatment interactions ( p < 0.01). L4717 had remarkably higher catalase (40.5%), peroxidase (43.9%), superoxide dismutase (31.7%), and glutathione reductase (47.3%) activities than JL3 under high Cd conditions. In addition, L4717 sustained better growth in terms of fresh weight and dry weight than JL3 under stress. JL3 exhibited high Cd uptake (14.87 mg g-1 fresh weight) compared to L4717 (7.32 mg g-1 fresh weight). The study concluded that the Fe-biofortified lentil genotype L4717 exhibited Cd tolerance by inciting an efficient antioxidative response to Cd toxicity. Further studies are required to elucidate the possibility of seed Fe content as a surrogacy trait for Cd tolerance.- Published
- 2021
- Full Text
- View/download PDF
31. Diversity in Phytochemical Composition, Antioxidant Capacities, and Nutrient Contents Among Mungbean and Lentil Microgreens When Grown at Plain-Altitude Region (Delhi) and High-Altitude Region (Leh-Ladakh), India.
- Author
-
Priti, Mishra GP, Dikshit HK, T V, Tontang MT, Stobdan T, Sangwan S, Aski M, Singh A, Kumar RR, Tripathi K, Kumar S, Nair RM, and Praveen S
- Abstract
Mungbeans and lentils are relatively easily grown and cheaper sources of microgreens, but their phytonutrient diversity is not yet deeply explored. In this study, 20 diverse genotypes each of mungbean and lentil were grown as microgreens under plain-altitude (Delhi) and high-altitude (Leh) conditions, which showed significant genotypic variations for ascorbic acid, tocopherol, carotenoids, flavonoid, total phenolics, DPPH (1, 1-diphenyl-2-picrylhydrazyl), FRAP (ferric-reducing antioxidant power), peroxide activity, proteins, enzymes (peroxidase and catalase), micronutrients, and macronutrients contents. The lentil and mungbean genotypes L830 and MH810, respectively, were found superior for most of the studied parameters over other studied genotypes. Interestingly, for most of the studied parameters, Leh-grown microgreens were found superior to the Delhi-grown microgreens, which could be due to unique environmental conditions of Leh, especially wide temperature amplitude, photosynthetically active radiation (PAR), and UV-B content. In mungbean microgreens, total phenolics content (TPC) was found positively correlated with FRAP and DPPH, while in lentil microgreens, total flavonoid content (TFC) was found positively correlated with DPPH. The most abundant elements recorded were in the order of K, P, and Ca in mungbean microgreens; and K, Ca, and P in the lentil microgreens. In addition, these Fabaceae microgreens may help in the nutritional security of the population residing in the high-altitude regions of Ladakh, especially during winter months when this region remains landlocked due to heavy snowfall., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Priti, Mishra, Dikshit, T., Tontang, Stobdan, Sangwan, Aski, Singh, Kumar, Tripathi, Kumar, Nair and Praveen.)
- Published
- 2021
- Full Text
- View/download PDF
32. Assessment of root phenotypes in mungbean mini-core collection (MMC) from the World Vegetable Center (AVRDC) Taiwan.
- Author
-
Aski MS, Rai N, Reddy VRP, Gayacharan, Dikshit HK, Mishra GP, Singh D, Kumar A, Pandey R, Singh MP, Pratap A, Nair RM, and Schafleitner R
- Subjects
- Genetic Variation, Genotype, Phenotype, Plant Roots genetics, Taiwan, Vigna genetics, Global Warming, Plant Breeding methods, Plant Roots growth & development, Vigna growth & development
- Abstract
Mungbean (Vigna radiata L.) is an important food grain legume, but its production capacity is threatened by global warming, which can intensify plant stress and limit future production. Identifying new variation of key root traits in mungbean will provide the basis for breeding lines with effective root characteristics for improved water uptake to mitigate heat and drought stress. The AVRDC mungbean mini core collection consisting of 296 genotypes was screened under modified semi-hydroponic screening conditions to determine the variation for fourteen root-related traits. The AVRDC mungbean mini core collection displayed wide variations for the primary root length, total surface area, and total root length, and based on agglomerative hierarchical clustering eight homogeneous groups displaying different root traits could be identified. Germplasm with potentially favorable root traits has been identified for further studies to identify the donor genotypes for breeding cultivars with enhanced adaptation to water-deficit stress and other stress conditions., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2021
- Full Text
- View/download PDF
33. Comparative RNA-Seq analysis unfolds a complex regulatory network imparting yellow mosaic disease resistance in mungbean [Vigna radiata (L.) R. Wilczek].
