75 results on '"Diekötter T"'
Search Results
2. Effects of litter amount and seed sowing position on seedling emergence and growth of hemiparasitic Rhinanthus species under drought stress
- Author
-
Zimmerbeutel, A., primary, Diekötter, T., additional, Reck, H., additional, Nissen, H., additional, Wiedmann, L. J., additional, and Donath, T. W., additional
- Published
- 2024
- Full Text
- View/download PDF
3. Converting arable land into flowering fields changes functional and phylogenetic community structure in ground beetles
- Author
-
Baulechner, D., Diekötter, T., Wolters, V., and Jauker, F.
- Published
- 2019
- Full Text
- View/download PDF
4. Quantifying the Impact of Environmental Factors on Arthropod Communities in Agricultural Landscapes across Organizational Levels and Spatial Scales
- Author
-
Schweiger, O., Maelfait, J. P., Van Wingerden, W., Hendrickx, F., Billeter, R., Speelmans, M., Augenstein, I., Aukema, B., Aviron, S., Bailey, D., Bukacek, R., Burel, F., Diekötter, T., Dirksen, J., Frenzel, M., Herzog, F., Liira, J., Roubalova, M., and Bugter, R.
- Published
- 2005
5. Optimizing arthropod predator conservation in permanent grasslands by considering diversity components beyond species richness
- Author
-
Birkhofer, K., Diekötter, T., Meub, C., Stötzel, K., and Wolters, V.
- Published
- 2015
- Full Text
- View/download PDF
6. Indicators for Biodiversity in Agricultural Landscapes: A Pan-European Study
- Author
-
Billeter, R., Liira, J., Bailey, D., Bugter, R., Arens, P., Augenstein, I., Aviron, S., Baudry, J., Bukacek, R., Burel, F., Cerny, M., De Blust, G., De Cock, R., Diekötter, T., Dietz, H., Dirksen, J., Dormann, C., Durka, W., Frenzel, M., Hamersky, R., Hendrickx, F., Herzog, F., Klotz, S., Koolstra, B., Lausch, A., Le Coeur, D., Maelfait, J. P., Opdam, P., Roubalova, M., Schermann, A., Schermann, N., Schmidt, T., Schweiger, O., Smulders, M. J. M., Speelmans, M., Simova, P., Verboom, J., van Wingerden, W. K. R. E., Zobel, M., and Edwards, P. J.
- Published
- 2008
- Full Text
- View/download PDF
7. Notwendigkeit eines Brückenschlags zwischen Wissenschaft und Praxis im Naturschutz – Chancen und Herausforderungen. The need to build bridges between science and practice in conservation - Opportunities and challenges
- Author
-
Riecken, U., Ammer, C., Baur, B., Bonn, Aletta, Diekötter, T., Hotes, S., Krüß, A., Klimek, S., Leyer, I., Werk, K., Ziegenhagen, B., Farwig, N., Riecken, U., Ammer, C., Baur, B., Bonn, Aletta, Diekötter, T., Hotes, S., Krüß, A., Klimek, S., Leyer, I., Werk, K., Ziegenhagen, B., and Farwig, N.
- Abstract
Für ein erfolgreiches Handeln im Naturschutz sind ein enger Austausch und eine Rückkopplung zwischen Wissenschaft sowie Akteurinnen und Akteuren der Praxis auf allen Ebenen notwendig. Viele Beispiele und Erfahrungen deuten jedoch darauf hin, dass dieser wechselseitige Austausch nicht optimal und bedarfsgerecht funktioniert. Aus Sicht der Autorinnen und Autoren besteht die Notwendigkeit für einen neuen "Brückenschlag" im Naturschutz, um die Übertragung gesicherter Forschungsergebnisse in die Praxis und umgekehrt die Vermittlung der Bedarfe aus der Praxis hin zur Wissenschaft zu optimieren. Ausgehend von einer Analyse der aktuellen Herausforderungen und Ursachen in diesem Kontext werden im vorliegenden Beitrag - differenziert nach den wichtigsten Akteursgruppen - verschiedene Lösungsansätze für einen Brückenschlag abgeleitet und zur Diskussion gestellt. Ergänzend finden sich vier Praxisbeispiele. Für eine Verbesserung der Situation muss die Naturschutzforschung vermehrt die Bedarfe der Praxis berücksichtigen und entsprechende Forschung muss auch von der "scientific community" anerkannt werden. Gleichzeitig soll die Diskussion dazu beitragen, dass die Praxis ihr Handeln stärker evidenzbasiert ausrichtet und noch aktiver die Kooperation mit der Wissenschaft sucht.  
- Published
- 2020
8. Indicators for biodiversity in agricultural landscapes : a pan-European study
- Author
-
Billeter, Regula, Liira, J., Bailey, D., Bugter, R., Arens, P., Augenstein, I., Aviron, S., Baudry, J., Bukacek, R., Burel, F., Cerny, M., De Blust, G., De Cock, R., Diekötter, T., Dietz, H., Dirksen, J., Dormann, C., Durka, W., Frenzel, M., Hamersky, R., Hendrickx, F., Herzog, F., Klotz, S., Koolstra, B., Lausch, A., Le Coeur, D., Maelfait, J. P., Opdam, P., Roubalova, M., Schermann, A., Schermann, N., Schmidt, T., Schweiger, O., Smulders, M.J.M., Speelmans, M., Simova, P., Verboom, J., Van Wingerden, W.K.R.E., Zobel, M., Edwards, P.J., Billeter, Regula, Liira, J., Bailey, D., Bugter, R., Arens, P., Augenstein, I., Aviron, S., Baudry, J., Bukacek, R., Burel, F., Cerny, M., De Blust, G., De Cock, R., Diekötter, T., Dietz, H., Dirksen, J., Dormann, C., Durka, W., Frenzel, M., Hamersky, R., Hendrickx, F., Herzog, F., Klotz, S., Koolstra, B., Lausch, A., Le Coeur, D., Maelfait, J. P., Opdam, P., Roubalova, M., Schermann, A., Schermann, N., Schmidt, T., Schweiger, O., Smulders, M.J.M., Speelmans, M., Simova, P., Verboom, J., Van Wingerden, W.K.R.E., Zobel, M., and Edwards, P.J.
- Published
- 2018
9. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition
- Author
-
National Science Foundation (US), Karp, D.S., Chaplin-Kramer, R., Meehan, T. D., Martin, E. A., DeClerck, F., Grab, H., Gratton, C., Hunt, L., Larsen, A. E., Martínez-Salinas, A., O'Rourke, M. E., Rusch, A., Poveda, K., Jonsson, M., Rosenheim, J. A., Schellhorn, N. A., Tscharntke, T., Wratten, S. D., Zhang, W., Iverson, A. L., Adler, L. S., Albrecht, M., Alignier, A., Angelella, G. M., Anjum, M. Z., Avelino, J., Batáry, P., Baveco, J. M., Bianchi, F.J.J.A., Birkhofer, K., Bohnenblust, E. W., Bommarco, R., Brewer, M. J., Caballero-López, Berta, Carrière, Y., Carvalheiro, L.G., Cayuela, Luis, Centrella, M., Cetkovic, Aleksandar, Henri, D. C., Chabert, A., Costamagna, A. C., De la Mora, A., Kraker, Joop de, Desneux, N., Diehl, E., Diekötter, T., Dormann, C. F., Eckberg, J. O., Madeira, F., Paredes, Daniel, Pons, Xavier, National Science Foundation (US), Karp, D.S., Chaplin-Kramer, R., Meehan, T. D., Martin, E. A., DeClerck, F., Grab, H., Gratton, C., Hunt, L., Larsen, A. E., Martínez-Salinas, A., O'Rourke, M. E., Rusch, A., Poveda, K., Jonsson, M., Rosenheim, J. A., Schellhorn, N. A., Tscharntke, T., Wratten, S. D., Zhang, W., Iverson, A. L., Adler, L. S., Albrecht, M., Alignier, A., Angelella, G. M., Anjum, M. Z., Avelino, J., Batáry, P., Baveco, J. M., Bianchi, F.J.J.A., Birkhofer, K., Bohnenblust, E. W., Bommarco, R., Brewer, M. J., Caballero-López, Berta, Carrière, Y., Carvalheiro, L.G., Cayuela, Luis, Centrella, M., Cetkovic, Aleksandar, Henri, D. C., Chabert, A., Costamagna, A. C., De la Mora, A., Kraker, Joop de, Desneux, N., Diehl, E., Diekötter, T., Dormann, C. F., Eckberg, J. O., Madeira, F., Paredes, Daniel, and Pons, Xavier
- Abstract
The idea that noncrop habitat enhances pest control and represents a win–win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win–win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies.
- Published
- 2018
10. The database of the Predicts (Projecting responses of ecological diversity in changing terrestrial systems) project
- Author
-
Hudson, LN, Newbold, T, Contu, S, Hill, SLL, Lysenko, I, De Palma, A, Phillips, HRP, Alhusseini, TI, Bedford, FE, Bennett, DJ, Booth, H, Burton, VJ, Chng, CWT, Choimes, A, Correia, DLP, Day, J, Echeverría-Londoño, S, Emerson, SR, Gao, D, Garon, M, Harrison, MLK, Ingram, DJ, Jung, M, Kemp, V, Kirkpatrick, L, Martin, CD, Pan, Y, Pask-Hale, GD, Pynegar, EL, Robinson, AN, Sanchez-Ortiz, K, Senior, RA, Simmons, BI, White, HJ, Zhang, H, Aben, J, Abrahamczyk, S, Adum, GB, Aguilar-Barquero, V, Aizen, MA, Albertos, B, Alcala, EL, del Mar Alguacil, M, Alignier, A, Ancrenaz, M, Andersen, AN, Arbeláez-Cortés, E, Armbrecht, I, Arroyo-Rodríguez, V, Aumann, T, Axmacher, JC, Azhar, B, Azpiroz, AB, Baeten, L, Bakayoko, A, Báldi, A, Banks, JE, Baral, SK, Barlow, J, Barratt, BIP, Barrico, L, Bartolommei, P, Barton, DM, Basset, Y, Batáry, P, Bates, AJ, Baur, B, Bayne, EM, Beja, P, Benedick, S, Berg, Å, Bernard, H, Berry, NJ, Bhatt, D, Bicknell, JE, Bihn, JH, Blake, RJ, Bobo, KS, Bóçon, R, Boekhout, T, Böhning-Gaese, K, Bonham, KJ, Borges, PAV, Borges, SH, Boutin, C, Bouyer, J, Bragagnolo, C, Brandt, JS, Brearley, FQ, Brito, I, Bros, V, Brunet, J, Buczkowski, G, Buddle, CM, Bugter, R, Buscardo, E, Buse, J, Cabra-García, J, Cáceres, NC, Cagle, NL, Calviño-Cancela, M, Cameron, SA, Cancello, EM, Caparrós, R, Cardoso, P, Carpenter, D, Carrijo, TF, Carvalho, AL, Cassano, CR, Castro, H, Castro-Luna, AA, Rolando, CB, Cerezo, A, Chapman, KA, Chauvat, M, Christensen, M, Clarke, FM, Cleary, DFR, Colombo, G, Connop, SP, Craig, MD, Cruz-López, L, Cunningham, SA, D'Aniello, B, D'Cruze, N, da Silva, PG, Dallimer, M, Danquah, E, Darvill, B, Dauber, J, Davis, ALV, Dawson, J, de Sassi, C, de Thoisy, B, Deheuvels, O, Dejean, A, Devineau, J-L, Diekötter, T, Dolia, JV, Domínguez, E, Dominguez-Haydar, Y, Dorn, S, Draper, I, Dreber, N, Dumont, B, Dures, SG, Dynesius, M, Edenius, L, Eggleton, P, Eigenbrod, F, Elek, Z, Entling, MH, Esler, KJ, de Lima, RF, Faruk, A, Farwig, N, Fayle, TM, Felicioli, A, Felton, AM, Fensham, RJ, Fernandez, IC, Ferreira, CC, Ficetola, GF, Fiera, C, Filgueiras, BKC, Fırıncıoğlu, HK, Flaspohler, D, Floren, A, Fonte, SJ, Fournier, A, Fowler, RE, Franzén, M, Fraser, LH, Fredriksson, GM, Freire, GB, Frizzo, TLM, Fukuda, D, Furlani, D, Gaigher, R, Ganzhorn, JU, García, KP, Garcia-R, JC, Garden, JG, Garilleti, R, Ge, B-M, Gendreau-Berthiaume, B, Gerard, PJ, Gheler-Costa, C, Gilbert, B, Giordani, P, Giordano, S, Golodets, C, Gomes, LGL, Gould, RK, Goulson, D, Gove, AD, Granjon, L, Grass, I, Gray, CL, Grogan, J, Gu, W, Guardiola, M, Gunawardene, NR, Gutierrez, AG, Gutiérrez-Lamus, DL, Haarmeyer, DH, Hanley, ME, Hanson, T, Hashim, NR, Hassan, SN, Hatfield, RG, Hawes, JE, Hayward, MW, Hébert, C, Helden, AJ, Henden, J-A, Henschel, P, Hernández, L, Herrera, JP, Herrmann, F, Herzog, F, Higuera-Diaz, D, Hilje, B, Höfer, H, Hoffmann, A, Horgan, FG, Hornung, E, Horváth, R, Hylander, K, Isaacs-Cubides, P, Ishida, H, Ishitani, M, Jacobs, CT, Jaramillo, VJ, Jauker, B, Hernández, FJ, Johnson, MF, Jolli, V, Jonsell, M, Juliani, SN, Jung, TS, Kapoor, V, Kappes, H, Kati, V, Katovai, E, Kellner, K, Kessler, M, Kirby, KR, Kittle, AM, Knight, ME, Knop, E, Kohler, F, Koivula, M, Kolb, A, Kone, M, Kőrösi, Á, Krauss, J, Kumar, A, Kumar, R, Kurz, DJ, Kutt, AS, Lachat, T, Lantschner, V, Lara, F, Lasky, JR, Latta, SC, Laurance, WF, Lavelle, P, Le Féon, V, LeBuhn, G, Légaré, J-P, Lehouck, V, Lencinas, MV, Lentini, PE, Letcher, SG, Li, Q, Litchwark, SA, Littlewood, NA, Liu, Y, Lo-Man-Hung, N, López-Quintero, CA, Louhaichi, M, Lövei, GL, Lucas-Borja, ME, Luja, VH, Luskin, MS, MacSwiney G, MC, Maeto, K, Magura, T, Mallari, NA, Malone, LA, Malonza, PK, Malumbres-Olarte, J, Mandujano, S, Måren, IE, Marin-Spiotta, E, Marsh, CJ, Marshall, EJP, Martínez, E, Martínez Pastur, G, Moreno Mateos, D, Mayfield, MM, Mazimpaka, V, McCarthy, JL, McCarthy, KP, McFrederick, QS, McNamara, S, Medina, NG, Medina, R, Mena, JL, Mico, E, Mikusinski, G, Milder, JC, Miller, JR, Miranda-Esquivel, DR, Moir, ML, Morales, CL, Muchane, MN, Muchane, M, Mudri-Stojnic, S, Munira, AN, Muoñz-Alonso, A, Munyekenye, BF, Naidoo, R, Naithani, A, Nakagawa, M, Nakamura, A, Nakashima, Y, Naoe, S, Nates-Parra, G, Navarrete Gutierrez, DA, Navarro-Iriarte, L, Ndang'ang'a, PK, Neuschulz, EL, Ngai, JT, Nicolas, V, Nilsson, SG, Noreika, N, Norfolk, O, Noriega, JA, Norton, DA, Nöske, NM, Nowakowski, AJ, Numa, C, O'Dea, N, O'Farrell, PJ, Oduro, W, Oertli, S, Ofori-Boateng, C, Oke, CO, Oostra, V, Osgathorpe, LM, Otavo, SE, Page, NV, Paritsis, J, Parra-H, A, Parry, L, Pe'er, G, Pearman, PB, Pelegrin, N, Pélissier, R, Peres, CA, Peri, PL, Persson, AS, Petanidou, T, Peters, MK, Pethiyagoda, RS, Phalan, B, Philips, TK, Pillsbury, FC, Pincheira-Ulbrich, J, Pineda, E, Pino, J, Pizarro-Araya, J, Plumptre, AJ, Poggio, SL, Politi, N, Pons, P, Poveda, K, Power, EF, Presley, SJ, Proença, V, Quaranta, M, Quintero, C, Rader, R, Ramesh, BR, Ramirez-Pinilla, MP, Ranganathan, J, Rasmussen, C, Redpath-Downing, NA, Reid, JL, Reis, YT, Rey Benayas, JM, Rey-Velasco, JC, Reynolds, C, Ribeiro, DB, Richards, MH, Richardson, BA, Richardson, MJ, Ríos, RM, Robinson, R, Robles, CA, Römbke, J, Romero-Duque, LP, Rös, M, Rosselli, L, Rossiter, SJ, Roth, DS, Roulston, TH, Rousseau, L, Rubio, AV, Ruel, J-C, Sadler, JP, Sáfián, S, Saldaña-Vázquez, RA, Sam, K, Samnegård, U, Santana, J, Santos, X, Savage, J, Schellhorn, NA, Schilthuizen, M, Schmiedel, U, Schmitt, CB, Schon, NL, Schüepp, C, Schumann, K, Schweiger, O, Scott, DM, Scott, KA, Sedlock, JL, Seefeldt, SS, Shahabuddin, G, Shannon, G, Sheil, D, Sheldon, FH, Shochat, E, Siebert, SJ, Silva, FAB, Simonetti, JA, Slade, EM, Smith, J, Smith-Pardo, AH, Sodhi, NS, Somarriba, EJ, Sosa, RA, Soto Quiroga, G, St-Laurent, M-H, Starzomski, BM, Stefanescu, C, Steffan-Dewenter, I, Stouffer, PC, Stout, JC, Strauch, AM, Struebig, MJ, Su, Z, Suarez-Rubio, M, Sugiura, S, Summerville, KS, Sung, Y-H, Sutrisno, H, Svenning, J-C, Teder, T, Threlfall, CG, Tiitsaar, A, Todd, JH, Tonietto, RK, Torre, I, Tóthmérész, B, Tscharntke, T, Turner, EC, Tylianakis, JM, Uehara-Prado, M, Urbina-Cardona, N, Vallan, D, Vanbergen, AJ, Vasconcelos, HL, Vassilev, K, Verboven, HAF, Verdasca, MJ, Verdú, JR, Vergara, CH, Vergara, PM, Verhulst, J, Virgilio, M, Vu, LV, Waite, EM, Walker, TR, Wang, H-F, Wang, Y, Watling, JI, Weller, B, Wells, K, Westphal, C, Wiafe, ED, Williams, CD, Willig, MR, Woinarski, JCZ, Wolf, JHD, Wolters, V, Woodcock, BA, Wu, J, Wunderle, JM, Yamaura, Y, Yoshikura, S, Yu, DW, Zaitsev, AS, Zeidler, J, Zou, F, Collen, B, Ewers, RM, Mace, GM, Purves, DW, Scharlemann, JPW, Purvis, A, The Natural History Museum [London] (NHM), United Nations Environment Programme World Conservation Monitoring Centre, Department of Genetics, Evolution and Environment, Centre for Biodiversity and Environment, Research, University College of London [London] (UCL), Department of Life Sciences [Trieste], Università degli studi di Trieste, Imperial College London, Department of Zoology, Auburn University (AU), Frankfurt Zoological Society, Science and Solutions for a Changing Planet DTP and the Department of Life Sciences, Centre d’étude de la forêt, Université Laval, School of Life Sciences, University of Sussex, School of Biological Sciences [London], Queen Mary University of London (QMUL), School of Biological and Ecological Sciences, University of Stirling, School of Biological Sciences [Egham), Royal Holloway [University of London] (RHUL), School of Environment, Natural Resources and Geography, Bangor University, University College London (UCL), School of Biological Sciences [Clayton], Monash University [Clayton], Institute of Biological and Environmental Sciences, (SFIRC), Evolutionary Ecology Group, University of Antwerp (UA), Nees Institute for Plant Biodiversity, Rheinische Friedrich-Wilhelms-Universität Bonn, Wildlife and Range Management Department, Faculty of Renewable Natural Resources, College of Agriculture and Natural Resources (CANR), Kwame Nkrumah University of Science and Technology (KNUST), Save the frogs!, Escuela de Biología, Universidad Nacional de Costa Rica, Instituto Nacional de Investigaciones en Biodiversidad y Medioambiente [Bariloche] (INIBIOMA-CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas [Buenos Aires] (CONICET)-Universidad