68 results on '"Diego Herranz"'
Search Results
2. Extragalactic Astrophysics With Next-Generation CMB Experiments
- Author
-
Gianfranco De Zotti, Matteo Bonato, Mattia Negrello, Tiziana Trombetti, Carlo Burigana, Diego Herranz, Marcos López-Caniego, Zhen-Yi Cai, Laura Bonavera, and Joaquin González-Nuevo
- Subjects
cosmic microwave background ,galaxy surveys ,radio sources ,strong lensing ,sub-millimeter galaxies ,proto-clusters ,Astronomy ,QB1-991 ,Geophysics. Cosmic physics ,QC801-809 - Abstract
Planck, SPT, and ACT surveys have clearly demonstrated that Cosmic Microwave Background (CMB) experiments, while optimized for cosmological measurements, have made important contributions to the field of extragalactic astrophysics in the last decade. Future CMB experiments have the potential to make even greater contributions. One example is the detection of high-z galaxies with extreme gravitational amplifications. The combination of flux boosting and of stretching of the images has allowed the investigation of the structure of galaxies at z ≃ 3 with the astounding spatial resolution of about 60 pc. Another example is the detection of proto-clusters of dusty galaxies at high z when they may not yet possess the hot intergalactic medium allowing their detection in X-rays or via the Sunyaev-Zeldovich effect. Next generation CMB experiments, like PICO, CORE, CMB-Bharat from space and Simons Observatory and CMB-S4 from the ground, will discover several thousands of strongly lensed galaxies out to z ~ 6 or more and of galaxy proto-clusters caught in the phase when their member galaxies where forming the bulk of their stars. They will also detect tens of thousands of local dusty galaxies and thousands of radio sources at least up to z ≃ 5. Moreover they will measure the polarized emission of thousands of radio sources and of dusty galaxies at mm/sub-mm wavelengths.
- Published
- 2019
- Full Text
- View/download PDF
3. Can CMB Surveys Help the AGN Community?
- Author
-
Bruce Partridge, Laura Bonavera, Marcos López-Caniego, Rahul Datta, Joaquin Gonzalez-Nuevo, Megan Gralla, Diego Herranz, Anne Lähteenmäki, Laura Mocanu, Heather Prince, Joaquin Vieira, Nathan Whitehorn, and Lizhong Zhang
- Subjects
active galactic nuclei ,extragalactic radio sources ,cosmic microwave background ,polarized emission ,Astronomy ,QB1-991 - Abstract
Contemporary projects to measure anisotropies in the cosmic microwave background (CMB) are now detecting hundreds to thousands of extragalactic radio sources, most of them blazars. As a member of a group of CMB scientists involved in the construction of catalogues of such sources and their analysis, I wish to point out the potential value of CMB surveys to studies of AGN jets and their polarization. Current CMB projects, for instance, reach mJy sensitivity, offer wide sky coverage, are “blind” and generally of uniform sensitivity across the sky (hence useful statistically), make essentially simultaneous multi-frequency observations at frequencies from 30 to 857 GHz, routinely offer repeated observations of sources with interesting cadences and now generally provide polarization measurements. The aim here is not to analyze in any depth the AGN science already derived from such projects, but rather to heighten awareness of their promise for the AGN community.
- Published
- 2017
- Full Text
- View/download PDF
4. Compact Source Detection in Multichannel Microwave Surveys: From SZ Clusters to Polarized Sources
- Author
-
Diego Herranz, Francisco Argüeso, and Pedro Carvalho
- Subjects
Astronomy ,QB1-991 - Abstract
We describe the state-of-the art status of multifrequency detection techniques for compact sources in microwave astronomy. From the simplest cases where the spectral behaviour is well known (i.e., thermal SZ clusters) to the more complex cases where there is little a priori information (i.e., polarized radio sources) we will review the main advances and the most recent results in the detection problem.