- Author
-
Dasgupta U, Mishra GP, Dikshit HK, Mishra DC, Bosamia T, Roy A, Bhati J, Priti, Aski M, Kumar RR, Singh AK, Kumar A, Sinha SK, Chaurasia S, Praveen S, and Nair RM
- Subjects
- Disease Resistance, Gene Regulatory Networks, RNA-Seq, Transcriptome, Begomovirus physiology, Gene Expression Regulation, Plant, Plant Diseases genetics, Plant Diseases virology, Vigna genetics, Vigna virology
- Abstract
Yellow Mosaic Disease (YMD) in mungbean [Vigna radiata (L.) R. Wilczek] is one of the most damaging diseases in Asia. In the northern part of India, the YMD is caused by Mungbean Yellow Mosaic India Virus (MYMIV), while in southern India this is caused by Mungbean Yellow Mosaic Virus (MYMV). The molecular mechanism of YMD resistance in mungbean remains largely unknown. In this study, RNA-seq analysis was conducted between a resistant (PMR-1) and a susceptible (Pusa Vishal) mungbean genotype under infected and control conditions to understand the regulatory network operating between mungbean-YMV. Overall, 76.8 million raw reads could be generated in different treatment combinations, while mapping rate per library to the reference genome varied from 86.78% to 93.35%. The resistance to MYMIV showed a very complicated gene network, which begins with the production of general PAMPs (pathogen-associated molecular patterns), then activation of various signaling cascades like kinases, jasmonic acid (JA) and brassinosteroid (BR), and finally the expression of specific genes (like PR-proteins, virus resistance and R-gene proteins) leading to resistance response. The function of WRKY, NAC and MYB transcription factors in imparting the resistance against MYMIV could be established. The string analysis also revealed the role of proteins involved in kinase, viral movement and phytoene synthase activity in imparting YMD resistance. A set of novel stress-related EST-SSRs are also identified from the RNA-Seq data which may be used to find the linked genes/QTLs with the YMD resistance. Also, 11 defence-related transcripts could be validated through quantitative real-time PCR analysis. The identified gene networks have led to an insight about the defence mechanism operating against MYMIV infection in mungbean which will be of immense use to manage the YMD resistance in mungbean., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2021
- Full Text
- View/download PDF
34. Genome-Wide Association Analysis for Phosphorus Use Efficiency Traits in Mungbean ( Vigna radiata L. Wilczek) Using Genotyping by Sequencing Approach.
- Author
-
Reddy VRP, Das S, Dikshit HK, Mishra GP, Aski M, Meena SK, Singh A, Pandey R, Singh MP, Tripathi K, Gore PG, Priti, Bhagat TK, Kumar S, Nair R, and Sharma TR
- Abstract
Mungbean ( Vigna radiata L. Wilczek) is an annual grain legume crop affected by low availability of phosphorus. Phosphorus deficiency mainly affects the growth and development of plants along with changes in root morphology and increase in root-to-shoot ratio. Deciphering the genetic basis of phosphorus use efficiency (PUE) traits can benefit our understanding of mungbean tolerance to low-phosphorus condition. To address this issue, 144 diverse mungbean genotypes were evaluated for 12 PUE traits under hydroponics with optimum- and low-phosphorus levels. The broad sense heritability of traits ranged from 0.63 to 0.92 and 0.58 to 0.92 under optimum- and low-phosphorus conditions, respectively. This study, reports for the first time such a large number of genome wide Single nucleotide polymorphisms (SNPs) (76,160) in mungbean. Further, genome wide association study was conducted using 55,634 SNPs obtained by genotyping-by-sequencing method. The results indicated that total 136 SNPs shared by both GLM and MLM models were associated with tested PUE traits under different phosphorus regimes. We have identified SNPs with highest p value (-log
10 ( p )) for some traits like, TLA and RDW with p value (-log10 ( p )) of more than 6.0 at LP/OP and OP condition. We have identified nine SNPs (three for TLA and six for RDW trait) which was found to be present in chromosomes 8, 4, and 7. One SNP present in Vradi07g06230 gene contains zinc finger CCCH domain. In total, 71 protein coding genes were identified, of which 13 genes were found to be putative candidate genes controlling PUE by regulating nutrient uptake and root architectural development pathways in mungbean. Moreover, we identified three potential candidate genes VRADI11G08340 , VRADI01G05520 , and VRADI04G10750 with missense SNPs in coding sequence region, which results in significant variation in protein structure at tertiary level. The identified SNPs and candidate genes provide the essential information for genetic studies and marker-assisted breeding program for improving low-phosphorus tolerance in mungbean., (Copyright © 2020 Reddy, Das, Dikshit, Mishra, Aski, Meena, Singh, Pandey, Singh, Tripathi, Gore, Priti, Bhagat, Kumar, Nair and Sharma.)- Published
- 2020
- Full Text
- View/download PDF
35. Corrigendum: Yellow Mosaic Disease (YMD) of Mungbean ( Vigna radiata (L.) Wilczek): Current Status and Management Opportunities.