Nacional del Comahue [Neuquén] (UNCOMA), Departamento de Botánica, Facultad de Farmacia, Universidad de Valencia, Marine Laboratory, Silliman University-Angelo King Center for Research and Environmental Management, Silliman University, Department of Soil and Water Conservation, Centro de Edafologia y Biologia Aplicada del Segura, SAD Paysage (SAD Paysage), Institut National de la Recherche Agronomique (INRA)-AGROCAMPUS OUEST, Dynamiques Forestières dans l'Espace Rural (DYNAFOR), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure Agronomique de Toulouse-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Animal, Santé, Territoires, Risques et Ecosystèmes (UMR ASTRE), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherches sur les Herbivores - UMR 1213 (UMRH), VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Institut National de la Recherche Agronomique (INRA), Centre de Biologie pour la Gestion des Populations (UMR CBGP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (UM)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Abeilles et Environnement (AE), Institut National de la Recherche Agronomique (INRA)-Avignon Université (AU), Patrimoines locaux, Environnement et Globalisation (PALOC), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU), Università degli studi di Trieste = University of Trieste, Université Laval [Québec] (ULaval), Institut National de la Recherche Agronomique (INRA)-École nationale supérieure agronomique de Toulouse (ENSAT), Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT), Unité Mixte de Recherche sur les Herbivores - UMR 1213 (UMRH), Institut National de la Recherche Agronomique (INRA)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS), The Royal Society, Natural Environment Research Council (NERC), Kwame Nkrumah University of Science and Technology [GHANA] (KNUST), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de la Recherche Agronomique (INRA), Institut National de la Recherche Agronomique (INRA)-École nationale supérieure agronomique de Toulouse [ENSAT]-Institut National Polytechnique (Toulouse) (Toulouse INP), VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Institut National de la Recherche Agronomique (INRA)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Institut National de la Recherche Agronomique (INRA)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Westerdijk Fungal Biodiversity Institute, Westerdijk Fungal Biodiversity Institute - Yeast Research, Hudson, Lawrence N [0000-0003-4072-7469], Choimes, Argyrios [0000-0002-9849-1500], Jung, Martin [0000-0002-7569-1390], Apollo - University of Cambridge Repository, Hudson, Lawrence N, Newbold, Tim, Contu, Sara, Hill, Samantha L. L., Lysenko, Igor, De Palma, Adriana, Phillips, Helen R. P., Alhusseini, Tamera I., Bedford, Felicity E., Bennett, Dominic J., Booth, Hollie, Burton, Victoria J., Chng, Charlotte W. T., Choimes, Argyrio, Correia, David L. P., Day, Julie, Echeverría Londoño, Susy, Emerson, Susan R., Gao, Di, Garon, Morgan, Harrison, Michelle L. K., Ingram, Daniel J., Jung, Martin, Kemp, Victoria, Kirkpatrick, Lucinda, Martin, Callum D., Pan, Yuan, Pask Hale, Gwilym D., Pynegar, Edwin L., Robinson, Alexandra N., Sanchez Ortiz, Katia, Senior, Rebecca A., Simmons, Benno I., White, Hannah J., Zhang, Hanbin, Aben, Job, Abrahamczyk, Stefan, Adum, Gilbert B., Aguilar Barquero, Virginia, Aizen, Marcelo A., Albertos, Belén, Alcala, E. L., del Mar Alguacil, Maria, Alignier, Audrey, Ancrenaz, Marc, Andersen, Alan N., Arbeláez Cortés, Enrique, Armbrecht, Inge, Arroyo Rodríguez, Víctor, Aumann, Tom, Axmacher, Jan C., Azhar, Badrul, Azpiroz, Adrián B., Baeten, Lander, Bakayoko, Adama, Báldi, Andrá, Banks, John E., Baral, Sharad K., Barlow, Jo, Barratt, Barbara I. P., Barrico, Lurde, Bartolommei, Paola, Barton, Diane M., Basset, Yve, Batáry, Péter, Bates, Adam J., Baur, Bruno, Bayne, Erin M., Beja, Pedro, Benedick, Suzan, Berg, Åke, Bernard, Henry, Berry, Nicholas J., Bhatt, Dinesh, Bicknell, Jake E., Bihn, Jochen H., Blake, Robin J., Bobo, Kadiri S., Bóçon, Roberto, Boekhout, Teun, Böhning Gaese, Katrin, Bonham, Kevin J., Borges, Paulo A. V., Borges, Sérgio H., Boutin, Céline, Bouyer, Jérémy, Bragagnolo, Cibele, Brandt, Jodi S., Brearley, Francis Q., Brito, Isabel, Bros, Vicenç, Brunet, Jörg, Buczkowski, Grzegorz, Buddle, Christopher M., Bugter, Rob, Buscardo, Erika, Buse, Jörn, Cabra García, Jimmy, Cáceres, Nilton C., Cagle, Nicolette L., Calviño Cancela, María, Cameron, Sydney A., Cancello, Eliana M., Caparrós, Rut, Cardoso, Pedro, Carpenter, Dan, Carrijo, Tiago F., Carvalho, Anelena L., Cassano, Camila R., Castro, Helena, Castro Luna, Alejandro A., Rolando, Cerda B., Cerezo, Alexi, Chapman, Kim Alan, Chauvat, Matthieu, Christensen, Morten, Clarke, Francis M., Cleary, Daniel F. R., Colombo, Giorgio, Connop, Stuart P., Craig, Michael D., Cruz López, Leopoldo, Cunningham, Saul A., D'Aniello, Biagio, D'Cruze, Neil, da Silva, Pedro Giovâni, Dallimer, Martin, Danquah, Emmanuel, Darvill, Ben, Dauber, Jen, Davis, Adrian L. V., Dawson, Jeff, de Sassi, Claudio, de Thoisy, Benoit, Deheuvels, Olivier, Dejean, Alain, Devineau, Jean Loui, Diekötter, Tim, Dolia, Jignasu V., Domínguez, Erwin, Dominguez Haydar, Yamileth, Dorn, Silvia, Draper, Isabel, Dreber, Niel, Dumont, Bertrand, Dures, Simon G., Dynesius, Mat, Edenius, Lar, Eggleton, Paul, Eigenbrod, Felix, Elek, Zoltán, Entling, Martin H., Esler, Karen J., de Lima, Ricardo F., Faruk, Aisyah, Farwig, Nina, Fayle, Tom M., Felicioli, Antonio, Felton, Annika M., Fensham, Roderick J., Fernandez, Ignacio C., Ferreira, Catarina C., Ficetola, Gentile F., Fiera, Cristina, Filgueiras, Bruno K. C., Fırıncıoğlu, Hüseyin K., Flaspohler, David, Floren, Andrea, Fonte, Steven J., Fournier, Anne, Fowler, Robert E., Franzén, Marku, Fraser, Lauchlan H., Fredriksson, Gabriella M., Freire, Geraldo B., Frizzo, Tiago L. M., Fukuda, Daisuke, Furlani, Dario, Gaigher, René, Ganzhorn, Jörg U., García, Karla P., Garcia R, Juan C., Garden, Jenni G., Garilleti, Ricardo, Ge, Bao Ming, Gendreau Berthiaume, Benoit, Gerard, Philippa J., Gheler Costa, Carla, Gilbert, Benjamin, Giordani, Paolo, Giordano, Simonetta, Golodets, Carly, Gomes, Laurens G. L., Gould, Rachelle K., Goulson, Dave, Gove, Aaron D., Granjon, Laurent, Grass, Ingo, Gray, Claudia L., Grogan, Jame, Gu, Weibin, Guardiola, Moisè, Gunawardene, Nihara R., Gutierrez, Alvaro G., Gutiérrez Lamus, Doris L., Haarmeyer, Daniela H., Hanley, Mick E., Hanson, Thor, Hashim, Nor R., Hassan, Shombe N., Hatfield, Richard G., Hawes, Joseph E., Hayward, Matt W., Hébert, Christian, Helden, Alvin J., Henden, John André, Henschel, Philipp, Hernández, Lionel, Herrera, James P., Herrmann, Farina, Herzog, Felix, Higuera Diaz, Diego, Hilje, Branko, Höfer, Hubert, Hoffmann, Anke, Horgan, Finbarr G., Hornung, Elisabeth, Horváth, Roland, Hylander, Kristoffer, Isaacs Cubides, Paola, Ishida, Hiroaki, Ishitani, Masahiro, Jacobs, Carmen T., Jaramillo, Víctor J., Jauker, Birgit, Hernández, F. Jiménez, Johnson, McKenzie F., Jolli, Virat, Jonsell, Mat, Juliani, S. Nur, Jung, Thomas S., Kapoor, Vena, Kappes, Heike, Kati, Vassiliki, Katovai, Eric, Kellner, Klau, Kessler, Michael, Kirby, Kathryn R., Kittle, Andrew M., Knight, Mairi E., Knop, Eva, Kohler, Florian, Koivula, Matti, Kolb, Annette, Kone, Mouhamadou, Kőrösi, Ádám, Krauss, Jochen, Kumar, Ajith, Kumar, Raman, Kurz, David J., Kutt, Alex S., Lachat, Thibault, Lantschner, Victoria, Lara, Francisco, Lasky, Jesse R., Latta, Steven C., Laurance, William F., Lavelle, Patrick, Le Féon, Violette, Lebuhn, Gretchen, Légaré, Jean Philippe, Lehouck, Valérie, Lencinas, María V., Lentini, Pia E., Letcher, Susan G., Li, Qi, Litchwark, Simon A., Littlewood, Nick A., Liu, Yunhui, Lo Man Hung, Nancy, López Quintero, Carlos A., Louhaichi, Mounir, Lövei, Gabor L., Lucas Borja, Manuel Esteban, Luja, Victor H., Luskin, Matthew S., MacSwiney G, M. Cristina, Maeto, Kaoru, Magura, Tibor, Mallari, Neil Aldrin, Malone, Louise A., Malonza, Patrick K., Malumbres Olarte, Jagoba, Mandujano, Salvador, Måren, Inger E., Marin Spiotta, Erika, Marsh, Charles J., Marshall, E. J. P., Martínez, Eliana, Martínez Pastur, Guillermo, Moreno Mateos, David, Mayfield, Margaret M., Mazimpaka, Vicente, Mccarthy, Jennifer L., Mccarthy, Kyle P., Mcfrederick, Quinn S., Mcnamara, Sean, Medina, Nagore G., Medina, Rafael, Mena, Jose L., Mico, Estefania, Mikusinski, Grzegorz, Milder, Jeffrey C., Miller, James R., Miranda Esquivel, Daniel R., Moir, Melinda L., Morales, Carolina L., Muchane, Mary N., Muchane, Muchai, Mudri Stojnic, Sonja, Munira, A. Nur, Muoñz Alonso, Antonio, Munyekenye, B. F., Naidoo, Robin, Naithani, A., Nakagawa, Michiko, Nakamura, Akihiro, Nakashima, Yoshihiro, Naoe, Shoji, Nates Parra, Guiomar, Navarrete Gutierrez, Dario A., Navarro Iriarte, Lui, Ndang'Ang'A, Paul K., Neuschulz, Eike L., Ngai, Jacqueline T., Nicolas, Violaine, Nilsson, Sven G., Noreika, Norberta, Norfolk, Olivia, Noriega, Jorge Ari, Norton, David A., Nöske, Nicole M., Nowakowski, A. Justin, Numa, Catherine, O'Dea, Niall, O'Farrell, Patrick J., Oduro, William, Oertli, Sabine, Ofori Boateng, Caleb, Oke, Christopher Omamoke, Oostra, Vicencio, Osgathorpe, Lynne M., Otavo, Samuel Eduardo, Page, Navendu V., Paritsis, Juan, Parra H, Alejandro, Parry, Luke, Pe'Er, Guy, Pearman, Peter B., Pelegrin, Nicolá, Pélissier, Raphaël, Peres, Carlos A., Peri, Pablo L., Persson, Anna S., Petanidou, Theodora, Peters, Marcell K., Pethiyagoda, Rohan S., Phalan, Ben, Philips, T. Keith, Pillsbury, Finn C., Pincheira Ulbrich, Jimmy, Pineda, Eduardo, Pino, Joan, Pizarro Araya, Jaime, Plumptre, A. J., Poggio, Santiago L., Politi, Natalia, Pons, Pere, Poveda, Katja, Power, Eileen F., Presley, Steven J., Proença, Vânia, Quaranta, Marino, Quintero, Carolina, Rader, Romina, Ramesh, B. R., Ramirez Pinilla, Martha P., Ranganathan, Jai, Rasmussen, Clau, Redpath Downing, Nicola A., Reid, J. Leighton, Reis, Yana T., Rey Benayas, José M., Rey Velasco, Juan Carlo, Reynolds, Chevonne, Ribeiro, Danilo Bandini, Richards, Miriam H., Richardson, Barbara A., Richardson, Michael J., Ríos, Rodrigo Macip, Robinson, Richard, Robles, Carolina A., Römbke, Jörg, Romero Duque, Luz Piedad, Rös, Matthia, Rosselli, Loreta, Rossiter, Stephen J., Roth, Dana S., Roulston, T'ai H., Rousseau, Laurent, Rubio, André V., Ruel, Jean Claude, Sadler, Jonathan P., Sáfián, Szabolc, Saldaña Vázquez, Romeo A., Sam, Katerina, Samnegård, Ulrika, Santana, Joana, Santos, Xavier, Savage, Jade, Schellhorn, Nancy A., Schilthuizen, Menno, Schmiedel, Ute, Schmitt, Christine B., Schon, Nicole L., Schüepp, Christof, Schumann, Katharina, Schweiger, Oliver, Scott, Dawn M., Scott, Kenneth A., Sedlock, Jodi L., Seefeldt, Steven S., Shahabuddin, Ghazala, Shannon, Graeme, Sheil, Dougla, Sheldon, Frederick H., Shochat, Eyal, Siebert, Stefan J., Silva, Fernando A. B., Simonetti, Javier A., Slade, Eleanor M., Smith, Jo, Smith Pardo, Allan H., Sodhi, Navjot S., Somarriba, Eduardo J., Sosa, Ramón A., Soto Quiroga, Grimaldo, St Laurent, Martin Hugue, Starzomski, Brian M., Stefanescu, Constanti, Steffan Dewenter, Ingolf, Stouffer, Philip C., Stout, Jane C., Strauch, Ayron M., Struebig, Matthew J., Su, Zhimin, Suarez Rubio, Marcela, Sugiura, Shinji, Summerville, Keith S., Sung, Yik Hei, Sutrisno, Hari, Svenning, Jens Christian, Teder, Tiit, Threlfall, Caragh G., Tiitsaar, Anu, Todd, Jacqui H., Tonietto, Rebecca K., Torre, Ignasi, Tóthmérész, Béla, Tscharntke, Teja, Turner, Edgar C., Tylianakis, Jason M., Uehara Prado, Marcio, Urbina Cardona, Nicola, Vallan, Deni, Vanbergen, Adam J., Vasconcelos, Heraldo L., Vassilev, Kiril, Verboven, Hans A. F., Verdasca, Maria João, Verdú, José R., Vergara, Carlos H., Vergara, Pablo M., Verhulst, Jort, Virgilio, Massimiliano, Vu, Lien Van, Waite, Edward M., Walker, Tony R., Wang, Hua Feng, Wang, Yanping, Watling, James I., Weller, Britta, Wells, Konstan, Westphal, Catrin, Wiafe, Edward D., Williams, Christopher D., Willig, Michael R., Woinarski, John C. Z., Wolf, Jan H. D., Wolters, Volkmar, Woodcock, Ben A., Wu, Jihua, Wunderle, Joseph M., Yamaura, Yuichi, Yoshikura, Satoko, Yu, Douglas W., Zaitsev, Andrey S., Zeidler, Juliane, Zou, Fasheng, Collen, Ben, Ewers, Rob M., Mace, Georgina M., Purves, Drew W., Scharlemann, Jörn P. W., Purvis, Andy, Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE), Institut National de la Recherche Agronomique - INRA (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Natural History Museum, 3Department of Genetics, Evolution and Environment, Centre for Biodiversity and Environment, Research, University College London ( UCL ), Department of Life Sciences, Universita di Trieste, Auburn University, Queen Mary University of London ( QMUL ), Royal Holloway [University of London] ( RHUL ), ( SFIRC ), University of Antwerp ( UA ), University of Bonn (Rheinische Friedrich-Wilhelms), Kwame Nkrumah University of Science and Technology ( KNUST ), Universidad de Costa Rica, Laboratorio Ecotono-CRUB, Universidad Nacional del Comahue, SAD Paysage ( SAD Paysage ), Institut National de la Recherche Agronomique ( INRA ) -AGROCAMPUS OUEST, Dynamiques Forestières dans l'Espace Rural ( DYNAFOR ), Institut National Polytechnique [Toulouse] ( INP ) -Institut National de la Recherche Agronomique ( INRA ) -Ecole Nationale Supérieure Agronomique de Toulouse, Contrôle des maladies animales exotiques et émergentes [Montpellier] ( CMAEE ), Institut National de la Recherche Agronomique ( INRA ) -Centre de coopération internationale en recherche agronomique pour le développement [CIRAD] : UMR15, Unité Mixte de Recherches sur les Herbivores ( UMR 1213 Herbivores ), VetAgro Sup ( VAS ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Institut National de la Recherche Agronomique ( INRA ), Centre de Biologie pour la Gestion des Populations ( CBGP ), Centre de Coopération Internationale en Recherche Agronomique pour le Développement ( CIRAD ) -Centre international d'études supérieures en sciences agronomiques ( Montpellier SupAgro ) -Institut national de la recherche agronomique [Montpellier] ( INRA Montpellier ) -Université de Montpellier ( UM ) -Institut de Recherche pour le Développement ( IRD [France-Sud] ) -Institut national d’études supérieures agronomiques de Montpellier ( Montpellier SupAgro ), Abeilles et Environnement ( AE ), and Institut National de la Recherche Agronomique ( INRA ) -Université d'Avignon et des Pays de Vaucluse ( UAPV )
- Subjects
VDP::Mathematics and natural science: 400::Zoology and botany: 480::Ecology: 488 ,Biodiversité et Ecologie ,data sharing ,habitat ,Biológiai tudományok ,Q1 ,BIRD SPECIES RICHNESS ,TROPICAL DRY FOREST ,VDP::Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480::Økologi: 488 ,MEXICAN COFFEE PLANTATIONS ,Természettudományok ,Data and Information ,Milieux et Changements globaux ,LOWLAND ,ComputingMilieux_MISCELLANEOUS ,Original Research ,Ecology ,global biodiversity modeling ,global change ,habitat destruction ,land use ,Ecology, Evolution, Behavior and Systematics ,Nature and Landscape Conservation ,LAND-USE CHANGE ,[ SDE.MCG ] Environmental Sciences/Global Changes ,Chemistry ,Earth and Related Environmental Sciences ,Evolution ,[SDE.MCG]Environmental Sciences/Global Changes ,INTENSIVELY MANAGED FARMLAND ,Ingénierie de l'environnement ,CARABID BEETLE ASSEMBLAGES ,FRUIT-FEEDING BUTTERFLIES ,Ecology and Environment ,Biodiversity and Ecology ,keywords: data sharing ,Behavior and Systematics ,Biology ,Ekologi ,[ SDE.BE ] Environmental Sciences/Biodiversity and Ecology ,QL ,DIPTEROCARP FOREST ,QH ,PLANT COMMUNITY COMPOSITION ,Geovetenskap och miljövetenskap ,Biology and Life Sciences ,destruction ,Ecology, Evolution, Behavior and Systematic ,URBAN-RURAL GRADIENT ,Earth and Environmental Sciences ,Environnement et Société ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology - Abstract