- Published
- 2012
- Full Text
- View/download PDF
5. 28–40 GHz variability and polarimetry of bright compact sources in the QUIJOTE cosmological fields
- Author
-
Yvette C Perrott, Marcos López-Caniego, Ricardo T Génova-Santos, Jose Alberto Rubiño-Martín, Mark Ashdown, Diego Herranz, Anne Lähteenmäki, Anthony N Lasenby, Carlos H López-Caraballo, Frédérick Poidevin, and Merja Tornikoski
- Published
- 2021
- Full Text
- View/download PDF
6. Bayesian MAP detection of extragalactic point sources in microwave astronomical images.
- Author
-
Diego Herranz, Francisco Argüeso, Emanuele Salerno, Ercan E. Kuruoglu, and Koray Kayabol
- Published
- 2011
- Full Text
- View/download PDF
7. Blind source separation from multi-channel observations with channel-variant spatial resolutions.
- Author
-
Koray Kayabol, Emanuele Salerno, José Luis Sanz, Diego Herranz, and Ercan E. Kuruoglu
- Published
- 2010
8. A sparse approach to astronomical point source detection.
- Author
-
Diego Herranz, Francisco Argüeso, José Luis Sanz, and Marcos López-Caniego
- Published
- 2010
9. Filtering in the Time-Frequency domain for the detection of compact objects.
- Author
-
Diego Herranz, José Luis Sanz, and Ercan E. Kuruoglu
- Published
- 2009
10. Wavelets on the sphere. Application to the detection problem.
- Author
-
José Luis Sanz, Diego Herranz, Marcos López-Caniego, and Francisco Argüeso
- Published
- 2006
11. The Mexican Hat Wavelet Family. Application to the study of non-Gaussianity in cosmic microwave background maps.
- Author
-
Francisco Argüeso, José Luis Sanz, Rita Belén Barreiro, Diego Herranz, and J. Gonzalez-Nuevo
- Published
- 2006
12. The new multi-frequency instrument (MFI2) for the QUIJOTE facility in Tenerife
- Author
-
Roger J. Hoyland, José A. Rubiño-Martín, Marta Aguiar-Gonzalez, Paz Alonso-Arias, Eduardo Artal, Mark Ashdown, Belén Barreiro, Francisco J. Casas, Carlos Colodro-Conde, Elena de la Hoz, Mateo Fernández-Torreiro, Pablo A. Fuerte-Rodriguez, Ricardo T. Génova-Santos, Maria F. Gómez-Reñasco, Eduardo D. González-Carretero, Raul González-González, Frederica Guidi, Carlos Hernández-Monteagudo, Diego Herranz, Anthony N. Lasenby, Carlos H. López-Caraballo, Enríque Martínez-Gonzalez, Asier Oria-Carreras, Michael W. Peel, Angeles Pérez de Taoro, Cristina Pérez-Lemus, Lucio Piccirillo, Rafael Rebolo, Jesus S. Rodriguez-Diaz, Rafael Toledo-Moreo, Afrodisio Vega-Moreno, Patricio Vielva, Robert A. Watson, Antonio Zamora-Jimenez, Universidad de Cantabria, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), European Commission, and Ministerio de Economía y Competitividad (España)
- Subjects
Cryogenics ,Direct digital conversion ,CMB ,Polarimeter ,Microwaves ,Early Universe ,Instrumentation ,FPGA ,Telescopes - Abstract
Event: SPIE Astronomical Telescopes + Instrumentation, 2022, Montréal, Québec, Canada., et al., The QUIJOTE (Q-U-I joint Tenerife) experiment combines the operation of two radio-telescopes and three instruments working in the microwave bands 10–20 GHz, 26–36 GHz and 35–47 GHz at the Teide Observatory, Tenerife, and has already been presented in previous SPIE meetings (Hoyland, R. J. et al, 2012; Rubi˜no-Mart´ın et al., 2012). The Cosmology group at the IAC have designed a new upgrade to the MFI instrument in the band 10–20 GHz. The aim of the QUIJOTE telescopes is to characterise the polarised emission of the cosmic microwave background (CMB), as well as galactic and extra-galactic sources, at medium and large angular scales. This MFI2 will continue the survey at even higher sensitivity levels. The MFI2 project led by the Instituto de Astrof´ısica de Canarias (IAC) consists of five polarimeters, three of them operating in the sub-band 10–15 GHz, and two in the sub-band 15–20 GHz. The MFI2 instrument is expected to be a full two–three times more sensitive than the former MFI. The microwave complex correlator design has been replaced by a simple correlator design with a digital back-end based on the latest Xilinx FPGAs (ZCU111). During the first half of 2019 the manufacture of the new cryostat was completed and since then the opto-mechanical components have been designed and manufactured. It is expected that the cryogenic front-end will be completed by the end of 2022 along with the FPGA acquisition and observing system. This digital system has been employed to be more robust against stray ground-based and satellite interference, having a frequency resolution of 1 MHz., Partial financial support is provided by the Spanish Ministry of Science and Innovation (MICINN), under the projects AYA2017-84185-P, IACA15-BE-3707, EQC2018-004918-P and the FEDER Agreement INSIDE-OOCC (ICTS-2019-03-IAC-12). We also acknowledge financial support of the Severo Ochoa Programs SEV-2015-0548 and CEX2019-000920-S.