- Author
-
Mishra GP, Dikshit HK, S V R, Tripathi K, Kumar RR, Aski M, Singh A, Roy A, Priti, Kumari N, Dasgupta U, Kumar A, Praveen S, and Nair RM
- Abstract
[This corrects the article DOI: 10.3389/fpls.2020.00918.]., (Copyright © 2020 Mishra, Dikshit, S. V., Tripathi, Kumar, Aski, Singh, Roy, Priti, Kumari, Dasgupta, Kumar, Praveen and Nair.)
- Published
- 2020
- Full Text
- View/download PDF
36. Yellow Mosaic Disease (YMD) of Mungbean ( Vigna radiata (L.) Wilczek): Current Status and Management Opportunities.
- Author
-
Mishra GP, Dikshit HK, S V R, Tripathi K, Kumar RR, Aski M, Singh A, Roy A, Priti, Kumari N, Dasgupta U, Kumar A, Praveen S, and Nair RM
- Abstract
Globally, yellow mosaic disease (YMD) remains a major constraint of mungbean production, and management of this deadly disease is still the biggest challenge. Thus, finding ways to manage YMD including development of varieties possessing resistance against mungbean yellow mosaic virus (MYMV) and mungbean yellow mosaic India virus (MYMIV) is a research priority for mungbean crop. Characterization of YMD resistance using various advanced molecular and biochemical approaches during plant-virus interactions has unfolded a comprehensive network of pathogen survival, disease severity, and the response of plants to pathogen attack, including mechanisms of YMD resistance in mungbean. The biggest challenge in YMD management is the effective utilization of an array of information gained so far, in an integrated manner for the development of genotypes having durable resistance against yellow mosaic virus (YMV) infection. In this backdrop, this review summarizes the role of various begomoviruses, its genomic components, and vector whiteflies, including cryptic species in the YMD expression. Also, information about the genetics of YMD in both mungbean and blackgram crops is comprehensively presented, as both the species are crossable, and same viral strains are also found affecting these crops. Also, implications of various management strategies including the use of resistance sources, the primary source of inoculums and vector management, wide-hybridization, mutation breeding, marker-assisted selection (MAS), and pathogen-derived resistance (PDR) are thoroughly discussed. Finally, the prospects of employing various powerful emerging tools like translational genomics, and gene editing using CRISPR/Cas9 are also highlighted to complete the YMD management perspective in mungbean., (Copyright © 2020 Mishra, Dikshit, S. V., Tripathi, Kumar, Aski, Singh, Roy, Priti, Kumari, Dasgupta, Kumar, Praveen and Nair.)
- Published
- 2020
- Full Text
- View/download PDF
37. Genetic variation for root architectural traits in response to phosphorus deficiency in mungbean at the seedling stage.