Source at https://doi.org/10.1002/ece3.2579. The PREDICTS project—Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)—has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
- Published
- 2017
- Full Text
- View/download PDF
11. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project
- Author
-
Hudson, L.N., Newbold, T., Contu, S., Hill, S.L.L., Lysenko, I., De Palma, A., Phillips, H.R.P., Alhusseini, T.I., Bedford, F.E., Bennett, D.J., Booth, H., Burton, V.J., Chng, C.W.T., Choimes, A., Correia, D.L.P., Day, J., Echeverría-Londoño, S., Emerson, S.R., Gao, D., Garon, M., Harrison, M.L.K., Ingram, D.J., Jung, M., Kemp, V., Kirkpatrick, L., Martin, C.D., Pan, Y., Pask-Hale, G.D., Pynegar, E.L., Robinson, A.N., Sanchez-Ortiz, K., Senior, R.A., Simmons, B.I., White, H.J., Zhang, H., Aben, J., Abrahamczyk, S., Adum, G.B., Aguilar-Barquero, V., Aizen, M.A., Albertos, B., Alcala, E.L., del Mar Alguacil, M., Alignier, A., Ancrenaz, M., Andersen, A.N., Arbeláez-Cortés, E., Armbrecht, I., Arroyo-Rodríguez, V., Aumann, T., Axmacher, J.C., Azhar, B., Azpiroz, A.B., Baeten, L., Bakayoko, A., Báldi, A., Banks, J.E., Baral, S.K., Barlow, J., Barratt, B.I.P., Barrico, L., Bartolommei, P., Barton, D.M., Basset, Y., Batáry, P., Bates, A.J., Baur, B., Bayne, E.M., Beja, P., Benedick, S., Berg, A., Bernard, H., Berry, N.J., Bhatt, D., Bicknell, J.E., Bihn, J.H., Blake, R.J., Bobo, K.S., Bóçon, R., Boekhout, T., Böhning-Gaese, K., Bonham, K.J., Borges, P.A.V., Borges, S.H., Boutin, C., Bouyer, J., Bragagnolo, C., Brandt, J.S., Brearley, F.Q., Brito, I., Bros, V., Brunet, J., Buczkowski, G., Buddle, C.M., Bugter, R., Buscardo, E., Buse, J., Cabra-García, J., Cáceres, N.C., Cagle, N.L., Calviño-Cancela, M., Cameron, S.A., Cancello, E.M., Caparrós, R., Cardoso, P., Carpenter, D., Carrijo, T.F., Carvalho, A.L., Cassano, C.R., Castro, H., Castro-Luna, A.A., Rolando, C.B., Cerezo, A., Chapman, K.A., Chauvat, M., Christensen, M., Clarke, F.M., Cleary, D.F.R., Colombo, G., Connop, S.P., Craig, M.D., Cruz-López, L., Cunningham, S.A., D'Aniello, B., D'Cruze, N., da Silva, P.G., Dallimer, M., Danquah, E.Y., Darvill, B., Dauber, J., Davis, A.L.V., Dawson, J., de Sassi, C., de Thoisy, B., Deheuvels, O., Dejean, A., Devineau, J.-L., Diekötter, T., Dolia, J.V., Domínguez, E., Dominguez-Haydar, Y., Dorn, S., Draper, I., Dreber, N., Dumont, B., Dures, S.G., Dynesius, M., Edenius, L., Eggleton, P., Eigenbrod, F., Elek, Z., Entling, M.H., Esler, K.J., de Lima, R.F., Faruk, A., Farwig, N., Fayle, T.M., Felicioli, A., Felton, A.M., Fensham, R.J., Fernandez, I.C., Ferreira, C.C., Ficetola, G.F., Fiera, C., Filgueiras, B.K.C., Fırıncıoğlu, H.K., Flaspohler, D., Floren, A., Fonte, S.J., Fournier, A., Fowler, R.E., Franzén, M., Fraser, L.H., Fredriksson, G.M., Freire, G.B., Frizzo, T.L.M., Fukuda, D., Furlani, D., Gaigher, R., Ganzhorn, J.U., García, K.P., Garcia-R, J.C., Garden, J.G., Garilleti, R., Ge, B.-M., Gendreau-Berthiaume, B., Gerard, P.J., Gheler-Costa, C., Gilbert, B., Giordani, P., Giordano, S., Golodets, C., Gomes, L.G.L., Gould, R.K., Goulson, D., Gove, A.D., Granjon, L., Grass, I., Gray, C.L., Grogan, J., Gu, W., Guardiola, M., Gunawardene, N.R., Gutierrez, A.G., Gutiérrez-Lamus, D.L., Haarmeyer, D.H., Hanley, M.E., Hanson, T., Hashim, N.R., Hassan, S.N., Hatfield, R.G., Hawes, J.E., Hayward, M.W., Hébert, C., Helden, A.J., Henden, J.-A., Henschel, P., Hernández, L., Herrera, J.P., Herrmann, F., Herzog, F., Higuera-Diaz, D., Hilje, B., Hofer, H., Hoffmann, A., Horgan, F.G., Hornung, E., Horváth, R., Hylander, K., Isaacs-Cubides, P., Ishida, H., Ishitani, M., Jacobs, C.T., Jaramillo, V.J., Jauker, B., Hernández, F.J., Johnson, M.F., Jolli, V., Jonsell, M., Juliani, S.N., Jung, T.S., Kapoor, V., Kappes, H., Kati, V., Katovai, E., Kellner, K., Kessler, M., Kirby, K.R., Kittle, A.M., Knight, M.E., Knop, E., Köhler, F., Koivula, M., Kolb, A., Kone, M., Kőrösi, Á., Krauss, J., Kumar, A., Kumar, R., Kurz, D.J., Kutt, A.S., Lachat, T., Lantschner, V., Lara, F., Lasky, J.R., Latta, S.C., Laurance, W.F., Lavelle, P., Le Féon, V., LeBuhn, G., Légaré, J.-P., Lehouck, V., Lencinas, M.V., Lentini, P.E., Letcher, S.G., Li, Q., Litchwark, S.A., Littlewood, N.A., Liu, Y., Lo-Man-Hung, N., López-Quintero, C.A., Louhaichi, M., Lövei, G.L., Lucas-Borja, M.E., Luja, V.H., Luskin, M.S., MacSwiney G, M.C., Maeto, K., Magura, T., Mallari, N.A., Malone, L.A., Malonza, P.K., Malumbres-Olarte, J., Mandujano, S., Måren, I.E., Marin-Spiotta, E., Marsh, C.J., Marshall, E.J.P., Martínez, E., Martínez Pastur, G., Moreno Mateos, D., Mayfield, M.M., Mazimpaka, V., McCarthy, J.L., McCarthy, K.P., McFrederick, Q.S., McNamara, S., Medina, N.G., Medina, R., Mena, J.L., Mico, E., Mikusinski, G., Milder, J.C., Miller, J.R., Miranda-Esquivel, D.R., Moir, M.L., Morales, C.L., Muchane, M.N., Muchane, M., Mudri-Stojnic, S., Munira, A.N., Muoñz-Alonso, A., Munyekenye, B.F., Naidoo, R., Naithani, A., Nakagawa, M., Nakamura, A., Nakashima, Y., Naoe, S., Nates-Parra, G., Navarrete Gutierrez, D.A., Navarro-Iriarte, L., Ndang'ang'a, P.K., Neuschulz, E.L., Ngai, J.T., Nicolas, V., Nilsson, S.G., Noreika, N., Norfolk, O., Noriega, J.A., Norton, D.A., Nöske, N.M., Nowakowski, A.J., Numa, C., O'Dea, N., O'Farrell, P.J., Oduro, W., Oertli, S., Ofori-Boateng, C., Oke, C.O., Oostra, V., Osgathorpe, L.M., Otavo, S.E., Page, N.V., Paritsis, J., Parra-H, A., Parry, L., Pe'er, G., Pearman, P.B., Pelegrin, N., Pélissier, R., Peres, C.A., Peri, P.L., Persson, A.S., Petanidou, T., Peters, M.K., Pethiyagoda, R.S., Phalan, B., Philips, T.K., Pillsbury, F.C., Pincheira-Ulbrich, J., Pineda, E., Pino, J., Pizarro-Araya, J., Plumptre, A. J., Poggio, S.L., Politi, N., Pons, P., Poveda, K., Power, E.F., Presley, S.J., Proença, V., Quaranta, M., Quintero, C., Rader, R., Ramesh, B.R., Ramirez-Pinilla, M.P., Ranganathan, J., Rasmussen, C., Redpath-Downing, N.A., Reid, J.L., Reis, Y.T., Rey Benayas, J.M., Rey-Velasco, J.C., Reynolds, C., Ribeiro, D.B., Richards, M.H., Richardson, B.A., Richardson, M.J., Ríos, R.M., Robinson, R., Robles, C.A., Römbke, J., Romero-Duque, L.P., Rös, M., Rosselli, L., Rossiter, S.J., Roth, D.S., Roulston, T.H., Rousseau, L., Rubio, A.V., Ruel, J.-C., Sadler, J.P., Sáfián, S., Saldaña-Vázquez, R.A., Sam, K., Samnegård, U., Santana, J., Santos, X., Savage, J., Schellhorn, N.A., Schilthuizen, M., Schmiedel, U., Schmitt, C.B., Schon, N.L., Schüepp, C., Schumann, K., Schweiger, O., Scott, D.M., Scott, K.A., Sedlock, J.L., Seefeldt, S.S., Shahabuddin, G., Shannon, G., Sheil, D., Sheldon, F.H., Shochat, E., Siebert, S.J., Silva, F.A.B., Simonetti, J.A., Slade, E.M., Smith, J., Smith-Pardo, A.H., Sodhi, N.S., Somarriba, E.J., Sosa, R.A., Soto Quiroga, G., St-Laurent, M.-H., Starzomski, B.M., Stefanescu, C., Steffan-Dewenter, I., Stouffer, P.C., Stout, J.C., Strauch, A.M., Struebig, M.J., Su, Z., Suarez-Rubio, M., Sugiura, S., Summerville, K.S., Sung, Y.-H., Sutrisno, H., Svenning, J.-C., Teder, T., Threlfall, C.G., Tiitsaar, A., Todd, J.H., Tonietto, R.K., Torre, I., Tóthmérész, B., Tscharntke, T., Turner, E.C., Tylianakis, J.M., Uehara-Prado, M., Urbina-Cardona, N., Vallan, D., Vanbergen, A.J., Vasconcelos, H.L., Vassilev, K., Verboven, H.A.F., Verdasca, M.J., Verdú, J.R., Vergara, C.H., Vergara, P.M., Verhulst, J., Virgilio, M., Vu, L.V., Waite, E.M., Walker, T.R., Wang, H.-F., Wang, Y., Watling, J.I., Weller, B., Wells, K., Westphal, C., Wiafe, E.D., Williams, C.D., Willig, M.R., Woinarski, J.C.Z., Wolf, J.H.D., Wolters, V., Woodcock, B.A., Wu, J., Wunderle, J.M., Yamaura, Y., Yoshikura, S., Yu, D.W., Zaitsev, A.S., Zeidler, J., Zou, F., Collen, B., Ewers, R.M., Mace, G.M., Purves, D.W., Scharlemann, J.P.W., Purvis, A., Hudson, L.N., Newbold, T., Contu, S., Hill, S.L.L., Lysenko, I., De Palma, A., Phillips, H.R.P., Alhusseini, T.I., Bedford, F.E., Bennett, D.J., Booth, H., Burton, V.J., Chng, C.W.T., Choimes, A., Correia, D.L.P., Day, J., Echeverría-Londoño, S., Emerson, S.R., Gao, D., Garon, M., Harrison, M.L.K., Ingram, D.J., Jung, M., Kemp, V., Kirkpatrick, L., Martin, C.D., Pan, Y., Pask-Hale, G.D., Pynegar, E.L., Robinson, A.N., Sanchez-Ortiz, K., Senior, R.A., Simmons, B.I., White, H.J., Zhang, H., Aben, J., Abrahamczyk, S., Adum, G.B., Aguilar-Barquero, V., Aizen, M.A., Albertos, B., Alcala, E.L., del Mar Alguacil, M., Alignier, A., Ancrenaz, M., Andersen, A.N., Arbeláez-Cortés, E., Armbrecht, I., Arroyo-Rodríguez, V., Aumann, T., Axmacher, J.C., Azhar, B., Azpiroz, A.B., Baeten, L., Bakayoko, A., Báldi, A., Banks, J.E., Baral, S.K., Barlow, J., Barratt, B.I.P., Barrico, L., Bartolommei, P., Barton, D.M., Basset, Y., Batáry, P., Bates, A.J., Baur, B., Bayne, E.M., Beja, P., Benedick, S., Berg, A., Bernard, H., Berry, N.J., Bhatt, D., Bicknell, J.E., Bihn, J.H., Blake, R.J., Bobo, K.S., Bóçon, R., Boekhout, T., Böhning-Gaese, K., Bonham, K.J., Borges, P.A.V., Borges, S.H., Boutin, C., Bouyer, J., Bragagnolo, C., Brandt, J.S., Brearley, F.Q., Brito, I., Bros, V., Brunet, J., Buczkowski, G., Buddle, C.M., Bugter, R., Buscardo, E., Buse, J., Cabra-García, J., Cáceres, N.C., Cagle, N.L., Calviño-Cancela, M., Cameron, S.A., Cancello, E.M., Caparrós, R., Cardoso, P., Carpenter, D., Carrijo, T.F., Carvalho, A.L., Cassano, C.R., Castro, H., Castro-Luna, A.A., Rolando, C.B., Cerezo, A., Chapman, K.A., Chauvat, M., Christensen, M., Clarke, F.M., Cleary, D.F.R., Colombo, G., Connop, S.P., Craig, M.D., Cruz-López, L., Cunningham, S.A., D'Aniello, B., D'Cruze, N., da Silva, P.G., Dallimer, M., Danquah, E.Y., Darvill, B., Dauber, J., Davis, A.L.V., Dawson, J., de Sassi, C., de Thoisy, B., Deheuvels, O., Dejean, A., Devineau, J.-L., Diekötter, T., Dolia, J.V., Domínguez, E., Dominguez-Haydar, Y., Dorn, S., Draper, I., Dreber, N., Dumont, B., Dures, S.G., Dynesius, M., Edenius, L., Eggleton, P., Eigenbrod, F., Elek, Z., Entling, M.H., Esler, K.J., de Lima, R.F., Faruk, A., Farwig, N., Fayle, T.M., Felicioli, A., Felton, A.M., Fensham, R.J., Fernandez, I.C., Ferreira, C.C., Ficetola, G.F., Fiera, C., Filgueiras, B.K.C., Fırıncıoğlu, H.K., Flaspohler, D., Floren, A., Fonte, S.J., Fournier, A., Fowler, R.E., Franzén, M., Fraser, L.H., Fredriksson, G.M., Freire, G.B., Frizzo, T.L.M., Fukuda, D., Furlani, D., Gaigher, R., Ganzhorn, J.U., García, K.P., Garcia-R, J.C., Garden, J.G., Garilleti, R., Ge, B.-M., Gendreau-Berthiaume, B., Gerard, P.J., Gheler-Costa, C., Gilbert, B., Giordani, P., Giordano, S., Golodets, C., Gomes, L.G.L., Gould, R.K., Goulson, D., Gove, A.D., Granjon, L., Grass, I., Gray, C.L., Grogan, J., Gu, W., Guardiola, M., Gunawardene, N.R., Gutierrez, A.G., Gutiérrez-Lamus, D.L., Haarmeyer, D.H., Hanley, M.E., Hanson, T., Hashim, N.R., Hassan, S.N., Hatfield, R.G., Hawes, J.E., Hayward, M.W., Hébert, C., Helden, A.J., Henden, J.-A., Henschel, P., Hernández, L., Herrera, J.P., Herrmann, F., Herzog, F., Higuera-Diaz, D., Hilje, B., Hofer, H., Hoffmann, A., Horgan, F.G., Hornung, E., Horváth, R., Hylander, K., Isaacs-Cubides, P., Ishida, H., Ishitani, M., Jacobs, C.T., Jaramillo, V.J., Jauker, B., Hernández, F.J., Johnson, M.F., Jolli, V., Jonsell, M., Juliani, S.N., Jung, T.S., Kapoor, V., Kappes, H., Kati, V., Katovai, E., Kellner, K., Kessler, M., Kirby, K.R., Kittle, A.M., Knight, M.E., Knop, E., Köhler, F., Koivula, M., Kolb, A., Kone, M., Kőrösi, Á., Krauss, J., Kumar, A., Kumar, R., Kurz, D.J., Kutt, A.S., Lachat, T., Lantschner, V., Lara, F., Lasky, J.R., Latta, S.C., Laurance, W.F., Lavelle, P., Le Féon, V., LeBuhn, G., Légaré, J.-P., Lehouck, V., Lencinas, M.V., Lentini, P.E., Letcher, S.G., Li, Q., Litchwark, S.A., Littlewood, N.A., Liu, Y., Lo-Man-Hung, N., López-Quintero, C.A., Louhaichi, M., Lövei, G.L., Lucas-Borja, M.E., Luja, V.H., Luskin, M.S., MacSwiney G, M.C., Maeto, K., Magura, T., Mallari, N.A., Malone, L.A., Malonza, P.K., Malumbres-Olarte, J., Mandujano, S., Måren, I.E., Marin-Spiotta, E., Marsh, C.J., Marshall, E.J.P., Martínez, E., Martínez Pastur, G., Moreno Mateos, D., Mayfield, M.M., Mazimpaka, V., McCarthy, J.L., McCarthy, K.P., McFrederick, Q.S., McNamara, S., Medina, N.G., Medina, R., Mena, J.L., Mico, E., Mikusinski, G., Milder, J.C., Miller, J.R., Miranda-Esquivel, D.R., Moir, M.L., Morales, C.L., Muchane, M.N., Muchane, M., Mudri-Stojnic, S., Munira, A.N., Muoñz-Alonso, A., Munyekenye, B.F., Naidoo, R., Naithani, A., Nakagawa, M., Nakamura, A., Nakashima, Y., Naoe, S., Nates-Parra, G., Navarrete Gutierrez, D.A., Navarro-Iriarte, L., Ndang'ang'a, P.K., Neuschulz, E.L., Ngai, J.T., Nicolas, V., Nilsson, S.G., Noreika, N., Norfolk, O., Noriega, J.A., Norton, D.A., Nöske, N.M., Nowakowski, A.J., Numa, C., O'Dea, N., O'Farrell, P.J., Oduro, W., Oertli, S., Ofori-Boateng, C., Oke, C.O., Oostra, V., Osgathorpe, L.M., Otavo, S.E., Page, N.V., Paritsis, J., Parra-H, A., Parry, L., Pe'er, G., Pearman, P.B., Pelegrin, N., Pélissier, R., Peres, C.A., Peri, P.L., Persson, A.S., Petanidou, T., Peters, M.K., Pethiyagoda, R.S., Phalan, B., Philips, T.K., Pillsbury, F.C., Pincheira-Ulbrich, J., Pineda, E., Pino, J., Pizarro-Araya, J., Plumptre, A. J., Poggio, S.L., Politi, N., Pons, P., Poveda, K., Power, E.F., Presley, S.J., Proença, V., Quaranta, M., Quintero, C., Rader, R., Ramesh, B.R., Ramirez-Pinilla, M.P., Ranganathan, J., Rasmussen, C., Redpath-Downing, N.A., Reid, J.L., Reis, Y.T., Rey Benayas, J.M., Rey-Velasco, J.C., Reynolds, C., Ribeiro, D.B., Richards, M.H., Richardson, B.A., Richardson, M.J., Ríos, R.M., Robinson, R., Robles, C.A., Römbke, J., Romero-Duque, L.P., Rös, M., Rosselli, L., Rossiter, S.J., Roth, D.S., Roulston, T.H., Rousseau, L., Rubio, A.V., Ruel, J.-C., Sadler, J.P., Sáfián, S., Saldaña-Vázquez, R.A., Sam, K., Samnegård, U., Santana, J., Santos, X., Savage, J., Schellhorn, N.A., Schilthuizen, M., Schmiedel, U., Schmitt, C.B., Schon, N.L., Schüepp, C., Schumann, K., Schweiger, O., Scott, D.M., Scott, K.A., Sedlock, J.L., Seefeldt, S.S., Shahabuddin, G., Shannon, G., Sheil, D., Sheldon, F.H., Shochat, E., Siebert, S.J., Silva, F.A.B., Simonetti, J.A., Slade, E.M., Smith, J., Smith-Pardo, A.H., Sodhi, N.S., Somarriba, E.J., Sosa, R.A., Soto Quiroga, G., St-Laurent, M.-H., Starzomski, B.M., Stefanescu, C., Steffan-Dewenter, I., Stouffer, P.C., Stout, J.C., Strauch, A.M., Struebig, M.J., Su, Z., Suarez-Rubio, M., Sugiura, S., Summerville, K.S., Sung, Y.-H., Sutrisno, H., Svenning, J.-C., Teder, T., Threlfall, C.G., Tiitsaar, A., Todd, J.H., Tonietto, R.K., Torre, I., Tóthmérész, B., Tscharntke, T., Turner, E.C., Tylianakis, J.M., Uehara-Prado, M., Urbina-Cardona, N., Vallan, D., Vanbergen, A.J., Vasconcelos, H.L., Vassilev, K., Verboven, H.A.F., Verdasca, M.J., Verdú, J.R., Vergara, C.H., Vergara, P.M., Verhulst, J., Virgilio, M., Vu, L.V., Waite, E.M., Walker, T.R., Wang, H.-F., Wang, Y., Watling, J.I., Weller, B., Wells, K., Westphal, C., Wiafe, E.D., Williams, C.D., Willig, M.R., Woinarski, J.C.Z., Wolf, J.H.D., Wolters, V., Woodcock, B.A., Wu, J., Wunderle, J.M., Yamaura, Y., Yoshikura, S., Yu, D.W., Zaitsev, A.S., Zeidler, J., Zou, F., Collen, B., Ewers, R.M., Mace, G.M., Purves, D.W., Scharlemann, J.P.W., and Purvis, A.