- Published
- 2022
- Full Text
- View/download PDF
13. The Mexican Hat Wavelet Family. Application to point source detection in cosmic microwave background maps.
- Author
-
Francisco Argüeso, Joaquín González-Nuevo, José Luis Sanz, L. Toffolatti, Patricio Vielva, Diego Herranz, and Marcos López-Caniego
- Published
- 2005
14. Linear and quadratic fusion of images: Detection of point sources.
- Author
-
Marcos López-Caniego, José Luis Sanz, Diego Herranz, Rita Belén Barreiro, and J. Gonzalez-Nuevo
- Published
- 2005
15. A Bayesian approach to filter design: detection of compact sources.
- Author
-
Marcos López-Caniego, Diego Herranz, Rita Belén Barreiro, and José Luis Sanz
- Published
- 2004
- Full Text
- View/download PDF
16. Source Separation Techniques Applied to Astrophysical Maps.
- Author
-
Emanuele Salerno, Anna Tonazzini, Ercan E. Kuruoglu, Luigi Bedini, Diego Herranz, and Carlo Baccigalupi
- Published
- 2004
- Full Text
- View/download PDF
17. Astrophysical image denoising using bivariate isotropic cauchy distributions in the undecimated wavelet domain.
- Author
-
Alin Achim, Diego Herranz, and Ercan E. Kuruoglu
- Published
- 2004
- Full Text
- View/download PDF
18. Filter design for the detection/estimation of the modulus of a vector: Application to polarization data.
- Author
-
Francisco Argüeso, José Luis Sanz, and Diego Herranz
- Published
- 2011
- Full Text
- View/download PDF
19. Adaptive Langevin Sampler for Separation of t-Distribution Modelled Astrophysical Maps.
- Author
-
Koray Kayabol, Ercan E. Kuruoglu, José Luis Sanz, Bülent Sankur, Emanuele Salerno, and Diego Herranz
- Published
- 2010
- Full Text
- View/download PDF
20. Astrophysical image separation by blind time-frequency source separation methods.
- Author
-
Mehmet Tankut özgen, Ercan E. Kuruoglu, and Diego Herranz
- Published
- 2009
- Full Text
- View/download PDF
21. Matrix Filters for the Detection of Extragalactic Point Sources in Cosmic Microwave Background Images.
- Author
-
Diego Herranz and José Luis Sanz
- Published
- 2008
- Full Text
- View/download PDF
22. Detection of Point Sources on Two-Dimensional Images Based on Peaks.
- Author
-
Marcos López-Caniego, Diego Herranz, José Luis Sanz, and Rita Belén Barreiro
- Published
- 2005
- Full Text
- View/download PDF
23. Separation of Correlated Astrophysical Sources Using Multiple-Lag Data Covariance Matrices.
- Author
-
Luigi Bedini, Diego Herranz, Emanuele Salerno, Carlo Baccigalupi, Ercan E. Kuruoglu, and Anna Tonazzini
- Published
- 2005
- Full Text
- View/download PDF
24. A Trigger Interface Board for the Large and Medium Sized telescopes of the Cherenkov Telescope Array
- Author
-
Luis A. Tejedor, Juan A. Barrio, Pablo Peñil, Alejandro Pérez, Diego Herranz, and Jorge Martín
- Subjects
Astrofísica ,Nuclear and High Energy Physics ,Instrumentation - Abstract
This paper presents the Trigger Interface Board (TIB), a system in charge of managing the trigger and clock signals in the cameras for the Large- and Medium-Sized telescopes in the Cherenkov Telescope Array (CTA). The TIB includes interfaces with the neighboring telescopes and with other subsystems in the camera. It receives trigger pulses from different origins and decides when those trigger signals should cause the camera readout. The decision is based on slow control parameters, the TIB internal state, the busy state of the camera, and the coincidence in time with other telescopes in a hardware stereo trigger scheme. Depending on the trigger origin, the TIB also generates an event data fragment, that is delivered to the camera Event Builder as part of the full raw event data. Additionally, it provides camera data-taking information to CTA central instances for monitoring purposes. The design of the TIB is based on two main components, namely an FPGA and a microcomputer. This structure provides fast digital processing capabilities, high-level software features for slow control and TCP/IP communication, and, especially, great flexibility to develop functionalities by working on the firmware and software levels separately.