- Author
-
Reddy VRP, Aski MS, Mishra GP, Dikshit HK, Singh A, Pandey R, Singh MP, Gayacharan, Ramtekey V, Priti, Rai N, and Nair RM
- Subjects
- Genotype, Stress, Physiological genetics, Vigna growth & development, Vigna physiology, Genetic Variation, Phosphorus deficiency, Plant Roots genetics, Seedlings growth & development, Vigna genetics, Vigna metabolism
- Abstract
Roots enable the plant to survive in the natural environment by providing anchorage and acquisition of water and nutrients. In this study, root architectural traits of 153 mungbean genotypes were compared under optimum and low phosphorus (P) conditions. Significant variations and medium to high heritability were observed for the root traits. Total root length was positively and significantly correlated with total root surface area, total root volume, total root tips and root forks under both optimum P (r = 0.95, r = 0.85, r = 0.68 and r = 0.82 respectively) and low P (r = 0.95, r = 0.82, r = 0.71 and r = 0.81 respectively). The magnitudes of the coefficient of variations were relatively higher for root forks, total root tips and total root volume. Total root length, total root surface area and total root volume were major contributors of variation and can be utilized for screening of P efficiency at the seedling stage. Released Indian mungbean varieties were found to be superior for root traits than other genotypic groups. Based on comprehensive P efficiency measurement, IPM-288, TM 96-25, TM 96-2, M 1477, PUSA 1342 were found to be the best highly efficient genotypes, whereas M 1131, PS-16, Pusa Vishal, M 831, IC 325828 were highly inefficient. Highly efficient genotypes identified would be valuable genetic resources for P efficiency for utilizing in the mungbean breeding programme., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2020
- Full Text
- View/download PDF
38. Seed transmission of a distinct soybean yellow mottle mosaic virus strain identified from India in natural and experimental hosts.
- Author
-
Sandra N, Tripathi A, Dikshit HK, Mandal B, and Jain RK
- Subjects
- Genome, Viral, India, Phaseolus virology, Phylogeny, Seedlings virology, Plant Diseases virology, Seeds virology, Tombusviridae genetics, Vigna virology
- Abstract
Soybean yellow mottle mosaic virus (SYMMV) is a newly identified member of the genus Gammacarmovirus from grain legumes in India. As the modes of transmission of this virus have not been described, we assessed the possibility of SYMMV to be transmitted through seed collected from field infected mungbean plants and mechanically sap inoculated French bean plants using serological and molecular techniques followed by progeny assays. Direct antigen coated enzyme linked immunosorbent assay (DAC-ELISA) and reverse transcription polymerase chain reaction (RT-PCR) results are inconsistent with field infected mungbean seed tissues to ensure seed transmissibility irrespective of seed number used. Seed from mechanical sap inoculated French bean showed higher absorbance values in DAC-ELISA and amplification corresponding to replicase, movement and coat protein regions of SYMMV genome. The relative accumulation of SYMMV was higher in pod walls, immature seed and stamens and stigma of mechanical sap inoculated French bean. Progeny assays with infected seed revealed the seed transmissibility of SYMMV at the rate of 63.33% in mungbeanand 73.33% in French bean. Mechanical sap inoculation of mungbean progeny seedlings on French bean cv. Pusa Parvati produced characteristic symptoms of SYMMV. The results obtained from this study demonstrate that SYMMV is seed borne in nature and can be transmitted to next generation seedlings. This is the first report of seed transmission of SYMMV in mungbean and French bean., Competing Interests: Declaration of Competing Interest The authors declare that they have no competing interests., (Copyright © 2020 Elsevier B.V. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
39. Genetic dissection of grain iron and zinc concentrations in lentil ( Lens culinaris Medik.).
- Author
-
Kumar H, Singh A, Dikshit HK, Mishra GP, Aski M, Meena MC, and Kumar S
- Subjects
- Africa, Bayes Theorem, Biofortification, DNA, Plant genetics, Edible Grain genetics, Genetic Linkage, Genotype, India, Lens Plant metabolism, Linear Models, Quantitative Trait Loci, Iron metabolism, Lens Plant genetics, Zinc metabolism
- Abstract
Iron (Fe) and zinc (Zn) deficiencies are wide spread in South Asia and Africa. Biofortification of food crops is a viable means of addressing micronutrient deficiencies. Lentil is an important pulse crop that provides affordable source of proteins, minerals, fibre and carbohydrates for micronutrient deficient countries. An association mapping (AM) panel of 96 diverse lentil genotypes from India and Mediterranean region was evaluated for three seasons and genotyped using 80 polymorphic simple-sequence repeat (SSR) markers for identification of the markers associated with grain Fe and Zn concentrations. A Bayesian model based clustering identified five subpopulations, adequately explaining the genetic structure of the AM panel. The linkage disequilibrium (LD) analysis using mixed linear model (MLM) identified two SSR markers, GLLC106 and GLLC108, associated with grain Fe concentration explaining 17% and 6% phenotypic variation, respectively and three SSR markers (PBALC 364, PBALC 92 and GLLC592) associated with grain Zn concentration, explaining 6%, 8% and 13% phenotypic variation, respectively. The identified SSRs exhibited consistent performance across three seasons and have potential for utilization in lentil molecular breeding programme.