- Abstract
The PREDICTS project—Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)—has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
- Published
- 2016
12. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality
- Author
-
Soliveres, S., van der Plas, F., Manning, P., Prati, D., Gossner, M.M., Renner, S.C., Alt, F., Arndt, H., Baumgartner, V., Binkenstein, J., Birkhofer, K., Blaser, S., Blüthgen, N., Boch, S., Böhm, S., Börschig, C., Buscot, Francois, Diekötter, T., Heinze, J., Hölzel, N., Jung, K., Klaus, V.H., Kleinebecker, T., Klemmer, Sandra, Krauss, J., Lange, M., Morris, E.K., Müller, J., Oelmann, Y., Overmann, J., Pašalić, E., Rillig, M.C., Schaefer, H.M., Schloter, M., Schmitt, B., Schöning, I., Schrumpf, M., Sikorski, J., Socher, S.A., Solly, E.F., Sonnemann, I., Sorkau, E., Steckel, J., Steffan-Dewenter, I., Stempfhuber, B., Tschapka, M., Türke, Manfred, Venter, P.C., Weiner, C.N., Weisser, W.W., Werner, M., Westphal, C., Wilcke, W., Wolters, V., Wubet, Tesfaye, Wurst, S., Fischer, M., Allan, E., Soliveres, S., van der Plas, F., Manning, P., Prati, D., Gossner, M.M., Renner, S.C., Alt, F., Arndt, H., Baumgartner, V., Binkenstein, J., Birkhofer, K., Blaser, S., Blüthgen, N., Boch, S., Böhm, S., Börschig, C., Buscot, Francois, Diekötter, T., Heinze, J., Hölzel, N., Jung, K., Klaus, V.H., Kleinebecker, T., Klemmer, Sandra, Krauss, J., Lange, M., Morris, E.K., Müller, J., Oelmann, Y., Overmann, J., Pašalić, E., Rillig, M.C., Schaefer, H.M., Schloter, M., Schmitt, B., Schöning, I., Schrumpf, M., Sikorski, J., Socher, S.A., Solly, E.F., Sonnemann, I., Sorkau, E., Steckel, J., Steffan-Dewenter, I., Stempfhuber, B., Tschapka, M., Türke, Manfred, Venter, P.C., Weiner, C.N., Weisser, W.W., Werner, M., Westphal, C., Wilcke, W., Wolters, V., Wubet, Tesfaye, Wurst, S., Fischer, M., and Allan, E.
- Abstract
Many experiments have shown that loss of biodiversity reduces the capacity of ecosystems to provide the multiple services on which humans depend1, 2. However, experiments necessarily simplify the complexity of natural ecosystems and will normally control for other important drivers of ecosystem functioning, such as the environment or land use. In addition, existing studies typically focus on the diversity of single trophic groups, neglecting the fact that biodiversity loss occurs across many taxa3, 4 and that the functional effects of any trophic group may depend on the abundance and diversity of others5, 6. Here we report analysis of the relationships between the species richness and abundance of nine trophic groups, including 4,600 above- and below-ground taxa, and 14 ecosystem services and functions and with their simultaneous provision (or multifunctionality) in 150 grasslands. We show that high species richness in multiple trophic groups (multitrophic richness) had stronger positive effects on ecosystem services than richness in any individual trophic group; this includes plant species richness, the most widely used measure of biodiversity. On average, three trophic groups influenced each ecosystem service, with each trophic group influencing at least one service. Multitrophic richness was particularly beneficial for ‘regulating’ and ‘cultural’ services, and for multifunctionality, whereas a change in the total abundance of species or biomass in multiple trophic groups (the multitrophic abundance) positively affected supporting services. Multitrophic richness and abundance drove ecosystem functioning as strongly as abiotic conditions and land-use intensity, extending previous experimental results7, 8 to real-world ecosystems. Primary producers, herbivorous insects and microbial decomposers seem to be particularly important drivers of ecosystem functioning, as shown by the strong and frequent positive associations of their richness or abundance with multiple eco
- Published
- 2016
13. Locally rare species influence grassland ecosystem multifunctionality
- Author
-
Soliveres, S., Manning, P., Prati, D., Gossner, M.M., Alt, F., Arndt, H., Baumgartner, V., Binkenstein, J., Birkhofer, K., Blaser, S., Blüthgen, N., Boch, S., Böhm, S., Börschig, C., Buscot, Francois, Diekötter, T., Heinze, J., Hölzel, N., Jung, K., Klaus, V.H., Klein, A.-M., Kleinebecker, T., Klemmer, Sandra, Krauss, J., Lange, M., Morris, E.K., Müller, J., Oelmann, Y., Overmann, J., Pašalić, E., Renner, S.C., Rillig, M.C., Schaefer, H.M., Schloter, M., Schmitt, B., Schöning, I., Schrumpf, M., Sikorski, J., Socher, S.A., Solly, E.F., Sonnemann, I., Sorkau, E., Steckel, J., Steffan-Dewenter, I., Stempfhuber, B., Tschapka, M., Türke, Manfred, Venter, P., Weiner, C.N., Weisser, W.W., Werner, M., Westphal, C., Wilcke, W., Wolters, V., Wubet, Tesfaye, Wurst, S., Fischer, M., Allan, E., Soliveres, S., Manning, P., Prati, D., Gossner, M.M., Alt, F., Arndt, H., Baumgartner, V., Binkenstein, J., Birkhofer, K., Blaser, S., Blüthgen, N., Boch, S., Böhm, S., Börschig, C., Buscot, Francois, Diekötter, T., Heinze, J., Hölzel, N., Jung, K., Klaus, V.H., Klein, A.-M., Kleinebecker, T., Klemmer, Sandra, Krauss, J., Lange, M., Morris, E.K., Müller, J., Oelmann, Y., Overmann, J., Pašalić, E., Renner, S.C., Rillig, M.C., Schaefer, H.M., Schloter, M., Schmitt, B., Schöning, I., Schrumpf, M., Sikorski, J., Socher, S.A., Solly, E.F., Sonnemann, I., Sorkau, E., Steckel, J., Steffan-Dewenter, I., Stempfhuber, B., Tschapka, M., Türke, Manfred, Venter, P., Weiner, C.N., Weisser, W.W., Werner, M., Westphal, C., Wilcke, W., Wolters, V., Wubet, Tesfaye, Wurst, S., Fischer, M., and Allan, E.
- Abstract
Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity–multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land-use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community-level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species-specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities.
- Published
- 2016
14. Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases
- Author
-
De Palma, A., Abrahamczyk, S., Aizen, M.A., Albrecht, M., Basset, Y., Bates, A., Blake, R.J., Boutin, C., Bugter, R., Connop, S., Cruz-López, L., Cunningham, S.A., Darvill, B., Diekötter, T., Dorn, S., Downing, N., Entling, M.H., Farwig, N., Felicioli, A., Fonte, S.J., Fowler, R., Franzén, Markus, Goulson, D., Grass, I., Hanley, M.E., Hendrix, S.D., Herrmann, F., Herzog, F., Holzschuh, A., Jauker, B., Kessler, M., Knight, M.E., Kruess, A., Lavelle, P., Le Féon, V., Lentini, P., Malone, L.A., Marshall, J., Martínez Pachón, E., McFrederick, Q.S., Morales, C.L., Mudri-Stojnic, S., Nates-Parra, G., Nilsson, S.G., Öckinger, E., Osgathorpe, L., Parra-H, A., Peres, C.A., Persson, A.S., Petanidou, T., Poveda, K., Power, E.F., Quaranta, M., Quintero, C., Rader, R., Richards, M.H., Roulston, T., Rousseau, L., Sadler, J.P., Samnegård, U., Schellhorn, N.A., Schüepp, C., Schweiger, Oliver, Smith-Pardo, A.H., Steffan-Dewenter, I., Stout, J.C., Tonietto, R.K., Tscharntke, T., Tylianakis, J.M., Verboven, H.A.F., Vergara, C.H., Verhulst, J., Westphal, C., Yoon, H.J., Purvis, A., De Palma, A., Abrahamczyk, S., Aizen, M.A., Albrecht, M., Basset, Y., Bates, A., Blake, R.J., Boutin, C., Bugter, R., Connop, S., Cruz-López, L., Cunningham, S.A., Darvill, B., Diekötter, T., Dorn, S., Downing, N., Entling, M.H., Farwig, N., Felicioli, A., Fonte, S.J., Fowler, R., Franzén, Markus, Goulson, D., Grass, I., Hanley, M.E., Hendrix, S.D., Herrmann, F., Herzog, F., Holzschuh, A., Jauker, B., Kessler, M., Knight, M.E., Kruess, A., Lavelle, P., Le Féon, V., Lentini, P., Malone, L.A., Marshall, J., Martínez Pachón, E., McFrederick, Q.S., Morales, C.L., Mudri-Stojnic, S., Nates-Parra, G., Nilsson, S.G., Öckinger, E., Osgathorpe, L., Parra-H, A., Peres, C.A., Persson, A.S., Petanidou, T., Poveda, K., Power, E.F., Quaranta, M., Quintero, C., Rader, R., Richards, M.H., Roulston, T., Rousseau, L., Sadler, J.P., Samnegård, U., Schellhorn, N.A., Schüepp, C., Schweiger, Oliver, Smith-Pardo, A.H., Steffan-Dewenter, I., Stout, J.C., Tonietto, R.K., Tscharntke, T., Tylianakis, J.M., Verboven, H.A.F., Vergara, C.H., Verhulst, J., Westphal, C., Yoon, H.J., and Purvis, A.
- Abstract
Land-use change and intensification threaten bee populations worldwide, imperilling pollination services. Global models are needed to better characterise, project, and mitigate bees' responses to these human impacts. The available data are, however, geographically and taxonomically unrepresentative; most data are from North America and Western Europe, overrepresenting bumblebees and raising concerns that model results may not be generalizable to other regions and taxa. To assess whether the geographic and taxonomic biases of data could undermine effectiveness of models for conservation policy, we have collated from the published literature a global dataset of bee diversity at sites facing land-use change and intensification, and assess whether bee responses to these pressures vary across 11 regions (Western, Northern, Eastern and Southern Europe; North, Central and South America; Australia and New Zealand; South East Asia; Middle and Southern Africa) and between bumblebees and other bees. Our analyses highlight strong regionally-based responses of total abundance, species richness and Simpson's diversity to land use, caused by variation in the sensitivity of species and potentially in the nature of threats. These results suggest that global extrapolation of models based on geographically and taxonomically restricted data may underestimate the true uncertainty, increasing the risk of ecological surprises.
- Published
- 2016
15. Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases
- Author
-
De Palma, A, Abrahamczyk, S, Aizen, MA, Albrecht, M, Basset, Y, Bates, A, Blake, RJ, Boutin, C, Bugter, R, Connop, S, Cruz-López, L, Cunningham, SA, Darvill, B, Diekötter, T, Dorn, S, Downing, N, Entling, MH, Farwig, N, Felicioli, A, Fonte, SJ, Fowler, R, Franzén, M, Goulson, D, Grass, I, Hanley, ME, Hendrix, SD, Herrmann, F, Herzog, F, Holzschuh, A, Jauker, B, Kessler, M, Knight, ME, Kruess, A, Lavelle, P, Le Féon, V, Lentini, P, Malone, LA, Marshall, J, Pachón, EM, McFrederick, QS, Morales, CL, Mudri-Stojnic, S, Nates-Parra, G, Nilsson, SG, Öckinger, E, Osgathorpe, L, Parra-H, A, Peres, CA, Persson, AS, Petanidou, T, Poveda, K, Power, EF, Quaranta, M, Quintero, C, Rader, R, Richards, MH, Roulston, TA, Rousseau, L, Sadler, JP, Samnegård, U, Schellhorn, NA, Schüepp, C, Schweiger, O, Smith-Pardo, AH, Steffan-Dewenter, I, Stout, JC, Tonietto, RK, Tscharntke, T, Tylianakis, JM, Verboven, HAF, Vergara, CH, Verhulst, J, Westphal, C, Yoon, HJ, Purvis, A, De Palma, A, Abrahamczyk, S, Aizen, MA, Albrecht, M, Basset, Y, Bates, A, Blake, RJ, Boutin, C, Bugter, R, Connop, S, Cruz-López, L, Cunningham, SA, Darvill, B, Diekötter, T, Dorn, S, Downing, N, Entling, MH, Farwig, N, Felicioli, A, Fonte, SJ, Fowler, R, Franzén, M, Goulson, D, Grass, I, Hanley, ME, Hendrix, SD, Herrmann, F, Herzog, F, Holzschuh, A, Jauker, B, Kessler, M, Knight, ME, Kruess, A, Lavelle, P, Le Féon, V, Lentini, P, Malone, LA, Marshall, J, Pachón, EM, McFrederick, QS, Morales, CL, Mudri-Stojnic, S, Nates-Parra, G, Nilsson, SG, Öckinger, E, Osgathorpe, L, Parra-H, A, Peres, CA, Persson, AS, Petanidou, T, Poveda, K, Power, EF, Quaranta, M, Quintero, C, Rader, R, Richards, MH, Roulston, TA, Rousseau, L, Sadler, JP, Samnegård, U, Schellhorn, NA, Schüepp, C, Schweiger, O, Smith-Pardo, AH, Steffan-Dewenter, I, Stout, JC, Tonietto, RK, Tscharntke, T, Tylianakis, JM, Verboven, HAF, Vergara, CH, Verhulst, J, Westphal, C, Yoon, HJ, and Purvis, A
- Published
- 2016
16. Effects of landscape structure on movement patterns of the flightless bush cricket Pholidoptera griseoaptera
- Author
-
Diekötter, T., Speelmans, M., Dusoulier, F., van Wingerden, W.K.R.E., Malfait, J.P., Crist, T.O., Edwards, P.J., and Dietz, H.
- Subjects
decticus-verrucivorus ,Alterra - Centrum Landschap ,habitat ,metapopulation dynamics ,matrix ,Landscape Centre ,corridors ,orthoptera-tettigoniidae ,Wageningen Environmental Research ,ecology ,dispersal ,metrioptera-roeseli ,range expansion - Abstract
Because the viability of a population may depend on whether individuals can disperse, it is important for conservation planning to understand how landscape structure affects movement behavior. Some species occur in a wide range of landscapes differing greatly in structure, and the question arises of whether these species are particularly versatile in their dispersal or whether they are composed of genetically distinct populations adapted to contrasting landscapes. We performed a capture-mark-resight experiment to study movement patterns of the flightless bush cricket Pholidoptera griseoaptera (De Geer 1773) in two contrasting agricultural landscapes in France and Switzerland. The mean daily movement of P. griseoaptera was significantly higher in the landscape with patchily distributed habitat (Switzerland) than in the landscape with greater habitat connectivity (France). Net displacement rate did not differ between the two landscapes, which we attributed to the presence of more linear elements in the connected landscape, resulting in a more directed pattern of movement by P. griseoaptera. Significant differences in the movement patterns between landscapes with contrasting structure suggest important effects of landscape structure on movement and dispersal success. The possibility of varying dispersal ability within the same species needs to be studied in more detail because this may provide important information for sustainable landscape planning aimed at maintaining viable metapopulations, especially in formerly well-connected landscapes.
- Published
- 2007
17. The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts
- Author
-
Hudson, L.N., Newbold, T., Contu, S., Hill, S.L.L., Lysenko, I., De Palma, A., Phillips, H.R.P., Senior, R.A., Bennett, D.J., Booth, H., Choimes, A., Correia, D.L.P., Day, J., Echeverría-Londoño, S., Garon, M., Harrison, M.L.K., Ingram, D.J., Jung, M., Kemp, V., Kirkpatrick, L., Martin, C.D., Pan, Y., White, H.J., Aben, J., Abrahamczyk, S., Adum, G.B., Aguilar-Barquero, V., Aizen, M.A., Ancrenaz, M., Arbeláez-Cortés, E., Armbrecht, I., Azhar, B., Azpiroz, A.B., Baeten, L., Báldi, A., Banks, J.E., Barlow, J., Batáry, P., Bates, A.J., Bayne, E.M., Beja, P., Berg, Å., Berry, N.J., Bicknell, J.E., Bihn, J.H., Böhning-Gaese, K., Boekhout, T., Boutin, C., Bouyer, J., Brearley, F.Q., Brito, I., Brunet, J., Buczkowski, G., Buscardo, E., Cabra-García, J., Calviño-Cancela, M., Cameron, S.A., Cancello, E.M., Carrijo, T.F., Carvalho, A.L., Castro, H., Castro-Luna, A.A., Cerda, R., Cerezo, A., Chauvat, M., Clarke, F.M., Cleary, D.F.R., Connop, S.P., D'Aniello, B., da Silva, P.G., Darvill, B., Dauber, J., Dejean, A., Diekötter, T., Dominguez-Haydar, Y., Dumont, B., Dures, S.G., Dynesius, M., Edenius, L., Elek, Z., Entling, M.H., Farwig, N., Fayle, T.M., Felicioli, A., Felton, A.M., Ficetola, G.F., Filgueiras, B.K.C., Fonte, S.J., Fraser, L.H., Fukuda, D., Furlani, D., Ganzhorn, J.U., Garden, J.G., Gheler-Costa, C., Giordani, P., Giordano, S., Gottschalk, M.S., Goulson, D., Gove, A.D., Grogan, J., Hudson, L.N., Newbold, T., Contu, S., Hill, S.L.L., Lysenko, I., De Palma, A., Phillips, H.R.P., Senior, R.A., Bennett, D.J., Booth, H., Choimes, A., Correia, D.L.P., Day, J., Echeverría-Londoño, S., Garon, M., Harrison, M.L.K., Ingram, D.J., Jung, M., Kemp, V., Kirkpatrick, L., Martin, C.D., Pan, Y., White, H.J., Aben, J., Abrahamczyk, S., Adum, G.B., Aguilar-Barquero, V., Aizen, M.A., Ancrenaz, M., Arbeláez-Cortés, E., Armbrecht, I., Azhar, B., Azpiroz, A.B., Baeten, L., Báldi, A., Banks, J.E., Barlow, J., Batáry, P., Bates, A.J., Bayne, E.M., Beja, P., Berg, Å., Berry, N.J., Bicknell, J.E., Bihn, J.H., Böhning-Gaese, K., Boekhout, T., Boutin, C., Bouyer, J., Brearley, F.Q., Brito, I., Brunet, J., Buczkowski, G., Buscardo, E., Cabra-García, J., Calviño-Cancela, M., Cameron, S.A., Cancello, E.M., Carrijo, T.F., Carvalho, A.L., Castro, H., Castro-Luna, A.A., Cerda, R., Cerezo, A., Chauvat, M., Clarke, F.M., Cleary, D.F.R., Connop, S.P., D'Aniello, B., da Silva, P.G., Darvill, B., Dauber, J., Dejean, A., Diekötter, T., Dominguez-Haydar, Y., Dumont, B., Dures, S.G., Dynesius, M., Edenius, L., Elek, Z., Entling, M.H., Farwig, N., Fayle, T.M., Felicioli, A., Felton, A.M., Ficetola, G.F., Filgueiras, B.K.C., Fonte, S.J., Fraser, L.H., Fukuda, D., Furlani, D., Ganzhorn, J.U., Garden, J.G., Gheler-Costa, C., Giordani, P., Giordano, S., Gottschalk, M.S., Goulson, D., Gove, A.D., and Grogan, J.