- Published
- 2021
25. Cosmic microwave background images.
- Author
-
Diego Herranz and Patricio Vielva
- Published
- 2010
- Full Text
- View/download PDF
26. Overview of the Medium and High Frequency Telescopes of the LiteBIRD satellite mission
- Author
-
Ludovic Montier, Baptiste Mot, Paolo de Bernardis, Bruno Maffei, Giampaolo Pisano, Fabio Columbro, Jon E. Gudmundsson, Sophie Henrot-Versillé, Luca Lamagna, Joshua Montgomery, Thomas Prouvé, Megan Russell, Giorgio Savini, Samantha Stever, Keith L. Thompson, Masahiro Tsujimoto, Carole Tucker, Benjamin Westbrook, Peter A. Ade, Alexandre Adler, Erwan Allys, Kam Arnold, Didier Auguste, Jonathan Aumont, Ragnhild Aurlien, Jason Austermann, Carlo Baccigalupi, Anthony J. Banday, Ranajoy Banerji, Rita B. Barreiro, Soumen Basak, Jim Beall, Dominic Beck, Shawn Beckman, Juan Bermejo, Marco Bersanelli, Julien Bonis, Julian Borrill, Francois Boulanger, Sophie Bounissou, Maksym Brilenkov, Michael Brown, Martin Bucher, Erminia Calabrese, Paolo Campeti, Alessandro Carones, Francisco J. Casas, Anthony Challinor, Victor Chan, Kolen Cheung, Yuji Chinone, Jean F. Cliche, Loris Colombo, Javier Cubas, Ari Cukierman, David Curtis, Giuseppe D'Alessandro, Nadia Dachlythra, Marco De Petris, Clive Dickinson, Patricia Diego-Palazuelos, Matt Dobbs, Tadayasu Dotani, Lionel Duband, Shannon Duff, Jean M. Duval, Ken Ebisawa, Tucker Elleflot, Hans K. Eriksen, Josquin Errard, Thomas Essinger-Hileman, Fabio Finelli, Raphael Flauger, Cristian Franceschet, Unni Fuskeland, Mathew Galloway, Ken Ganga, Jian R. Gao, Ricardo Genova-Santos, Martina Gerbino, Massimo Gervasi, Tommaso Ghigna, Eirik Gjerløw, Marcin L. Gradziel, Julien Grain, Frank Grupp, Alessandro Gruppuso, Tijmen de Haan, Nils W. Halverson, Peter Hargrave, Takashi Hasebe, Masaya Hasegawa, Makoto Hattori, Masashi Hazumi, Daniel Herman, Diego Herranz, Charles A. Hill, Gene Hilton, Yukimasa Hirota, Eric Hivon, Renee A. Hlozek, Yurika Hoshino, Elena de la Hoz, Johannes Hubmayr, Kiyotomo Ichiki, Teruhito Iida, Hiroaki Imada, Kosei Ishimura, Hirokazu Ishino, Greg Jaehnig, Tooru Kaga, Shingo Kashima, Nobuhiko Katayama, Akihiro Kato, Takeo Kawasaki, Reijo Keskitalo, Theodore Kisner, Yohei Kobayashi, Nozomu Kogiso, Alan Kogut, Kazunori Kohri, Eiichiro Komatsu, Kunimoto Komatsu, Kuniaki Konishi, Nicoletta Krachmalnicoff, Ingo Kreykenbohm, Chao-Lin L. Kuo, Akihiro Kushino, Jeff V. Lanen, Massimiliano Lattanzi, Adrian T. Lee, Clément Leloup, François Levrier, Eric Linder, Thibaut Louis, Gemma Luzzi, Thierry Maciaszek, Davide Maino, Muneyoshi Maki, Stefano Mandelli, Enrique Martinez-Gonzalez, Silvia Masi, Tomotake Matsumura, Aniello Mennella, Marina Migliaccio, Yuto Minami, Kazuhisa Mitsuda, Gianluca Morgante, Yasuhiro Murata, John A. Murphy, Makoto Nagai, Yuya Nagano, Taketo Nagasaki, Ryo Nagata, Shogo Nakamura, Toshiya Namikawa, Paolo Natoli, Simran Nerval, Toshiyuki Nishibori, Haruki Nishino, Créidhe O'Sullivan, Hideo Ogawa, Hiroyuki Ogawa, Shugo Oguri, Hiroyuki Ohsaki, Izumi S. Ohta, Norio Okada, Nozomi Okada, Luca Pagano, Alessandro Paiella, Daniela Paoletti, Guillaume Patanchon, Julien Peloton, Francesco Piacentini, Gianluca Polenta, Davide Poletti, Giuseppe Puglisi, Damien Rambaud, Christopher Raum, Sabrina Realini, Martin Reinecke, Mathieu Remazeilles, Alessia Ritacco, Gilles Roudil, Jose A. Rubino-Martin, Haruyuki Sakurai, Yuki Sakurai, Maura Sandri, Manami Sasaki, Douglas Scott, Joseph Seibert, Yutaro Sekimoto, Blake Sherwin, Keisuke Shinozaki, Maresuke Shiraishi, Peter