- Published
- 2019
40. Association mapping unveils favorable alleles for grain iron and zinc concentrations in lentil (Lens culinaris subsp. culinaris).
- Author
-
Singh A, Sharma V, Dikshit HK, Aski M, Kumar H, Thirunavukkarasu N, Patil BS, Kumar S, and Sarker A
- Subjects
- Alleles, Breeding, Chromosome Mapping, Edible Grain metabolism, Genotype, India, Iron metabolism, Lens Plant chemistry, Zinc metabolism, Edible Grain genetics, Lens Plant genetics, Microsatellite Repeats genetics, Quantitative Trait Loci genetics
- Abstract
Lentil is a major cool-season grain legume grown in South Asia, West Asia, and North Africa. Populations in developing countries of these regions have micronutrient deficiencies; therefore, breeding programs should focus more on improving the micronutrient content of food. In the present study, a set of 96 diverse germplasm lines were evaluated at three different locations in India to examine the variation in iron (Fe) and zinc (Zn) concentration and identify simple sequence repeat (SSR) markers that associate with the genetic variation. The genetic variation among genotypes of the association mapping (AM) panel was characterized using a genetic distance-based and a general model-based clustering method. The model-based analysis identified six subpopulations, which satisfactorily explained the genetic structure of the AM panel. AM analysis identified three SSRs (PBALC 13, PBALC 206, and GLLC 563) associated with grain Fe concentration explaining 9% to 11% of phenotypic variation and four SSRs (PBALC 353, SSR 317-1, PLC 62, and PBALC 217) were associated with grain Zn concentration explaining 14%, to 21% of phenotypic variation. These identified SSRs exhibited consistent performance across locations. These candidate SSRs can be used in marker-assisted genetic improvement for developing Fe and Zn fortified lentil varieties. Favorable alleles and promising genotypes identified in this study can be utilized for lentil biofortification.
- Published
- 2017
- Full Text
- View/download PDF
41. Tagging and mapping of SSR marker for rust resistance gene in lentil (Lens culinaris Medikus subsp. culinaris).
- Author
-
Dikshit HK, Singh A, Singh D, Aski M, Jain N, Hegde VS, Basandrai AK, Basandrai D, and Sharma TR
- Subjects
- Basidiomycota, India, DNA, Plant genetics, Disease Resistance genetics, Genetic Markers genetics, Lens Plant genetics, Lens Plant microbiology, Plant Diseases genetics
- Abstract
Lentil, as an economical source of protein, minerals and vitamins, plays important role in nutritional security of the common man. Grown mainly in West Asia, North Africa (WANA) region and South Asia, it suffers from several biotic stresses such as wilt, rust, blight and broomrape. Lentil rust caused by autoecious fungus Uromyces viciae fabae (Pers.) Schroet is a serious lentil disease in Algeria, Bangladesh, Ethiopia, India, Italy, Morocco, Pakistan and Nepal. The disease symptoms are observed during flowering and early podding stages. Rust causes severe yield losses in lentil. It can only be effectively controlled by identifying the resistant source, understanding its inheritance and breeding for host resistance. The obligate parasitic nature of pathogen makes it difficult to maintain the pathogen in culture and to apply it to screen segregating progenies under controlled growth conditions. Hence, the use of molecular markers will compliment in identification of resistant types in different breeding programs. Here, we studied the inheritance of resistance to rust in lentil using F₁, F₂ and F₂:₃ from cross PL 8 (susceptible) x L 4149 (resistant) varieties. The phenotyping of lentil population was carried out at Sirmour, India. The result of genetic analysis revealed that a single dominant gene controls rust resistance in lentil genotype L 4149. The F2 population from this cross was used to tag and map the rust resistance gene using SSR and SRAP markers. Markers such as 270 SRAP and 162 SSR were studied for polymorphism and 101 SRAP and 33 SSRs were found to be polymorphic between the parents. Two SRAP and two SSR markers differentiated the resistant and susceptible bulks. SSR marker Gllc 527 was estimated to be linked to rust resistant locus at a distance of 5.9 cM. The Gllc 527 marker can be used for marker assisted selection for rust resistance; however, additional markers closer to rust resistant locus are required. The markers linked to the rust resistance gene can serve as starting points for map-based cloning of the rust resistance gene.