- Abstract
Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species’ threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project – and avert – future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups – including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems – www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.
- Published
- 2014
18. The PREDICTS database: A global database of how local terrestrial biodiversity responds to human impacts
- Author
-
Hudson, LN, Newbold, T, Contu, S, Hill, SLL, Lysenko, I, De Palma, A, Phillips, HRP, Senior, RA, Bennett, DJ, Booth, H, Choimes, A, Correia, DLP, Day, J, Echeverría-Londoño, S, Garon, M, Harrison, MLK, Ingram, DJ, Jung, M, Kemp, V, Kirkpatrick, L, Martin, CD, Pan, Y, White, HJ, Aben, J, Abrahamczyk, S, Adum, GB, Aguilar-Barquero, V, Aizen, MA, Ancrenaz, M, Arbeláez-Cortés, E, Armbrecht, I, Azhar, B, Azpiroz, AB, Baeten, L, Báldi, A, Banks, JE, Barlow, J, Batáry, P, Bates, AJ, Bayne, EM, Beja, P, Berg, Å, Berry, NJ, Bicknell, JE, Bihn, JH, Böhning-Gaese, K, Boekhout, T, Boutin, C, Bouyer, J, Brearley, FQ, Brito, I, Brunet, J, Buczkowski, G, Buscardo, E, Cabra-García, J, Calviño-Cancela, M, Cameron, SA, Cancello, EM, Carrijo, TF, Carvalho, AL, Castro, H, Castro-Luna, AA, Cerda, R, Cerezo, A, Chauvat, M, Clarke, FM, Cleary, DFR, Connop, SP, D'Aniello, B, da Silva, PG, Darvill, B, Dauber, J, Dejean, A, Diekötter, T, Dominguez-Haydar, Y, Dormann, CF, Dumont, B, Dures, SG, Dynesius, M, Edenius, L, Elek, Z, Entling, MH, Farwig, N, Fayle, TM, Felicioli, A, Felton, AM, Ficetola, GF, Filgueiras, BKC, Fonte, SJ, Fraser, LH, Fukuda, D, Furlani, D, Ganzhorn, JU, Garden, JG, Gheler-Costa, C, Giordani, P, Giordano, S, Gottschalk, MS, Goulson, D, Gove, AD, Hudson, LN, Newbold, T, Contu, S, Hill, SLL, Lysenko, I, De Palma, A, Phillips, HRP, Senior, RA, Bennett, DJ, Booth, H, Choimes, A, Correia, DLP, Day, J, Echeverría-Londoño, S, Garon, M, Harrison, MLK, Ingram, DJ, Jung, M, Kemp, V, Kirkpatrick, L, Martin, CD, Pan, Y, White, HJ, Aben, J, Abrahamczyk, S, Adum, GB, Aguilar-Barquero, V, Aizen, MA, Ancrenaz, M, Arbeláez-Cortés, E, Armbrecht, I, Azhar, B, Azpiroz, AB, Baeten, L, Báldi, A, Banks, JE, Barlow, J, Batáry, P, Bates, AJ, Bayne, EM, Beja, P, Berg, Å, Berry, NJ, Bicknell, JE, Bihn, JH, Böhning-Gaese, K, Boekhout, T, Boutin, C, Bouyer, J, Brearley, FQ, Brito, I, Brunet, J, Buczkowski, G, Buscardo, E, Cabra-García, J, Calviño-Cancela, M, Cameron, SA, Cancello, EM, Carrijo, TF, Carvalho, AL, Castro, H, Castro-Luna, AA, Cerda, R, Cerezo, A, Chauvat, M, Clarke, FM, Cleary, DFR, Connop, SP, D'Aniello, B, da Silva, PG, Darvill, B, Dauber, J, Dejean, A, Diekötter, T, Dominguez-Haydar, Y, Dormann, CF, Dumont, B, Dures, SG, Dynesius, M, Edenius, L, Elek, Z, Entling, MH, Farwig, N, Fayle, TM, Felicioli, A, Felton, AM, Ficetola, GF, Filgueiras, BKC, Fonte, SJ, Fraser, LH, Fukuda, D, Furlani, D, Ganzhorn, JU, Garden, JG, Gheler-Costa, C, Giordani, P, Giordano, S, Gottschalk, MS, Goulson, D, and Gove, AD
- Abstract
© 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015. The collation of biodiversity datasets with broad taxonomic and biogeographic extents is necessary to understand historical declines and to project - and hope
- Published
- 2014
19. Interannual variation in land-use intensity enhances grassland multidiversity
- Author
-
Allan, E., Bossdorf, O., Dormann, C.F., Prati, D., Gossner, M.M., Tscharntke, T., Blüthgen, N., Bellach, M., Birkhofer, K., Boch, S., Böhm, S., Börschig, C., Chatzinotas, Antonis, Christ, S., Daniel, R., Diekötter, T., Fischer, C., Friedl, T., Glaser, Karin, Hallmann, C., Hodac, L., Hölzel, N., Jung, K., Klein, A.M., Klaus, V.H., Kleinebecker, T., Krauss, J., Lange, M., Morris, E.K., Müller, J., Nacke, H., Pašalić, E., Rillig, M.C., Rothenwöhrer, C., Schall, P., Scherber, C., Schulze, W., Socher, S.A., Steckel, J., Steffan-Dewenter, I., Türke, Manfred, Weiner, C.N., Werner, M., Westphal, C., Wolters, V., Wubet, Tesfaye, Gockel, S., Gorke, M., Hemp, A., Renner, S.C., Schöning, I., Pfeiffer, S., König-Ries, B., Buscot, Francois, Linsenmair, K.E., Schulze, E.-D., Weisser, W.W., Fischer, M., Allan, E., Bossdorf, O., Dormann, C.F., Prati, D., Gossner, M.M., Tscharntke, T., Blüthgen, N., Bellach, M., Birkhofer, K., Boch, S., Böhm, S., Börschig, C., Chatzinotas, Antonis, Christ, S., Daniel, R., Diekötter, T., Fischer, C., Friedl, T., Glaser, Karin, Hallmann, C., Hodac, L., Hölzel, N., Jung, K., Klein, A.M., Klaus, V.H., Kleinebecker, T., Krauss, J., Lange, M., Morris, E.K., Müller, J., Nacke, H., Pašalić, E., Rillig, M.C., Rothenwöhrer, C., Schall, P., Scherber, C., Schulze, W., Socher, S.A., Steckel, J., Steffan-Dewenter, I., Türke, Manfred, Weiner, C.N., Werner, M., Westphal, C., Wolters, V., Wubet, Tesfaye, Gockel, S., Gorke, M., Hemp, A., Renner, S.C., Schöning, I., Pfeiffer, S., König-Ries, B., Buscot, Francois, Linsenmair, K.E., Schulze, E.-D., Weisser, W.W., and Fischer, M.
- Abstract
Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18% of the maximum diversity across all grasslands when LUI was static over time but increased to 31% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation.
- Published
- 2013
20. General relationships between abiotic soil properties and soil biota across spatial scales and different land-use types
- Author
-
Birkhofer, K., Schöning, I., Alt, F., Herold, N., Klarner, B., Maraun, M., Marhan, S., Oelmann, Y., Wubet, Tesfaye, Yurkov, A., Begerow, D., Berner, D., Buscot, Francois, Daniel, R., Diekötter, T., Ehnes, R.B., Erdmann, G., Fischer, C., Foesel, B., Groh, J., Gutknecht, Jessica, Kandeler, E., Lang, C., Lohaus, G., Meyer, A., Nacke, H., Näther, A., Overmann, J., Polle, A., Pollierer, M.M., Scheu, S., Schloter, M., Schulze, E.-D., Schulze, W., Weinert, J., Weisser, W.W., Wolters, V., Schrumpf, M., Birkhofer, K., Schöning, I., Alt, F., Herold, N., Klarner, B., Maraun, M., Marhan, S., Oelmann, Y., Wubet, Tesfaye, Yurkov, A., Begerow, D., Berner, D., Buscot, Francois, Daniel, R., Diekötter, T., Ehnes, R.B., Erdmann, G., Fischer, C., Foesel, B., Groh, J., Gutknecht, Jessica, Kandeler, E., Lang, C., Lohaus, G., Meyer, A., Nacke, H., Näther, A., Overmann, J., Polle, A., Pollierer, M.M., Scheu, S., Schloter, M., Schulze, E.-D., Schulze, W., Weinert, J., Weisser, W.W., Wolters, V., and Schrumpf, M.
- Abstract
Very few principles have been unraveled that explain the relationship between soil properties and soil biota across large spatial scales and different land-use types. Here, we seek these general relationships using data from 52 differently managed grassland and forest soils in three study regions spanning a latitudinal gradient in Germany. We hypothesize that, after extraction of variation that is explained by location and land-use type, soil properties still explain significant proportions of variation in the abundance and diversity of soil biota. If the relationships between predictors and soil organisms were analyzed individually for each predictor group, soil properties explained the highest amount of variation in soil biota abundance and diversity, followed by land-use type and sampling location. After extraction of variation that originated from location or land-use, abiotic soil properties explained significant amounts of variation in fungal, meso- and macrofauna, but not in yeast or bacterial biomass or diversity. Nitrate or nitrogen concentration and fungal biomass were positively related, but nitrate concentration was negatively related to the abundances of Collembola and mites and to the myriapod species richness across a range of forest and grassland soils. The species richness of earthworms was positively correlated with clay content of soils independent of sample location and land-use type. Our study indicates that after accounting for heterogeneity resulting from large scale differences among sampling locations and land-use types, soil properties still explain significant proportions of variation in fungal and soil fauna abundance or diversity. However, soil biota was also related to processes that act at larger spatial scales and bacteria or soil yeasts only showed weak relationships to soil properties. We therefore argue that more general relationships between soil properties and soil biota can only be derived from future studies that consider large
- Published
- 2012
21. Matrix quality and habitat configuration interactively determine functional connectivity in a widespread bush cricket at a small spatial scale
- Author
-
Lange, R., Diekötter, T., Schiffmann, L.A., Wolters, V., Durka, Walter, Lange, R., Diekötter, T., Schiffmann, L.A., Wolters, V., and Durka, Walter
- Abstract
Unlike rare or specialised species, widespread abundant species have often been neglected when studying effects of habitat fragmentation. However, recently, it was shown that in the widespread abundant bush cricket Pholidoptera griseoaptera gene flow becomes restricted when the share of suitable habitat dropped below a threshold of 20% at the landscape scale. Here, using the same highly fragmented landscape, we studied the impact of habitat configuration and matrix quality on genetic variation and population differentiation of P. griseoaptera at a small spatial scale. We investigated four clusters of three populations that were either disconnected or connected and had either low quality (arable land) or high quality (grassland) matrix. The number of alleles was significantly lower in disconnected than in connected clusters, irrespective of matrix quality. Genetic differentiation was equally high in the two disconnected clusters and in the connected cluster with low quality matrix (G ST ≥ 0.030; D ≥ 0.082), whereas it was significantly reduced when connected habitats were embedded in a high quality grassland matrix (G ST = 0.004; D = 0.011). Analyses of least-cost paths showed that grassy landscape elements in fact represent high quality matrix, but that linear grassy margins are costly for dispersal. The effect of habitat configuration on genetic diversity may be explained by lower effective population sizes in disconnected habitats. The fact that only the connected populations in high quality matrix were not differentiated indicates that landscape management should simultaneously consider habitat configuration and matrix quality to effectively promote small and dispersal-limited species, also at small spatial scales.
- Published
- 2012
22. Differential threshold effects of habitat fragmentation on gene flow in two widespread species of bush crickets
- Author
-
Lange, Rebecca, Durka, Walter, Holzhauer, S.I.J., Wolters, V., Diekötter, T., Lange, Rebecca, Durka, Walter, Holzhauer, S.I.J., Wolters, V., and Diekötter, T.
- Abstract
Effects of habitat fragmentation on genetic diversity vary among species. This may be attributed to the interacting effects of species traits and landscape structure. While widely distributed and abundant species are often considered less susceptible to fragmentation, this may be different if they are small sized and show limited dispersal. Under intensive land use, habitat fragmentation may reach thresholds at which gene flow among populations of small-sized and dispersal-limited species becomes disrupted. Here, we studied the genetic diversity of two abundant and widespread bush crickets along a gradient of habitat fragmentation in an agricultural landscape. We applied traditional (GST, ?) and recently developed (, D) estimators of genetic differentiation on microsatellite data from each of twelve populations of the grassland species Metrioptera roeselii and the forest-edge species Pholidoptera griseoaptera to identify thresholds of habitat fragmentation below which genetic population structure is affected. Whereas the grassland species exhibited a uniform genetic structuring (GST = 0.020-0.033; D = 0.085-0.149) along the whole fragmentation gradient, the forest-edge species' genetic differentiation increased significantly from D < 0.063 (GST < 0.018) to D = 0.166 (GST = 0.074), once the amount of suitable habitat dropped below a threshold of 20% and its proximity decreased substantially at the landscape scale. The influence of fragmentation on genetic differentiation was qualitatively unaffected by the choice of estimators of genetic differentiation but quantitatively underestimated by the traditional estimators. These results indicate that even for widespread species in modern agricultural landscapes fragmentation thresholds exist at which gene flow among suitable habitat patches becomes restricted.
- Published
- 2010
23. Patterns of habitat occupancy, genetic variation and predicted movement of a flightless bush cricket, Pholidoptera griseoaptera, in an agricultural mosaic landscape
- Author
-
Diekötter, T., Baveco, H., Arens, P.F.P., Rothenbuhler, C., Billeter, R., Csencsics, D., de Filippi, R., Hendrickx, F., Speelmans, M., Opdam, P., Smulders, M.J.M., Diekötter, T., Baveco, H., Arens, P.F.P., Rothenbuhler, C., Billeter, R., Csencsics, D., de Filippi, R., Hendrickx, F., Speelmans, M., Opdam, P., and Smulders, M.J.M.
- Abstract
Habitat fragmentation has been generally regarded detrimental to the persistence of many species, especially those with limited dispersal abilities. Yet, when exactly habitat elements become functionally disconnected very much depends on the dispersal ability of a species in combination with the landscape's composition in which it occurs. Surprisingly, for many small and ground-walking generalists knowledge at what spatial scale and to what extent landscape structure affects dispersal is very scarce. Because it is flightless, the bush cricket Pholidoptera griseoaptera may be regarded susceptible to fragmentation. We applied habitat occupancy surveys, population genetic analyses and movement modelling to investigate the performance of P. griseoaptera in an agricultural mosaic landscape with suitable habitat patches of varying size and isolation. Despite its presumed dispersal limitation we could show that P. griseoaptera occupied the majority of suitable habitats, including small and isolated patches, showed a very low and non-significant genetic differentiation (F (ST) = 0.0072) and, in the model, managed to colonize around 73% of all suitable habitat patches within one generation under weak and strong landscape-effect scenarios. We conclude that P. griseoaptera possesses the behavioural attributes (frequent inter-patch dispersal) necessary to persist in this landscape characterized by a patchy distribution of habitat elements. Yet, sound recommendations to landscape planning and conservation require more research to determine whether this represents a general behaviour of the species or a behavioural adaptation to this particular landscape.
- Published
- 2010
24. Prediction uncertainty of environmental change effects on temperate European biodiversity
- Author
-
Dormann, Carsten, Schweiger, Oliver, Arens, P., Augenstein, Isabel, Aviron, S., Bailey, D., Baudry, J., Billeter, R., Bugter, R., Bukácek, R., Burel, F., Cerny, M., de Cock, R., de Blust, G., de Filippi, R., Diekötter, T., Dirksen, J., Durka, Walter, Edwards, P.J., Frenzel, Mark, Hamersky, R., Hendrickx, F., Herzog, F., Klotz, Stefan, Koolstra, B., Lausch, Angela, Le Coeur, D., Liira, J., Maelfait, J.P., Opdam, P., Roubalova, M., Schermann-Legionnet, A., Schermann, N., Schmidt, Torsten, Smulders, M.J.M., Speelmans, M., Simova, P., Verboom, J., van Wingerden, W., Zobel, M., Dormann, Carsten, Schweiger, Oliver, Arens, P., Augenstein, Isabel, Aviron, S., Bailey, D., Baudry, J., Billeter, R., Bugter, R., Bukácek, R., Burel, F., Cerny, M., de Cock, R., de Blust, G., de Filippi, R., Diekötter, T., Dirksen, J., Durka, Walter, Edwards, P.J., Frenzel, Mark, Hamersky, R., Hendrickx, F., Herzog, F., Klotz, Stefan, Koolstra, B., Lausch, Angela, Le Coeur, D., Liira, J., Maelfait, J.P., Opdam, P., Roubalova, M., Schermann-Legionnet, A., Schermann, N., Schmidt, Torsten, Smulders, M.J.M., Speelmans, M., Simova, P., Verboom, J., van Wingerden, W., and Zobel, M.
- Abstract
Observed patterns of species richness at landscape scale (gamma diversity) cannot always be attributed to a specific set of explanatory variables, but rather different alternative explanatory statistical models of similar quality may exist. Therefore predictions of the effects of environmental change (such as in climate or land cover) on biodiversity may differ considerably, depending on the chosen set of explanatory variables. Here we use multimodel prediction to evaluate effects of climate, land-use intensity and landscape structure on species richness in each of seven groups of organisms (plants, birds, spiders, wild bees, ground beetles, true bugs and hoverflies) in temperate Europe. We contrast this approach with traditional best-model predictions, which we show, using cross-validation, to have inferior prediction accuracy. Multimodel inference changed the importance of some environmental variables in comparison with the best model, and accordingly gave deviating predictions for environmental change effects. Overall, prediction uncertainty for the multimodel approach was only slightly higher than that of the best model, and absolute changes in predicted species richness were also comparable. Richness predictions varied generally more for the impact of climate change than for land-use change at the coarse scale of our study. Overall, our study indicates that the uncertainty introduced to environmental change predictions through uncertainty in model selection both qualitatively and quantitatively affects species richness projections.
- Published
- 2008
25. Functional richness of local hoverfly communities (Diptera, Syrphidae) in response to land use across temperate Europe
- Author
-
Schweiger, Oliver, Musche, Martin, Bailey, D., Billeter, R., Diekötter, T., Hendrickx, F., Herzog, F., Liira, J., Maelfait, J.P., Speelmans, M., Dziock, F., Schweiger, Oliver, Musche, Martin, Bailey, D., Billeter, R., Diekötter, T., Hendrickx, F., Herzog, F., Liira, J., Maelfait, J.P., Speelmans, M., and Dziock, F.
- Abstract
Environmental change is not likely to act on biodiversity in a random manner, but rather according to species traits that affect assembly processes, thus, having potentially serious consequences on ecological functions. We investigated the effects of anthropogenic land use on functional richness of local hoverfly communities of 24 agricultural landscapes across temperate Europe. A multivariate ordination separated seven functional groups based on resource use, niche characteristics and response type. Intensive land use reduced functional richness, but each functional group responded in a unique way. Species richness of generalist groups was nearly unaffected. Local habitat quality mainly affected specialist groups, while land use affected intermediate groups of rather common species. We infer that high species richness within functional groups alone is no guarantee for maintaining functional richness. Thus, it is not species richness per se that improves insurance of functional diversity against environmental pressures but the degree of dissimilarity within each functional group.