Shirron, Giovanni Signorelli, Graeme Smecher, Radek Stompor, Hajime Sugai, Shinya Sugiyama, Aritoki Suzuki, Junichi Suzuki, Trygve L. Svalheim, Eric Switzer, Ryota Takaku, Hayato Takakura, Satoru Takakura, Yusuke Takase, Youichi Takeda, Andrea Tartari, Ellen Taylor, Yutaka Terao, Harald Thommesen, Ben Thorne, Takayuki Toda, Maurizio Tomasi, Mayu Tominaga, Neil Trappe, Matthieu Tristram, Masatoshi Tsuji, Joe Ullom, Gerard Vermeulen, Patricio Vielva, Fabrizio Villa, Michael Vissers, Nicola Vittorio, Ingunn Wehus, Jochen Weller, Joern Wilms, Berend Winter, Edward J. Wollack, Noriko Y. Yamasaki, Tetsuya Yoshida, Junji Yumoto, Mario Zannoni, Andrea Zonca, Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National d’Études Spatiales [Paris] (CNES), LiteBIRD, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), European Commission, European Research Council, Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Laboratoire de physique de l'ENS - ENS Paris (LPENS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Département des Systèmes Basses Températures (DSBT ), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Laboratoire des Cryoréfrigérateurs et Cryogénie Spatiale (LCCS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Lystrup, Makenzie, Montier, L, Mot, B, de Bernardis, P, Maffei, B, Pisano, G, Columbro, F, Gudmundsson, J, Henrot-Versillé, S, Lamagna, L, Montgomery, J, Prouvé, T, Russell, M, Savini, G, Stever, S, Thompson, K, Tsujimoto, M, Tucker, C, Westbrook, B, Ade, P, Adler, A, Allys, E, Arnold, K, Auguste, D, Aumont, J, Aurlien, R, Austermann, J, Baccigalupi, C, Banday, A, Banerji, R, Barreiro, R, Basak, S, Beall, J, Beck, D, Beckman, S, Bermejo, J, Bersanelli, M, Bonis, J, Borrill, J, Boulanger, F, Bounissou, S, Brilenkov, M, Brown, M, Bucher, M, Calabrese, E, Campeti, P, Carones, A, Casas, F, Challinor, A, Chan, V, Cheung, K, Chinone, Y, Cliche, J, Colombo, L, Cubas, J, Cukierman, A, Curtis, D, D'Alessandro, G, Dachlythra, N, De Petris, M, Dickinson, C, Diego-Palazuelos, P, Dobbs, M, Dotani, T, Duband, L, Duff, S, Duval, J, Ebisawa, K, Elleflot, T, Eriksen, H, Errard, J, Essinger-Hileman, T, Finelli, F, Flauger, R, Franceschet, C, Fuskeland, U, Galloway, M, Ganga, K, Gao, J, Genova-Santos, R, Gerbino, M, Gervasi, M, Ghigna, T, Gjerløw, E, Gradziel, M, Grain, J, Grupp, F, Gruppuso, A, de Haan, T, Halverson, N, Hargrave, P, Hasebe, T, Hasegawa, M, Hattori, M, Hazumi, M, Herman, D, Herranz, D, Hill, C, Hilton, G, Hirota, Y, Hivon, E, Hlozek, R, Hoshino, Y, de la Hoz, E, Hubmayr, J, Ichiki, K, Iida, T, Imada, H, Ishimura, K, Ishino, H, Jaehnig, G, Kaga, T, Kashima, S, Katayama, N, Kato, A, Kawasaki, T, Keskitalo, R, Kisner, T, Kobayashi, Y, Kogiso, N, Kogut, A, Kohri, K, Komatsu, E, Komatsu, K, Konishi, K, Krachmalnicoff, N, Kreykenbohm, I, Kuo, C, Kushino, A, Lanen, J, Lattanzi, M, Lee, A, Leloup, C, Levrier, F, Linder, E, Louis, T, Luzzi, G, Maciaszek, T, Maino, D, Maki, M, Mandelli, S, Martinez-Gonzalez, E, Masi, S, Matsumura, T, Mennella, A, Migliaccio, M, Minami, Y, Mitsuda, K, Morgante, G, Murata, Y, Murphy, J, Nagai, M, Nagano, Y, Nagasaki, T, Nagata, R, Nakamura, S, Namikawa, T, Natoli, P, Nerval, S, Nishibori, T, Nishino, H, O'Sullivan, C, Ogawa, H, Oguri, S, Ohsaki, H, Ohta, I, Okada, N, Pagano, L, Paiella, A, Paoletti, D, Patanchon, G, Peloton, J, Piacentini, F, Polenta, G, Poletti, D, Puglisi, G, Rambaud, D, Raum, C, Realini, S, Reinecke, M, Remazeilles, M, Ritacco, A, Roudil, G, Rubino-Martin, J, Sakurai, H, Sakurai, Y, Sandri, M, Sasaki, M, Scott, D, Seibert, J, Sekimoto, Y, Sherwin, B, Shinozaki, K, Shiraishi, M, Shirron, P, Signorelli, G, Smecher, G, Stompor, R, Sugai, H, Sugiyama, S, Suzuki, A, Suzuki, J, Svalheim, T, Switzer, E, Takaku, R, Takakura, H, Takakura, S, Takase, Y, Takeda, Y, Tartari, A, Taylor, E, Terao, Y, Thommesen, H, Thorne, B, Toda, T, Tomasi, M, Tominaga, M, Trappe, N, Tristram, M, Tsuji, M, Ullom, J, Vermeulen, G, Vielva, P, Villa, F, Vissers, M, Vittorio, N, Wehus, I, Weller, J, Wilms, J, Winter, B, Wollack, E, Yamasaki, N, Yoshida, T, Yumoto, J, Zannoni, M, Zonca, A, and Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris)
- Subjects
cosmological model ,experimental methods ,detector: satellite ,Cosmic microwave background ,cosmic background radiation: polarization ,detector: noise ,magnetic field ,02 engineering and technology ,LiteBIRD, cosmic microwave background, polarization measurements, space telescopes ,7. Clean energy ,01 natural sciences ,law.invention ,law ,detector: calibration ,media_common ,Physics ,conductivity: thermal ,Settore FIS/05 ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,021001 nanoscience & nanotechnology ,Polarization (waves) ,inflation: model ,experimental equipment ,B-mode ,cosmic radiation ,cryogenics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,0210 nano-technology ,cosmic background radiation: detector ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,lens ,Astrophysics::High Energy Astrophysical Phenomena ,media_common.quotation_subject ,FOS: Physical sciences ,LiteBIRD ,Polarization measurements ,Space telescopes ,Astrophysics::Cosmology and Extragalactic Astrophysics ,bolometer: superconductivity ,frequency: high ,Radio spectrum ,tensor scalar: ratio ,010309 optics ,Telescope ,FIS/05 - ASTRONOMIA E ASTROFISICA ,Settore FIS/05 - Astronomia e Astrofisica ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,numerical calculations ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,detector: angular resolution ,Astrophysics::Galaxy Astrophysics ,Gravitational wave ,synchrotron radiation ,gravitational radiation: primordial ,Astronomy ,Physics::History of Physics ,optics ,detector: sensitivity ,13. Climate action ,Sky ,Satellite ,temperature: stability ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
Event: SPIE Astronomical Telescopes + Instrumentation, 2020, Online.-- et al., LiteBIRD is a JAXA-led Strategic Large-Class mission designed to search for the existence of the primordial gravitational waves produced during the inflationary phase of the Universe, through the measurements of their imprint onto the polarization of the cosmic microwave background (CMB). These measurements, requiring unprecedented sensitivity, will be performed over the full sky, at large angular scales, and over 15 frequency bands from 34 GHz to 448 GHz. The LiteBIRD instruments consist of three telescopes, namely the Low-, Medium-and High-Frequency Telescope (respectively LFT, MFT and HFT). We present in this paper an overview of the design of the Medium-Frequency Telescope (89{224 GHz) and the High-Frequency Telescope (166{448 GHz), the so-called MHFT, under European responsibility, which are two cryogenic refractive telescopes cooled down to 5 K. They include a continuous rotating half-wave plate as the first optical element, two high-density polyethylene (HDPE) lenses and more than three thousand transition-edge sensor (TES) detectors cooled to 100 mK. We provide an overview of the concept design and the remaining