- Published
- 2016
42. Genetic Diversity in Lens Species Revealed by EST and Genomic Simple Sequence Repeat Analysis.
- Author
-
Dikshit HK, Singh A, Singh D, Aski MS, Prakash P, Jain N, Meena S, Kumar S, and Sarker A
- Subjects
- Asia, DNA, Plant genetics, Expressed Sequence Tags, Genetic Markers, Genotype, Lens Plant classification, Microsatellite Repeats, Phylogeny, Polymorphism, Genetic, Sequence Analysis, DNA, Genetic Variation, Lens Plant genetics
- Abstract
Low productivity of pilosae type lentils grown in South Asia is attributed to narrow genetic base of the released cultivars which results in susceptibility to biotic and abiotic stresses. For enhancement of productivity and production, broadening of genetic base is essentially required. The genetic base of released cultivars can be broadened by using diverse types including bold seeded and early maturing lentils from Mediterranean region and related wild species. Genetic diversity in eighty six accessions of three species of genus Lens was assessed based on twelve genomic and thirty one EST-SSR markers. The evaluated set of genotypes included diverse lentil varieties and advanced breeding lines from Indian programme, two early maturing ICARDA lines and five related wild subspecies/species endemic to the Mediterranean region. Genomic SSRs exhibited higher polymorphism in comparison to EST SSRs. GLLC 598 produced 5 alleles with highest gene diversity value of 0.80. Among the studied subspecies/species 43 SSRs detected maximum number of alleles in L. orientalis. Based on Nei's genetic distance cultivated lentil L. culinaris subsp. culinaris was found to be close to its wild progenitor L. culinaris subsp. orientalis. The Prichard's structure of 86 genotypes distinguished different subspecies/species. Higher variability was recorded among individuals within population than among populations.
- Published
- 2015
- Full Text
- View/download PDF
43. Discovery of EST-derived microsatellite primers in the legume Lens culinaris (Fabaceae).
- Author
-
Jain N, Dikshit HK, Singh D, Singh A, and Kumar H
- Abstract
Premise of the Study: We developed microsatellite markers in the legume Lens culinaris from publicly available databases to enrich the limited marker resource available for the crop. •, Methods and Results: Eighty-two primer sets were identified using expressed sequence sets of L. culinaris available in the National Center for Biotechnology Information (NCBI) database and were characterized in six species of Lens. Among them, 20 simple sequence repeat (SSR) primers produced no amplification product, 43 produced monomorphic products, and 19 were polymorphic. The primers amplified mono-, di-, tri-, tetra-, penta-, and hexanucleotide repeats with one to four alleles. These SSR loci successfully amplified in five related wild species, with a total of 61 primer pairs in L. nigricans and L. odemensis (98.39%), 59 in L. tomentosus (95.1%), and 60 in L. ervoides and L. orientalis (96.7%), respectively. •, Conclusions: The microsatellite markers discovered in this study will be useful in genetic mapping, marker-assisted breeding, and characterization of germplasm.
- Published
- 2013
- Full Text
- View/download PDF
44. Molecular and morphological characterization of advanced breeding lines from diverse cross in mung bean (Vigna radiata (L.) Wilczek).
- Author
-
Dikshit HK, Sharma TR, Chandra N, Singh BB, and Kumari J
- Subjects
- DNA Fingerprinting, Multigene Family genetics, Breeding, Crosses, Genetic, Fabaceae anatomy & histology, Fabaceae genetics
- Published
- 2009
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.