- Published
- 2007
26. How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes
- Author
-
Hendrickx, F., Maelfait, J.P., van Wingerden, W., Schweiger, Oliver, Speelmans, M., Aviron, S., Augenstein, Isabel, Billeter, R., Bailey, D., Bukacek, R., Burel, F., Diekötter, T., Dirksen, J., Herzog, F., Liira, J., Roubalova, M., Vandomme, V., Bugter, R., Hendrickx, F., Maelfait, J.P., van Wingerden, W., Schweiger, Oliver, Speelmans, M., Aviron, S., Augenstein, Isabel, Billeter, R., Bailey, D., Bukacek, R., Burel, F., Diekötter, T., Dirksen, J., Herzog, F., Liira, J., Roubalova, M., Vandomme, V., and Bugter, R.
- Abstract
Agricultural intensification poses a serious threat to biodiversity as a consequence of increased land-use intensity, decreased landscape heterogeneity and reduced habitat diversity. Although there is interest in the preservation of total species richness of an agricultural landscape (gamma diversity), the effects of intensification have been assessed primarily by species richness at a local scale (alpha diversity). This ignores species richness between local communities (beta diversity), which is an important component of total species richness. In this study, measures of land-use intensity, landscape structure and habitat diversity were related to gamma, alpha and beta diversity of wild bees (Apoidea), carabid beetles (Carabidae), hoverflies (Syrphidae), true bugs (Heteroptera) and spiders (Araneae) within 16 local communities in 24 temperate European agricultural landscapes.The total landscape species richness of all groups was most strongly affected by increased proximity of semi-natural habitat patches. Bees also decreased in landscapes with a high intensity of farmland management, demonstrating additive effects of both factors.Separating total species diversity into components, the decrease in total species richness could be attributed primarily to a decrease in species diversity between local communities. Species richness of the local communities of all investigated groups decreased with increasing land-use intensity and, in the case of spiders, decreasing proximity of the semi-natural habitat patches.The effect of increased habitat diversity appeared to be of secondary importance to total species richness but caused a shift in the relative contribution of alpha and beta diversity towards the latter.Synthesis and applications. This study demonstrates that the effects of agricultural change operate at a landscape level and that examining species diversity at a local level fails to explain the total species richness of an agricultural landscape. The coincidence
- Published
- 2007
27. Quantifying the impact of environmental factors on arthropod communities in agricultural landscapes across organizational levels and spatial scales
- Author
-
Schweiger, Oliver, Maelfait, J.P., van Wingerden, W., Hendrickx, F., Billeter, R., Speelmans, M., Augenstein, Isabel, Aukema, B., Aviron, S., Bailey, D., Bukacek, R., Burel, F., Diekötter, T., Dirksen, J., Frenzel, Mark, Herzog, F., Liira, J., Roubalova, M., Bugter, R., Schweiger, Oliver, Maelfait, J.P., van Wingerden, W., Hendrickx, F., Billeter, R., Speelmans, M., Augenstein, Isabel, Aukema, B., Aviron, S., Bailey, D., Bukacek, R., Burel, F., Diekötter, T., Dirksen, J., Frenzel, Mark, Herzog, F., Liira, J., Roubalova, M., and Bugter, R.
- Abstract
1. In landscapes influenced by anthropogenic activities, such as intensive agriculture, knowledge of the relative importance and interaction of environmental factors on the composition and function of local communities across a range of spatial scales is important for maintaining biodiversity.2. We analysed five arthropod taxa covering a broad range of functional aspects (wild bees, true bugs, carabid beetles, hoverflies and spiders) in 24 landscapes (4 × 4 km) across seven European countries along gradients of both land-use intensity and landscape structure. Species-environment relationships were examined in a hierarchical design of four main sets of environmental factors (country, land-use intensity, landscape structure, local habitat properties) that covered three spatial scales (region, landscape, local) by means of hierarchical variability partitioning using partial canonical correspondence analyses.3. Local community composition and the distribution of body size classes and trophic guilds were most affected by regional processes, which highly confounded landscape and local factors. After correcting for regional effects, factors at the landscape scale dominated over local habitat factors. Land-use intensity explained most of the variability in species data, whereas landscape characteristics (especially connectivity) accounted for most of the variability in body size and trophic guilds.4. Synthesis and applications. Our results suggest that management effort should be focused on land-use intensity and habitat connectivity in order to enhance diversity in agricultural landscapes. Since these factors are largely independent, specific conservation programmes may be developed with regards to socio-economic and agri-environmental requirements. Changes in either of these factors will enhance diversity but will also result in specific effects on local communities related to dispersal ability and the resource use of species.
- Published
- 2005
28. Indicators for biodiversity in agricultural landscapes: a pan-European study
- Author
-
Billeter, R., primary, Liira, J., additional, Bailey, D., additional, Bugter, R., additional, Arens, P., additional, Augenstein, I., additional, Aviron, S., additional, Baudry, J., additional, Bukacek, R., additional, Burel, F., additional, Cerny, M., additional, De Blust, G., additional, De Cock, R., additional, Diekötter, T., additional, Dietz, H., additional, Dirksen, J., additional, Dormann, C., additional, Durka, W., additional, Frenzel, M., additional, Hamersky, R., additional, Hendrickx, F., additional, Herzog, F., additional, Klotz, S., additional, Koolstra, B., additional, Lausch, A., additional, Le Coeur, D., additional, Maelfait, J. P., additional, Opdam, P., additional, Roubalova, M., additional, Schermann, A., additional, Schermann, N., additional, Schmidt, T., additional, Schweiger, O., additional, Smulders, M.J.M., additional, Speelmans, M., additional, Simova, P., additional, Verboom, J., additional, Van Wingerden, W.K.R.E., additional, Zobel, M., additional, and Edwards, P.J., additional
- Published
- 2007
- Full Text
- View/download PDF
29. Isolation and characterization of microsatellite loci in the dark bush cricket, Pholidoptera griseoaptera (Tettigoniidae)
- Author
-
ARENS, P., primary, WERNKE-LENTING, J. H., additional, DIEKÖTTER, T., additional, ROTHENBÜHLER, C., additional, SPEELMANS, M., additional, HENDRICKX, F., additional, and SMULDERS, M. J. M., additional
- Published
- 2005
- Full Text
- View/download PDF
30. Isolation and characterization of microsatellite loci in the dark bush cricket,Pholidoptera griseoaptera (Tettigoniidae).
- Author
-
Arens, P., Wernke-Lenting, J. H., Diekötter, T., Rothenbühler, C., Speelmans, M., Hendrickx, F., and Smulders, M. J. M.
- Subjects
FRAGMENTED landscapes ,POPULATION genetics ,GENETICS ,CRICKETS (Insect) ,MICROSATELLITE repeats - Abstract
Twelve novel polymorphic microsatellite loci are presented for the dark bush cricket, Pholidoptera griseoaptera. All loci are polymorphic, with up to 37 alleles per locus. These microsatellites will be useful tools for studying the influence of landscape structure and land use intensity in agricultural landscapes on genetic diversity within and among populations of P. griseoaptera. [ABSTRACT FROM AUTHOR]
- Published
- 2005
- Full Text
- View/download PDF
31. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality
- Author
-
Soliveres S, van der Plas F, Manning P, Prati D, Mm, Gossner, Sc, Renner, Alt F, Arndt H, Baumgartner V, Binkenstein J, Birkhofer K, Blaser S, Blüthgen N, Boch S, Böhm S, Börschig C, Buscot F, Diekötter T, Heinze J, and Hölzel N
32. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition
- Author
-
Karp, DS, Chaplin-Kramer, R, Meehan, TD, Martin, EA, DeClerck, F, Grab, H, Gratton, C, Hunt, L, Larsen, AE, Martínez-Salinas, A, O Rourke, ME, Rusch, A, Poveda, K, Jonsson, M, Rosenheim, JA, Schellhorn, NA, Tscharntke, T, Wratten, SD, Zhang, Wei, Iverson, AL, Adler, LS, Albrecht, M, Alignier, A, Angelella, GM, Anjum, MZ, Avelino, J, Batáry, P, Baveco, JM, Bianchi, FJJA, Birkhofer, K, Bohnenblust, EW, Bommarco, R, Brewer, MJ, Caballero-López, B, Carrière, Y, Carvalheiro, LG, Cayuela, L, Centrella, M, Ćetković, A, Henri, DC, Chabert, A, Costamagna, AC, De la Mora, A, de Kraker, J, Desneux, N, Diehl, E, Diekötter, T, Dormann, CF, Eckberg, JO, Entling, MH, Fiedler, D, Franck, P, van Veen, FJF, Frank, T, Gagic, V, Garratt, MPD, Getachew, A, Gonthier, DJ, Goodell, PB, Graziosi, I, Groves, RL, Gurr, GM, Hajian-Forooshani, Z, Heimpel, GE, Herrmann, JD, Huseth, AS, Inclán, DJ, Ingrao, AJ, Iv, P, Jacot, K, Johnson, GA, Jones, L, Kaiser, M, Kaser, JM, Keasar, T, Kim, TN, Kishinevsky, M, Landis, DA, Lavandero, B, Lavigne, C, Le Ralec, A, Lemessa, D, Letourneau, DK, Liere, H, Lu, Yanhui, Lubin, Y, Luttermoser, T, Maas, B, Mace, K, Madeira, F, Mader, V, Cortesero, AM, Marini, L, Martinez, E, Martinson, HM, Menozzi, P, Mitchell, MGE, Miyashita, T, Molina, GAR, Molina-Montenegro, MA, O'Neal, ME, Opatovsky, I, Ortiz-Martinez, S, Nash, M, Östman, Ö, Ouin, A, Pak, D, Paredes, D, Parsa, S, Parry, H, Perez-Alvarez, R, Perović, DJ, Peterson, JA, Petit, S, Philpott, SM, Plantegenest, M, Plećas, M, Pluess, T, Pons, X, Potts, SG, Pywell, RF, Ragsdale, DW, Rand, TA, Raymond, L, Ricci, B, Sargent, C, Sarthou, J-P, Saulais, J, Schäckermann, J, Schmitt, NP, Schneider, G, Schüepp, C, Sivakoff, FS, Smith, HG, Stack Whitney, K, Stutz, S, Szendrei, Z, Takada, MB, Taki, H, Tamburini, G, Thomson, LJ, Tricault, Y, Tsafack, N, Tschumi, M, Valantin-Morison, M, Van Trinh, M, van der Werf, W, Vierling, KT, Werling, BP, Wickens, JB, Wickens, VJ, Woodcock, BA, Wyckhuys, KAG, Xiao, Haijun, Yasuda, M, Yoshioka, A, and Zou Yi
- Full Text
- View/download PDF
33. Regulation of Jacobaea vulgaris by varied cutting and restoration measures.
- Author
-
Wiggering H, Diekötter T, and Donath TW
- Subjects
- Animals, Germany, Grassland, Plant Weeds, Seeds, Asteraceae, Biodiversity
- Abstract
The growth of the noxious grassland weed Jacobaea vulgaris Gaertn. in pastures is a threat to grazing animals. This is especially true when it dominates vegetation cover, which often occurs on non-intensively used pastures that are managed for nature-conservation, to maintain and promote biodiversity. Thus, we wanted to find management techniques to reduce J. vulgaris without harming the floral biodiversity on the pastures. We tested six different mechanical and cultural methods to reduce the presence and spread of J. vulgaris. Seven study sites in Northern Germany (Schleswig-Holstein) were treated with tilling and seeding (1), tilling and hay transfer (2), mowing twice within bloom (3), mowing before seed set and combinations of mowing and seeding with a slit drill (5) or by hand (6). Our results show that cutting within the bloom of the plant at the end of June and again four weeks later, when the plant is in its second bloom was the only treatment leading to a significant reduction in population growth rate without reducing surrounding plant species richness. The study reveals that management of J. vulgaris in non-intensively used pastures is possible, while preserving species-rich grasslands., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2022
- Full Text
- View/download PDF
34. CropPol: A dynamic, open and global database on crop pollination.
- Author
-
Allen-Perkins A, Magrach A, Dainese M, Garibaldi LA, Kleijn D, Rader R, Reilly JR, Winfree R, Lundin O, McGrady CM, Brittain C, Biddinger DJ, Artz DR, Elle E, Hoffman G, Ellis JD, Daniels J, Gibbs J, Campbell JW, Brokaw J, Wilson JK, Mason K, Ward KL, Gundersen KB, Bobiwash K, Gut L, Rowe LM, Boyle NK, Williams NM, Joshi NK, Rothwell N, Gillespie RL, Isaacs R, Fleischer SJ, Peterson SS, Rao S, Pitts-Singer TL, Fijen T, Boreux V, Rundlöf M, Viana BF, Klein AM, Smith HG, Bommarco R, Carvalheiro LG, Ricketts TH, Ghazoul J, Krishnan S, Benjamin FE, Loureiro J, Castro S, Raine NE, de Groot GA, Horgan FG, Hipólito J, Smagghe G, Meeus I, Eeraerts M, Potts SG, Kremen C, García D, Miñarro M, Crowder DW, Pisanty G, Mandelik Y, Vereecken NJ, Leclercq N, Weekers T, Lindstrom SAM, Stanley DA, Zaragoza-Trello C, Nicholson CC, Scheper J, Rad C, Marks EAN, Mota L, Danforth B, Park M, Bezerra ADM, Freitas BM, Mallinger RE, Oliveira da Silva F, Willcox B, Ramos DL, D da Silva E Silva F, Lázaro A, Alomar D, González-Estévez MA, Taki H, Cariveau DP, Garratt MPD, Nabaes Jodar DN, Stewart RIA, Ariza D, Pisman M, Lichtenberg EM, Schüepp C, Herzog F, Entling MH, Dupont YL, Michener CD, Daily GC, Ehrlich PR, Burns KLW, Vilà M, Robson A, Howlett B, Blechschmidt L, Jauker F, Schwarzbach F, Nesper M, Diekötter T, Wolters V, Castro H, Gaspar H, Nault BA, Badenhausser I, Petersen JD, Tscharntke T, Bretagnolle V, Willis Chan DS, Chacoff N, Andersson GKS, Jha S, Colville JF, Veldtman R, Coutinho J, Bianchi FJJA, Sutter L, Albrecht M, Jeanneret P, Zou Y, Averill AL, Saez A, Sciligo AR, Vergara CH, Bloom EH, Oeller E, Badano EI, Loeb GM, Grab H, Ekroos J, Gagic V, Cunningham SA, Åström J, Cavigliasso P, Trillo A, Classen A, Mauchline AL, Montero-Castaño A, Wilby A, Woodcock BA, Sidhu CS, Steffan-Dewenter I, Vogiatzakis IN, Herrera JM, Otieno M, Gikungu MW, Cusser SJ, Nauss T, Nilsson L, Knapp J, Ortega-Marcos JJ, González JA, Osborne JL, Blanche R, Shaw RF, Hevia V, Stout J, Arthur AD, Blochtein B, Szentgyorgyi H, Li J, Mayfield MM, Woyciechowski M, Nunes-Silva P, Halinski de Oliveira R, Henry S, Simmons BI, Dalsgaard B, Hansen K, Sritongchuay T, O'Reilly AD, Chamorro García FJ, Nates Parra G, Magalhães Pigozo C, and Bartomeus I
- Subjects
- Animals, Bees, Crops, Agricultural, Flowers, Insecta, Ecosystem, Pollination
- Abstract
Seventy five percent of the world's food crops benefit from insect pollination. Hence, there has been increased interest in how global change drivers impact this critical ecosystem service. Because standardized data on crop pollination are rarely available, we are limited in our capacity to understand the variation in pollination benefits to crop yield, as well as to anticipate changes in this service, develop predictions, and inform management actions. Here, we present CropPol, a dynamic, open, and global database on crop pollination. It contains measurements recorded from 202 crop studies, covering 3,394 field observations, 2,552 yield measurements (i.e., berry mass, number of fruits, and fruit density [kg/ha], among others), and 47,752 insect records from 48 commercial crops distributed around the globe. CropPol comprises 32 of the 87 leading global crops and commodities that are pollinator dependent. Malus domestica is the most represented crop (32 studies), followed by Brassica napus (22 studies), Vaccinium corymbosum (13 studies), and Citrullus lanatus (12 studies). The most abundant pollinator guilds recorded are honey bees (34.22% counts), bumblebees (19.19%), flies other than Syrphidae and Bombyliidae (13.18%), other wild bees (13.13%), beetles (10.97%), Syrphidae (4.87%), and Bombyliidae (0.05%). Locations comprise 34 countries distributed among Europe (76 studies), North America (60), Latin America and the Caribbean (29), Asia (20), Oceania (10), and Africa (7). Sampling spans three decades and is concentrated on 2001-2005 (21 studies), 2006-2010 (40), 2011-2015 (88), and 2016-2020 (50). This is the most comprehensive open global data set on measurements of crop flower visitors, crop pollinators and pollination to date, and we encourage researchers to add more datasets to this database in the future. This data set is released for non-commercial use only. Credits should be given to this paper (i.e., proper citation), and the products generated with this database should be shared under the same license terms (CC BY-NC-SA)., (© 2021 The Ecological Society of America.)
- Published
- 2022
- Full Text
- View/download PDF
35. Citizen science project characteristics: Connection to participants' gains in knowledge and skills.
- Author
-
Peter M, Diekötter T, Kremer K, and Höffler T
- Subjects
- Humans, Knowledge, Australia, Conservation of Natural Resources methods, Europe, Learning, Citizen Science, Biodiversity
- Abstract
Background: Biodiversity is being lost rapidly and its conservation is thus one of the most urgent tasks today. For biodiversity conservation to be successful, the public needs to gain an awareness and understanding of biodiversity and its importance. Moreover, species experts are needed who have the skills necessary for identifying and recording biodiversity. Previous research showed that citizen science projects can contribute to educating the public about biodiversity. However, it is still unclear how project characteristics connect to participants' knowledge and skills and how citizen science projects should be designed if they are to foster participants' learning., Aim: We aimed to investigate specific characteristics of biodiversity citizen science projects that could potentially influence participants' learning. We explored the following project characteristics from both the project coordinators' and the participants' perspectives: information and training provided to participants, social interaction among participants, contact between participants and staff, and feedback and recognition provided to participants., Methods and Results: In order to examine the extent to which these project characteristics are connected to participants' gains in knowledge and skills, we conducted a comprehensive study across 48 biodiversity citizen science projects in Europe and Australia. We found that participants' perceived gains in knowledge and skills were significantly related to the five project characteristics as reported by the participants: information received by the participants, training received by the participants, social interaction among participants, contact between participants and staff, and feedback and recognition received by the participants., Conclusion: We conclude that by deliberately designing citizen science projects to include features such as interaction and feedback, these projects could achieve higher learning outcomes for the participants. Thereby, suitable modes of communication between projects and their participants are crucial. We provide specific suggestions for the design of biodiversity citizen science projects and for future research on project characteristics and participant outcomes., Competing Interests: The authors declare that no competing interests exist.
- Published
- 2021
- Full Text
- View/download PDF
36. Amount, distribution and composition of large microplastics in typical agricultural soils in Northern Germany.
- Author
-
Harms IK, Diekötter T, Troegel S, and Lenz M
- Abstract
The pollution of the aquatic and terrestrial environment with plastics is a fast growing phenomenon with potential threats to the functioning of ecosystems and organisms therein as well as for human well-being. So far, research activities have mainly focused on the occurrence of microplastics (MP) in marine habitats, while little is known about their distribution and composition in the terrestrial environment. Agricultural practices such as fertilization, mulching or ensilage make agriculture a likely path for MP into the environment. Here, we collected soil samples at 15 farmland locations in Schleswig-Holstein, Northern Germany, to study the amount, distribution and composition of MP in the size range between 1 and 5 mm. In total, 379 MP were identified in a total of ~84 kg of dry weight (DW). Particle abundances in the sampling units ranged from 0 to 217.8 MP per kg DW with a mean abundance of 3.7 ± 11.9 MP per kg DW (median: 0.0, interquartile range: 0.0-4.9) per site. Although MP were found at all study sites, only 34% of the sampling units contained synthetic particles. Our data contribute to the establishment of a baseline on the amount, type and size of MP in farmland soils. Such a baseline is important for future monitoring schemes and for the development of more environmentally friendly management systems that reduce the input of MP into the agricultural system., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2020 Elsevier B.V. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
37. Conspecific and heterospecific grass litter effects on seedling emergence and growth in ragwort (Jacobaea vulgaris).
- Author
-
Möhler H, Diekötter T, Bauer GM, and Donath TW
- Subjects
- Biomass, Germination, Seedlings growth & development, Soil chemistry, Plant Weeds growth & development, Senecio growth & development
- Abstract
Jacobaea vulgaris Gaertn. or common ragwort is a widespread noxious grassland weed that is subject to different regulation measures worldwide. Seedling emergence and growth are the most crucial stages for most plants during their life cycle. Therefore, heterospecific grass or conspecific ragwort litter as well as soil-mediated effects may be of relevance for ragwort control. Our study examines the effects of conspecific and heterospecific litter as well as ragwort conditioned soil on seedling emergence and growth. We conducted pot experiments to estimate the influence of soil conditioning (with, without ragwort), litter type (grass, ragwort, grass-ragwort-mix) and amount (200 g/m², 400 g/m²) on J. vulgaris recruitment. As response parameters, we assessed seedling number, biomass, height and number of seedling leaves. We found that 200 g/m² grass litter led to higher seedling numbers, while litter composed of J. vulgaris reduced seedling emergence. Litter amounts of 400 g/m² had negative effects on the number of seedlings regardless of the litter type. Results for biomass, plant height and leaf number showed opposing patterns to seedling numbers. Seedlings in pots treated with high litter amounts and seedlings in ragwort litter became heavier, grew higher and had more leaves. Significant effects of the soil conditioned by ragwort on seedling emergence and growth were negligible. The study confirms that the amount and composition of litter strongly affect seedling emergence and growth of J. vulgaris. Moreover, while conspecific litter and high litter amounts negatively affected early seedling development in ragwort, those seedlings that survived accumulated more biomass and got taller than seedlings grown in heterospecific or less dense litter. Therefore, ragwort litter has negative effects in ragwort germination, but positive effects in ragwort growth. Thus, leaving ragwort litter on pastures will not reduce ragwort establishment and growth and cannot be used as management tool., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2021
- Full Text
- View/download PDF
38. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe.
- Author
-
Martin EA, Dainese M, Clough Y, Báldi A, Bommarco R, Gagic V, Garratt MPD, Holzschuh A, Kleijn D, Kovács-Hostyánszki A, Marini L, Potts SG, Smith HG, Al Hassan D, Albrecht M, Andersson GKS, Asís JD, Aviron S, Balzan MV, Baños-Picón L, Bartomeus I, Batáry P, Burel F, Caballero-López B, Concepción ED, Coudrain V, Dänhardt J, Diaz M, Diekötter T, Dormann CF, Duflot R, Entling MH, Farwig N, Fischer C, Frank T, Garibaldi LA, Hermann J, Herzog F, Inclán D, Jacot K, Jauker F, Jeanneret P, Kaiser M, Krauss J, Le Féon V, Marshall J, Moonen AC, Moreno G, Riedinger V, Rundlöf M, Rusch A, Scheper J, Schneider G, Schüepp C, Stutz S, Sutter L, Tamburini G, Thies C, Tormos J, Tscharntke T, Tschumi M, Uzman D, Wagner C, Zubair-Anjum M, and Steffan-Dewenter I
- Subjects
- Agriculture, Animals, Europe, Pollination, Biodiversity, Crops, Agricultural, Ecosystem
- Abstract
Managing agricultural landscapes to support biodiversity and ecosystem services is a key aim of a sustainable agriculture. However, how the spatial arrangement of crop fields and other habitats in landscapes impacts arthropods and their functions is poorly known. Synthesising data from 49 studies (1515 landscapes) across Europe, we examined effects of landscape composition (% habitats) and configuration (edge density) on arthropods in fields and their margins, pest control, pollination and yields. Configuration effects interacted with the proportions of crop and non-crop habitats, and species' dietary, dispersal and overwintering traits led to contrasting responses to landscape variables. Overall, however, in landscapes with high edge density, 70% of pollinator and 44% of natural enemy species reached highest abundances and pollination and pest control improved 1.7- and 1.4-fold respectively. Arable-dominated landscapes with high edge densities achieved high yields. This suggests that enhancing edge density in European agroecosystems can promote functional biodiversity and yield-enhancing ecosystem services., (© 2019 John Wiley & Sons Ltd/CNRS.)
- Published
- 2019
- Full Text
- View/download PDF
39. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition.
- Author
-
Karp DS, Chaplin-Kramer R, Meehan TD, Martin EA, DeClerck F, Grab H, Gratton C, Hunt L, Larsen AE, Martínez-Salinas A, O'Rourke ME, Rusch A, Poveda K, Jonsson M, Rosenheim JA, Schellhorn NA, Tscharntke T, Wratten SD, Zhang W, Iverson AL, Adler LS, Albrecht M, Alignier A, Angelella GM, Zubair Anjum M, Avelino J, Batáry P, Baveco JM, Bianchi FJJA, Birkhofer K, Bohnenblust EW, Bommarco R, Brewer MJ, Caballero-López B, Carrière Y, Carvalheiro LG, Cayuela L, Centrella M, Ćetković A, Henri DC, Chabert A, Costamagna AC, De la Mora A, de Kraker J, Desneux N, Diehl E, Diekötter T, Dormann CF, Eckberg JO, Entling MH, Fiedler D, Franck P, Frank van Veen FJ, Frank T, Gagic V, Garratt MPD, Getachew A, Gonthier DJ, Goodell PB, Graziosi I, Groves RL, Gurr GM, Hajian-Forooshani Z, Heimpel GE, Herrmann JD, Huseth AS, Inclán DJ, Ingrao AJ, Iv P, Jacot K, Johnson GA, Jones L, Kaiser M, Kaser JM, Keasar T, Kim TN, Kishinevsky M, Landis DA, Lavandero B, Lavigne C, Le Ralec A, Lemessa D, Letourneau DK, Liere H, Lu Y, Lubin Y, Luttermoser T, Maas B, Mace K, Madeira F, Mader V, Cortesero AM, Marini L, Martinez E, Martinson HM, Menozzi P, Mitchell MGE, Miyashita T, Molina GAR, Molina-Montenegro MA, O'Neal ME, Opatovsky I, Ortiz-Martinez S, Nash M, Östman Ö, Ouin A, Pak D, Paredes D, Parsa S, Parry H, Perez-Alvarez R, Perović DJ, Peterson JA, Petit S, Philpott SM, Plantegenest M, Plećaš M, Pluess T, Pons X, Potts SG, Pywell RF, Ragsdale DW, Rand TA, Raymond L, Ricci B, Sargent C, Sarthou JP, Saulais J, Schäckermann J, Schmidt NP, Schneider G, Schüepp C, Sivakoff FS, Smith HG, Stack Whitney K, Stutz S, Szendrei Z, Takada MB, Taki H, Tamburini G, Thomson LJ, Tricault Y, Tsafack N, Tschumi M, Valantin-Morison M, Van Trinh M, van der Werf W, Vierling KT, Werling BP, Wickens JB, Wickens VJ, Woodcock BA, Wyckhuys K, Xiao H, Yasuda M, Yoshioka A, and Zou Y
- Subjects
- Animals, Crops, Agricultural growth & development, Crops, Agricultural parasitology, Ecosystem, Models, Biological, Pest Control, Biological
- Abstract
The idea that noncrop habitat enhances pest control and represents a win-win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win-win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies., Competing Interests: The authors declare no conflict of interest., (Copyright © 2018 the Author(s). Published by PNAS.)
- Published
- 2018
- Full Text
- View/download PDF
40. A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes.
- Author
-
Lichtenberg EM, Kennedy CM, Kremen C, Batáry P, Berendse F, Bommarco R, Bosque-Pérez NA, Carvalheiro LG, Snyder WE, Williams NM, Winfree R, Klatt BK, Åström S, Benjamin F, Brittain C, Chaplin-Kramer R, Clough Y, Danforth B, Diekötter T, Eigenbrode SD, Ekroos J, Elle E, Freitas BM, Fukuda Y, Gaines-Day HR, Grab H, Gratton C, Holzschuh A, Isaacs R, Isaia M, Jha S, Jonason D, Jones VP, Klein AM, Krauss J, Letourneau DK, Macfadyen S, Mallinger RE, Martin EA, Martinez E, Memmott J, Morandin L, Neame L, Otieno M, Park MG, Pfiffner L, Pocock MJO, Ponce C, Potts SG, Poveda K, Ramos M, Rosenheim JA, Rundlöf M, Sardiñas H, Saunders ME, Schon NL, Sciligo AR, Sidhu CS, Steffan-Dewenter I, Tscharntke T, Veselý M, Weisser WW, Wilson JK, and Crowder DW
- Subjects
- Animals, Agriculture methods, Arthropods, Biodiversity, Ecosystem
- Abstract
Agricultural intensification is a leading cause of global biodiversity loss, which can reduce the provisioning of ecosystem services in managed ecosystems. Organic farming and plant diversification are farm management schemes that may mitigate potential ecological harm by increasing species richness and boosting related ecosystem services to agroecosystems. What remains unclear is the extent to which farm management schemes affect biodiversity components other than species richness, and whether impacts differ across spatial scales and landscape contexts. Using a global metadataset, we quantified the effects of organic farming and plant diversification on abundance, local diversity (communities within fields), and regional diversity (communities across fields) of arthropod pollinators, predators, herbivores, and detritivores. Both organic farming and higher in-field plant diversity enhanced arthropod abundance, particularly for rare taxa. This resulted in increased richness but decreased evenness. While these responses were stronger at local relative to regional scales, richness and abundance increased at both scales, and richness on farms embedded in complex relative to simple landscapes. Overall, both organic farming and in-field plant diversification exerted the strongest effects on pollinators and predators, suggesting these management schemes can facilitate ecosystem service providers without augmenting herbivore (pest) populations. Our results suggest that organic farming and plant diversification promote diverse arthropod metacommunities that may provide temporal and spatial stability of ecosystem service provisioning. Conserving diverse plant and arthropod communities in farming systems therefore requires sustainable practices that operate both within fields and across landscapes., (© 2017 John Wiley & Sons Ltd.)
- Published
- 2017
- Full Text
- View/download PDF
41. Land-use type and intensity differentially filter traits in above- and below-ground arthropod communities.
- Author
-
Birkhofer K, Gossner MM, Diekötter T, Drees C, Ferlian O, Maraun M, Scheu S, Weisser WW, Wolters V, Wurst S, Zaitsev AS, and Smith HG
- Subjects
- Animals, Germany, Arthropods physiology, Biodiversity, Conservation of Natural Resources, Forests, Grassland
- Abstract
Along with the global decline of species richness goes a loss of ecological traits. Associated biotic homogenization of animal communities and narrowing of trait diversity threaten ecosystem functioning and human well-being. High management intensity is regarded as an important ecological filter, eliminating species that lack suitable adaptations. Below-ground arthropods are assumed to be less sensitive to such effects than above-ground arthropods. Here, we compared the impact of management intensity between (grassland vs. forest) and within land-use types (local management intensity) on the trait diversity and composition in below- and above-ground arthropod communities. We used data on 722 arthropod species living above-ground (Auchenorrhyncha and Heteroptera), primarily in soil (Chilopoda and Oribatida) or at the interface (Araneae and Carabidae). Our results show that trait diversity of arthropod communities is not primarily reduced by intense local land use, but is rather affected by differences between land-use types. Communities of Auchenorrhyncha and Chilopoda had significantly lower trait diversity in grassland habitats as compared to forests. Carabidae showed the opposite pattern with higher trait diversity in grasslands. Grasslands had a lower proportion of large Auchenorrhyncha and Carabidae individuals, whereas Chilopoda and Heteroptera individuals were larger in grasslands. Body size decreased with land-use intensity across taxa, but only in grasslands. The proportion of individuals with low mobility declined with land-use intensity in Araneae and Auchenorrhyncha, but increased in Chilopoda and grassland Heteroptera. The proportion of carnivorous individuals increased with land-use intensity in Heteroptera in forests and in Oribatida and Carabidae in grasslands. Our results suggest that gradients in management intensity across land-use types will not generally reduce trait diversity in multiple taxa, but will exert strong trait filtering within individual taxa. The observed patterns for trait filtering in individual taxa are not related to major classifications into above- and below-ground species. Instead, ecologically different taxa resembled each other in their trait diversity and compositional responses to land-use differences. These previously undescribed patterns offer an opportunity to develop management strategies for the conservation of trait diversity across taxonomic groups in permanent grassland and forest habitats., (© 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.)
- Published
- 2017
- Full Text
- View/download PDF
42. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project.
- Author
-
Hudson LN, Newbold T, Contu S, Hill SL, Lysenko I, De Palma A, Phillips HR, Alhusseini TI, Bedford FE, Bennett DJ, Booth H, Burton VJ, Chng CW, Choimes A, Correia DL, Day J, Echeverría-Londoño S, Emerson SR, Gao D, Garon M, Harrison ML, Ingram DJ, Jung M, Kemp V, Kirkpatrick L, Martin CD, Pan Y, Pask-Hale GD, Pynegar EL, Robinson AN, Sanchez-Ortiz K, Senior RA, Simmons BI, White HJ, Zhang H, Aben J, Abrahamczyk S, Adum GB, Aguilar-Barquero V, Aizen MA, Albertos B, Alcala EL, Del Mar Alguacil M, Alignier A, Ancrenaz M, Andersen AN, Arbeláez-Cortés E, Armbrecht I, Arroyo-Rodríguez V, Aumann T, Axmacher JC, Azhar B, Azpiroz AB, Baeten L, Bakayoko A, Báldi A, Banks JE, Baral SK, Barlow J, Barratt BI, Barrico L, Bartolommei P, Barton DM, Basset Y, Batáry P, Bates AJ, Baur B, Bayne EM, Beja P, Benedick S, Berg Å, Bernard H, Berry NJ, Bhatt D, Bicknell JE, Bihn JH, Blake RJ, Bobo KS, Bóçon R, Boekhout T, Böhning-Gaese K, Bonham KJ, Borges PA, Borges SH, Boutin C, Bouyer J, Bragagnolo C, Brandt JS, Brearley FQ, Brito I, Bros V, Brunet J, Buczkowski G, Buddle CM, Bugter R, Buscardo E, Buse J, Cabra-García J, Cáceres NC, Cagle NL, Calviño-Cancela M, Cameron SA, Cancello EM, Caparrós R, Cardoso P, Carpenter D, Carrijo TF, Carvalho AL, Cassano CR, Castro H, Castro-Luna AA, Rolando CB, Cerezo A, Chapman KA, Chauvat M, Christensen M, Clarke FM, Cleary DF, Colombo G, Connop SP, Craig MD, Cruz-López L, Cunningham SA, D'Aniello B, D'Cruze N, da Silva PG, Dallimer M, Danquah E, Darvill B, Dauber J, Davis AL, Dawson J, de Sassi C, de Thoisy B, Deheuvels O, Dejean A, Devineau JL, Diekötter T, Dolia JV, Domínguez E, Dominguez-Haydar Y, Dorn S, Draper I, Dreber N, Dumont B, Dures SG, Dynesius M, Edenius L, Eggleton P, Eigenbrod F, Elek Z, Entling MH, Esler KJ, de Lima RF, Faruk A, Farwig N, Fayle TM, Felicioli A, Felton AM, Fensham RJ, Fernandez IC, Ferreira CC, Ficetola GF, Fiera C, Filgueiras BK, Fırıncıoğlu HK, Flaspohler D, Floren A, Fonte SJ, Fournier A, Fowler RE, Franzén M, Fraser LH, Fredriksson GM, Freire GB Jr, Frizzo TL, Fukuda D, Furlani D, Gaigher R, Ganzhorn JU, García KP, Garcia-R JC, Garden JG, Garilleti R, Ge BM, Gendreau-Berthiaume B, Gerard PJ, Gheler-Costa C, Gilbert B, Giordani P, Giordano S, Golodets C, Gomes LG, Gould RK, Goulson D, Gove AD, Granjon L, Grass I, Gray CL, Grogan J, Gu W, Guardiola M, Gunawardene NR, Gutierrez AG, Gutiérrez-Lamus DL, Haarmeyer DH, Hanley ME, Hanson T, Hashim NR, Hassan SN, Hatfield RG, Hawes JE, Hayward MW, Hébert C, Helden AJ, Henden JA, Henschel P, Hernández L, Herrera JP, Herrmann F, Herzog F, Higuera-Diaz D, Hilje B, Höfer H, Hoffmann A, Horgan FG, Hornung E, Horváth R, Hylander K, Isaacs-Cubides P, Ishida H, Ishitani M, Jacobs CT, Jaramillo VJ, Jauker B, Hernández FJ, Johnson MF, Jolli V, Jonsell M, Juliani SN, Jung TS, Kapoor V, Kappes H, Kati V, Katovai E, Kellner K, Kessler M, Kirby KR, Kittle AM, Knight ME, Knop E, Kohler F, Koivula M, Kolb A, Kone M, Kőrösi Á, Krauss J, Kumar A, Kumar R, Kurz DJ, Kutt AS, Lachat T, Lantschner V, Lara F, Lasky JR, Latta SC, Laurance WF, Lavelle P, Le Féon V, LeBuhn G, Légaré JP, Lehouck V, Lencinas MV, Lentini PE, Letcher SG, Li Q, Litchwark SA, Littlewood NA, Liu Y, Lo-Man-Hung N, López-Quintero CA, Louhaichi M, Lövei GL, Lucas-Borja ME, Luja VH, Luskin MS, MacSwiney G MC, Maeto K, Magura T, Mallari NA, Malone LA, Malonza PK, Malumbres-Olarte J, Mandujano S, Måren IE, Marin-Spiotta E, Marsh CJ, Marshall EJ, Martínez E, Martínez Pastur G, Moreno Mateos D, Mayfield MM, Mazimpaka V, McCarthy JL, McCarthy KP, McFrederick QS, McNamara S, Medina NG, Medina R, Mena JL, Mico E, Mikusinski G, Milder JC, Miller JR, Miranda-Esquivel DR, Moir ML, Morales CL, Muchane MN, Muchane M, Mudri-Stojnic S, Munira AN, Muoñz-Alonso A, Munyekenye BF, Naidoo R, Naithani A, Nakagawa M, Nakamura A, Nakashima Y, Naoe S, Nates-Parra G, Navarrete Gutierrez DA, Navarro-Iriarte L, Ndang'ang'a PK, Neuschulz EL, Ngai JT, Nicolas V, Nilsson SG, Noreika N, Norfolk O, Noriega JA, Norton DA, Nöske NM, Nowakowski AJ, Numa C, O'Dea N, O'Farrell PJ, Oduro W, Oertli S, Ofori-Boateng C, Oke CO, Oostra V, Osgathorpe LM, Otavo SE, Page NV, Paritsis J, Parra-H A, Parry L, Pe'er G, Pearman PB, Pelegrin N, Pélissier R, Peres CA, Peri PL, Persson AS, Petanidou T, Peters MK, Pethiyagoda RS, Phalan B, Philips TK, Pillsbury FC, Pincheira-Ulbrich J, Pineda E, Pino J, Pizarro-Araya J, Plumptre AJ, Poggio SL, Politi N, Pons P, Poveda K, Power EF, Presley SJ, Proença V, Quaranta M, Quintero C, Rader R, Ramesh BR, Ramirez-Pinilla MP, Ranganathan J, Rasmussen C, Redpath-Downing NA, Reid JL, Reis YT, Rey Benayas JM, Rey-Velasco JC, Reynolds C, Ribeiro DB, Richards MH, Richardson BA, Richardson MJ, Ríos RM, Robinson R, Robles CA, Römbke J, Romero-Duque LP, Rös M, Rosselli L, Rossiter SJ, Roth DS, Roulston TH, Rousseau L, Rubio AV, Ruel JC, Sadler JP, Sáfián S, Saldaña-Vázquez RA, Sam K, Samnegård U, Santana J, Santos X, Savage J, Schellhorn NA, Schilthuizen M, Schmiedel U, Schmitt CB, Schon NL, Schüepp C, Schumann K, Schweiger O, Scott DM, Scott KA, Sedlock JL, Seefeldt SS, Shahabuddin G, Shannon G, Sheil D, Sheldon FH, Shochat E, Siebert SJ, Silva FA, Simonetti JA, Slade EM, Smith J, Smith-Pardo AH, Sodhi NS, Somarriba EJ, Sosa RA, Soto Quiroga G, St-Laurent MH, Starzomski BM, Stefanescu C, Steffan-Dewenter I, Stouffer PC, Stout JC, Strauch AM, Struebig MJ, Su Z, Suarez-Rubio M, Sugiura S, Summerville KS, Sung YH, Sutrisno H, Svenning JC, Teder T, Threlfall CG, Tiitsaar A, Todd JH, Tonietto RK, Torre I, Tóthmérész B, Tscharntke T, Turner EC, Tylianakis JM, Uehara-Prado M, Urbina-Cardona N, Vallan D, Vanbergen AJ, Vasconcelos HL, Vassilev K, Verboven HA, Verdasca MJ, Verdú JR, Vergara CH, Vergara PM, Verhulst J, Virgilio M, Vu LV, Waite EM, Walker TR, Wang HF, Wang Y, Watling JI, Weller B, Wells K, Westphal C, Wiafe ED, Williams CD, Willig MR, Woinarski JC, Wolf JH, Wolters V, Woodcock BA, Wu J, Wunderle JM Jr, Yamaura Y, Yoshikura S, Yu DW, Zaitsev AS, Zeidler J, Zou F, Collen B, Ewers RM, Mace GM, Purves DW, Scharlemann JP, and Purvis A
- Abstract
The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
- Published
- 2016
- Full Text
- View/download PDF
43. Land-use intensification causes multitrophic homogenization of grassland communities.
- Author
-
Gossner MM, Lewinsohn TM, Kahl T, Grassein F, Boch S, Prati D, Birkhofer K, Renner SC, Sikorski J, Wubet T, Arndt H, Baumgartner V, Blaser S, Blüthgen N, Börschig C, Buscot F, Diekötter T, Jorge LR, Jung K, Keyel AC, Klein AM, Klemmer S, Krauss J, Lange M, Müller J, Overmann J, Pašalić E, Penone C, Perović DJ, Purschke O, Schall P, Socher SA, Sonnemann I, Tschapka M, Tscharntke T, Türke M, Venter PC, Weiner CN, Werner M, Wolters V, Wurst S, Westphal C, Fischer M, Weisser WW, and Allan E
- Subjects
- Animals, Arthropods, Birds, Bryopsida, Chiroptera, Conservation of Natural Resources, Datasets as Topic, Food Chain, Fungi, Germany, Lichens, Plants, Soil Microbiology, Species Specificity, Agriculture, Biodiversity, Grassland, Human Activities
- Abstract
Land-use intensification is a major driver of biodiversity loss. Alongside reductions in local species diversity, biotic homogenization at larger spatial scales is of great concern for conservation. Biotic homogenization means a decrease in β-diversity (the compositional dissimilarity between sites). Most studies have investigated losses in local (α)-diversity and neglected biodiversity loss at larger spatial scales. Studies addressing β-diversity have focused on single or a few organism groups (for example, ref. 4), and it is thus unknown whether land-use intensification homogenizes communities at different trophic levels, above- and belowground. Here we show that even moderate increases in local land-use intensity (LUI) cause biotic homogenization across microbial, plant and animal groups, both above- and belowground, and that this is largely independent of changes in α-diversity. We analysed a unique grassland biodiversity dataset, with abundances of more than 4,000 species belonging to 12 trophic groups. LUI, and, in particular, high mowing intensity, had consistent effects on β-diversity across groups, causing a homogenization of soil microbial, fungal pathogen, plant and arthropod communities. These effects were nonlinear and the strongest declines in β-diversity occurred in the transition from extensively managed to intermediate intensity grassland. LUI tended to reduce local α-diversity in aboveground groups, whereas the α-diversity increased in belowground groups. Correlations between the β-diversity of different groups, particularly between plants and their consumers, became weaker at high LUI. This suggests a loss of specialist species and is further evidence for biotic homogenization. The consistently negative effects of LUI on landscape-scale biodiversity underscore the high value of extensively managed grasslands for conserving multitrophic biodiversity and ecosystem service provision. Indeed, biotic homogenization rather than local diversity loss could prove to be the most substantial consequence of land-use intensification.
- Published
- 2016
- Full Text
- View/download PDF
44. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality.
- Author
-
Soliveres S, van der Plas F, Manning P, Prati D, Gossner MM, Renner SC, Alt F, Arndt H, Baumgartner V, Binkenstein J, Birkhofer K, Blaser S, Blüthgen N, Boch S, Böhm S, Börschig C, Buscot F, Diekötter T, Heinze J, Hölzel N, Jung K, Klaus VH, Kleinebecker T, Klemmer S, Krauss J, Lange M, Morris EK, Müller J, Oelmann Y, Overmann J, Pašalić E, Rillig MC, Schaefer HM, Schloter M, Schmitt B, Schöning I, Schrumpf M, Sikorski J, Socher SA, Solly EF, Sonnemann I, Sorkau E, Steckel J, Steffan-Dewenter I, Stempfhuber B, Tschapka M, Türke M, Venter PC, Weiner CN, Weisser WW, Werner M, Westphal C, Wilcke W, Wolters V, Wubet T, Wurst S, Fischer M, and Allan E
- Subjects
- Animals, Biomass, Germany, Grassland, Herbivory, Insecta, Microbiology, Models, Biological, Plants, Biodiversity, Food Chain
- Abstract
Many experiments have shown that loss of biodiversity reduces the capacity of ecosystems to provide the multiple services on which humans depend. However, experiments necessarily simplify the complexity of natural ecosystems and will normally control for other important drivers of ecosystem functioning, such as the environment or land use. In addition, existing studies typically focus on the diversity of single trophic groups, neglecting the fact that biodiversity loss occurs across many taxa and that the functional effects of any trophic group may depend on the abundance and diversity of others. Here we report analysis of the relationships between the species richness and abundance of nine trophic groups, including 4,600 above- and below-ground taxa, and 14 ecosystem services and functions and with their simultaneous provision (or multifunctionality) in 150 grasslands. We show that high species richness in multiple trophic groups (multitrophic richness) had stronger positive effects on ecosystem services than richness in any individual trophic group; this includes plant species richness, the most widely used measure of biodiversity. On average, three trophic groups influenced each ecosystem service, with each trophic group influencing at least one service. Multitrophic richness was particularly beneficial for 'regulating' and 'cultural' services, and for multifunctionality, whereas a change in the total abundance of species or biomass in multiple trophic groups (the multitrophic abundance) positively affected supporting services. Multitrophic richness and abundance drove ecosystem functioning as strongly as abiotic conditions and land-use intensity, extending previous experimental results to real-world ecosystems. Primary producers, herbivorous insects and microbial decomposers seem to be particularly important drivers of ecosystem functioning, as shown by the strong and frequent positive associations of their richness or abundance with multiple ecosystem services. Our results show that multitrophic richness and abundance support ecosystem functioning, and demonstrate that a focus on single groups has led to researchers to greatly underestimate the functional importance of biodiversity.
- Published
- 2016
- Full Text
- View/download PDF
45. Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases.
- Author
-
De Palma A, Abrahamczyk S, Aizen MA, Albrecht M, Basset Y, Bates A, Blake RJ, Boutin C, Bugter R, Connop S, Cruz-López L, Cunningham SA, Darvill B, Diekötter T, Dorn S, Downing N, Entling MH, Farwig N, Felicioli A, Fonte SJ, Fowler R, Franzén M, Goulson D, Grass I, Hanley ME, Hendrix SD, Herrmann F, Herzog F, Holzschuh A, Jauker B, Kessler M, Knight ME, Kruess A, Lavelle P, Le Féon V, Lentini P, Malone LA, Marshall J, Pachón EM, McFrederick QS, Morales CL, Mudri-Stojnic S, Nates-Parra G, Nilsson SG, Öckinger E, Osgathorpe L, Parra-H A, Peres CA, Persson AS, Petanidou T, Poveda K, Power EF, Quaranta M, Quintero C, Rader R, Richards MH, Roulston T, Rousseau L, Sadler JP, Samnegård U, Schellhorn NA, Schüepp C, Schweiger O, Smith-Pardo AH, Steffan-Dewenter I, Stout JC, Tonietto RK, Tscharntke T, Tylianakis JM, Verboven HA, Vergara CH, Verhulst J, Westphal C, Yoon HJ, and Purvis A
- Subjects
- Animals, Bees classification, Conservation of Natural Resources, Geography, Bees physiology
- Abstract
Land-use change and intensification threaten bee populations worldwide, imperilling pollination services. Global models are needed to better characterise, project, and mitigate bees' responses to these human impacts. The available data are, however, geographically and taxonomically unrepresentative; most data are from North America and Western Europe, overrepresenting bumblebees and raising concerns that model results may not be generalizable to other regions and taxa. To assess whether the geographic and taxonomic biases of data could undermine effectiveness of models for conservation policy, we have collated from the published literature a global dataset of bee diversity at sites facing land-use change and intensification, and assess whether bee responses to these pressures vary across 11 regions (Western, Northern, Eastern and Southern Europe; North, Central and South America; Australia and New Zealand; South East Asia; Middle and Southern Africa) and between bumblebees and other bees. Our analyses highlight strong regionally-based responses of total abundance, species richness and Simpson's diversity to land use, caused by variation in the sensitivity of species and potentially in the nature of threats. These results suggest that global extrapolation of models based on geographically and taxonomically restricted data may underestimate the true uncertainty, increasing the risk of ecological surprises.
- Published
- 2016
- Full Text
- View/download PDF
46. Locally rare species influence grassland ecosystem multifunctionality.
- Author
-
Soliveres S, Manning P, Prati D, Gossner MM, Alt F, Arndt H, Baumgartner V, Binkenstein J, Birkhofer K, Blaser S, Blüthgen N, Boch S, Böhm S, Börschig C, Buscot F, Diekötter T, Heinze J, Hölzel N, Jung K, Klaus VH, Klein AM, Kleinebecker T, Klemmer S, Krauss J, Lange M, Morris EK, Müller J, Oelmann Y, Overmann J, Pašalić E, Renner SC, Rillig MC, Schaefer HM, Schloter M, Schmitt B, Schöning I, Schrumpf M, Sikorski J, Socher SA, Solly EF, Sonnemann I, Sorkau E, Steckel J, Steffan-Dewenter I, Stempfhuber B, Tschapka M, Türke M, Venter P, Weiner CN, Weisser WW, Werner M, Westphal C, Wilcke W, Wolters V, Wubet T, Wurst S, Fischer M, and Allan E
- Subjects
- Agriculture, Conservation of Natural Resources, Germany, Population Density, Biodiversity, Grassland
- Abstract
Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity-multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land-use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community-level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species-specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities., (© 2016 The Author(s).)
- Published
- 2016
- Full Text
- View/download PDF
47. The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts.
- Author
-
Hudson LN, Newbold T, Contu S, Hill SL, Lysenko I, De Palma A, Phillips HR, Senior RA, Bennett DJ, Booth H, Choimes A, Correia DL, Day J, Echeverría-Londoño S, Garon M, Harrison ML, Ingram DJ, Jung M, Kemp V, Kirkpatrick L, Martin CD, Pan Y, White HJ, Aben J, Abrahamczyk S, Adum GB, Aguilar-Barquero V, Aizen MA, Ancrenaz M, Arbeláez-Cortés E, Armbrecht I, Azhar B, Azpiroz AB, Baeten L, Báldi A, Banks JE, Barlow J, Batáry P, Bates AJ, Bayne EM, Beja P, Berg Å, Berry NJ, Bicknell JE, Bihn JH, Böhning-Gaese K, Boekhout T, Boutin C, Bouyer J, Brearley FQ, Brito I, Brunet J, Buczkowski G, Buscardo E, Cabra-García J, Calviño-Cancela M, Cameron SA, Cancello EM, Carrijo TF, Carvalho AL, Castro H, Castro-Luna AA, Cerda R, Cerezo A, Chauvat M, Clarke FM, Cleary DF, Connop SP, D'Aniello B, da Silva PG, Darvill B, Dauber J, Dejean A, Diekötter T, Dominguez-Haydar Y, Dormann CF, Dumont B, Dures SG, Dynesius M, Edenius L, Elek Z, Entling MH, Farwig N, Fayle TM, Felicioli A, Felton AM, Ficetola GF, Filgueiras BK, Fonte SJ, Fraser LH, Fukuda D, Furlani D, Ganzhorn JU, Garden JG, Gheler-Costa C, Giordani P, Giordano S, Gottschalk MS, Goulson D, Gove AD, Grogan J, Hanley ME, Hanson T, Hashim NR, Hawes JE, Hébert C, Helden AJ, Henden JA, Hernández L, Herzog F, Higuera-Diaz D, Hilje B, Horgan FG, Horváth R, Hylander K, Isaacs-Cubides P, Ishitani M, Jacobs CT, Jaramillo VJ, Jauker B, Jonsell M, Jung TS, Kapoor V, Kati V, Katovai E, Kessler M, Knop E, Kolb A, Kőrösi Á, Lachat T, Lantschner V, Le Féon V, LeBuhn G, Légaré JP, Letcher SG, Littlewood NA, López-Quintero CA, Louhaichi M, Lövei GL, Lucas-Borja ME, Luja VH, Maeto K, Magura T, Mallari NA, Marin-Spiotta E, Marshall EJ, Martínez E, Mayfield MM, Mikusinski G, Milder JC, Miller JR, Morales CL, Muchane MN, Muchane M, Naidoo R, Nakamura A, Naoe S, Nates-Parra G, Navarrete Gutierrez DA, Neuschulz EL, Noreika N, Norfolk O, Noriega JA, Nöske NM, O'Dea N, Oduro W, Ofori-Boateng C, Oke CO, Osgathorpe LM, Paritsis J, Parra-H A, Pelegrin N, Peres CA, Persson AS, Petanidou T, Phalan B, Philips TK, Poveda K, Power EF, Presley SJ, Proença V, Quaranta M, Quintero C, Redpath-Downing NA, Reid JL, Reis YT, Ribeiro DB, Richardson BA, Richardson MJ, Robles CA, Römbke J, Romero-Duque LP, Rosselli L, Rossiter SJ, Roulston TH, Rousseau L, Sadler JP, Sáfián S, Saldaña-Vázquez RA, Samnegård U, Schüepp C, Schweiger O, Sedlock JL, Shahabuddin G, Sheil D, Silva FA, Slade EM, Smith-Pardo AH, Sodhi NS, Somarriba EJ, Sosa RA, Stout JC, Struebig MJ, Sung YH, Threlfall CG, Tonietto R, Tóthmérész B, Tscharntke T, Turner EC, Tylianakis JM, Vanbergen AJ, Vassilev K, Verboven HA, Vergara CH, Vergara PM, Verhulst J, Walker TR, Wang Y, Watling JI, Wells K, Williams CD, Willig MR, Woinarski JC, Wolf JH, Woodcock BA, Yu DW, Zaitsev AS, Collen B, Ewers RM, Mace GM, Purves DW, Scharlemann JP, and Purvis A
- Abstract
Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - http://www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.
- Published
- 2014
- Full Text
- View/download PDF
48. Interannual variation in land-use intensity enhances grassland multidiversity.
- Author
-
Allan E, Bossdorf O, Dormann CF, Prati D, Gossner MM, Tscharntke T, Blüthgen N, Bellach M, Birkhofer K, Boch S, Böhm S, Börschig C, Chatzinotas A, Christ S, Daniel R, Diekötter T, Fischer C, Friedl T, Glaser K, Hallmann C, Hodac L, Hölzel N, Jung K, Klein AM, Klaus VH, Kleinebecker T, Krauss J, Lange M, Morris EK, Müller J, Nacke H, Pasalic E, Rillig MC, Rothenwöhrer C, Schall P, Scherber C, Schulze W, Socher SA, Steckel J, Steffan-Dewenter I, Türke M, Weiner CN, Werner M, Westphal C, Wolters V, Wubet T, Gockel S, Gorke M, Hemp A, Renner SC, Schöning I, Pfeiffer S, König-Ries B, Buscot F, Linsenmair KE, Schulze ED, Weisser WW, and Fischer M
- Subjects
- Area Under Curve, Conservation of Natural Resources, Germany, Models, Biological, Phylogeny, Plants, Species Specificity, Time Factors, Agriculture methods, Biodiversity, Poaceae physiology
- Abstract
Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18% of the maximum diversity across all grasslands when LUI was static over time but increased to 31% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation.
- Published
- 2014
- Full Text
- View/download PDF
49. General relationships between abiotic soil properties and soil biota across spatial scales and different land-use types.
- Author
-
Birkhofer K, Schöning I, Alt F, Herold N, Klarner B, Maraun M, Marhan S, Oelmann Y, Wubet T, Yurkov A, Begerow D, Berner D, Buscot F, Daniel R, Diekötter T, Ehnes RB, Erdmann G, Fischer C, Foesel B, Groh J, Gutknecht J, Kandeler E, Lang C, Lohaus G, Meyer A, Nacke H, Näther A, Overmann J, Polle A, Pollierer MM, Scheu S, Schloter M, Schulze ED, Schulze W, Weinert J, Weisser WW, Wolters V, and Schrumpf M
- Subjects
- Animals, Biomass, Ecosystem, Oligochaeta, Biota, Soil
- Abstract
Very few principles have been unraveled that explain the relationship between soil properties and soil biota across large spatial scales and different land-use types. Here, we seek these general relationships using data from 52 differently managed grassland and forest soils in three study regions spanning a latitudinal gradient in Germany. We hypothesize that, after extraction of variation that is explained by location and land-use type, soil properties still explain significant proportions of variation in the abundance and diversity of soil biota. If the relationships between predictors and soil organisms were analyzed individually for each predictor group, soil properties explained the highest amount of variation in soil biota abundance and diversity, followed by land-use type and sampling location. After extraction of variation that originated from location or land-use, abiotic soil properties explained significant amounts of variation in fungal, meso- and macrofauna, but not in yeast or bacterial biomass or diversity. Nitrate or nitrogen concentration and fungal biomass were positively related, but nitrate concentration was negatively related to the abundances of Collembola and mites and to the myriapod species richness across a range of forest and grassland soils. The species richness of earthworms was positively correlated with clay content of soils independent of sample location and land-use type. Our study indicates that after accounting for heterogeneity resulting from large scale differences among sampling locations and land-use types, soil properties still explain significant proportions of variation in fungal and soil fauna abundance or diversity. However, soil biota was also related to processes that act at larger spatial scales and bacteria or soil yeasts only showed weak relationships to soil properties. We therefore argue that more general relationships between soil properties and soil biota can only be derived from future studies that consider larger spatial scales and different land-use types.
- Published
- 2012
- Full Text
- View/download PDF
50. Differential threshold effects of habitat fragmentation on gene flow in two widespread species of bush crickets.
- Author
-
Lange R, Durka W, Holzhauer SI, Wolters V, and Diekötter T
- Subjects
- Animals, Genetic Variation, Genotype, Germany, Microsatellite Repeats, Ecosystem, Gene Flow, Genetics, Population, Gryllidae genetics
- Abstract
Effects of habitat fragmentation on genetic diversity vary among species. This may be attributed to the interacting effects of species traits and landscape structure. While widely distributed and abundant species are often considered less susceptible to fragmentation, this may be different if they are small sized and show limited dispersal. Under intensive land use, habitat fragmentation may reach thresholds at which gene flow among populations of small-sized and dispersal-limited species becomes disrupted. Here, we studied the genetic diversity of two abundant and widespread bush crickets along a gradient of habitat fragmentation in an agricultural landscape. We applied traditional (G(ST), θ) and recently developed (G'ST', D) estimators of genetic differentiation on microsatellite data from each of twelve populations of the grassland species Metrioptera roeselii and the forest-edge species Pholidoptera griseoaptera to identify thresholds of habitat fragmentation below which genetic population structure is affected. Whereas the grassland species exhibited a uniform genetic structuring (G(ST) = 0.020-0.033; D = 0.085-0.149) along the whole fragmentation gradient, the forest-edge species' genetic differentiation increased significantly from D < 0.063 (G(ST) < 0.018) to D = 0.166 (G(ST) = 0.074), once the amount of suitable habitat dropped below a threshold of 20% and its proximity decreased substantially at the landscape scale. The influence of fragmentation on genetic differentiation was qualitatively unaffected by the choice of estimators of genetic differentiation but quantitatively underestimated by the traditional estimators. These results indicate that even for widespread species in modern agricultural landscapes fragmentation thresholds exist at which gene flow among suitable habitat patches becomes restricted., (© 2010 Blackwell Publishing Ltd.)
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.