specific challenges that we have to face in order to achieve the scientific goals of LiteBIRD., This work is supported in Japan by ISAS/JAXA for Pre-Phase A2 studies, by the acceleration program of JAXA research and development directorate, by the World Premier International Research Center Initiative (WPI) of MEXT, by the JSPS Core-to-Core Program of A. Advanced Research Networks, and by JSPS KAKENHI Grant Numbers JP15H05891, JP17H01115, and JP17H01125. The Italian LiteBIRD phase A contribution is supported by the Italian Space Agency (ASI Grants No. 2020-9-HH.0 and 2016-24-H.1-2018), the National Institute for Nuclear Physics (INFN) and the National Institute for Astrophysics (INAF). The French LiteBIRD phase A contribution is supported by the Centre National d’Etudes Spatiale (CNES), by the Centre National de la Recherche Scientifique (CNRS), and by the Commissariat a l’Energie Atomique (CEA). The Canadian contribution is supported by the Canadian Space Agency. The US contribution is supported by NASA grant no. 80NSSC18K0132. Norwegian participation in LiteBIRD is supported by the Research Council of Norway (Grant No. 263011). The Spanish LiteBIRD phase A contribution is supported by the Spanish Agencia Estatal de Investigacion (AEI), project refs. PID2019-110610RB-C21 and AYA2017-84185-P. Funds that support the Swedish contributions come from the Swedish National Space Agency (SNSA/Rymdstyrelsen) and the Swedish Research Council (Reg. no. 2019-03959). The German participation in LiteBIRD is supported in part by the Excellence Cluster ORIGINS, which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy (Grant No. EXC-2094 - 390783311). This research used resources of the Central Computing System owned and operated by the Computing Research Center at KEK, as well as resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy. European collaborators acknowledge support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement Nos. 772253, 819478, and 849169). The European Space Agency (ESA) has led a Concurrent Design Facility study, focused on the MHFT and Sub-Kelvin coolers, and funded Technology Research Programmes for “Large radii Half-Wave Plate (HWP) development” (contract number: 4000123266/18/NL/AF) and for the ‘Development of Large Anti-Reflection Coated Lenses for Passive (Sub)Millimeter-Wave Science Instruments” (contract number: 4000128517/19/NL/AS).
- Published
- 2020
- Full Text
- View/download PDF
27. LiteBIRD: JAXA's new strategic L-class mission for all-sky surveys of cosmic microwave background polarization
- Author
-
Masashi Hazumi, Peter A. Ade, Alexandre Adler, Erwan Allys, Kam Arnold, Didier Auguste, Jonathan Aumont, Ragnhild Aurlien, Jason Austermann, Carlo Baccigalupi, Anthony J. Banday, R. Banjeri, Rita B. Barreiro, Soumen Basak, Jim Beall, Dominic Beck, Shawn Beckman, Juan Bermejo, Paolo de Bernardis, Marco Bersanelli, Julien Bonis, Julian Borrill, Francois Boulanger, Sophie Bounissou, Maksym Brilenkov, Michael Brown, Martin Bucher, Erminia Calabrese, Paolo Campeti, Alessandro Carones, Francisco J. Casas, Anthony Challinor, Victor Chan, Kolen Cheung, Yuji Chinone, Jean F. Cliche, Loris Colombo, Fabio Columbro, Javier Cubas, Ari Cukierman, David Curtis, Giuseppe D'Alessandro, Nadia Dachlythra, Marco De Petris, Clive Dickinson, Patricia Diego-Palazuelos, Matt Dobbs, Tadayasu Dotani, Lionel Duband, Shannon Duff, Jean M. Duval, Ken Ebisawa, Tucker Elleflot, Hans K. Eriksen, Josquin Errard, Thomas Essinger-Hileman, Fabio Finelli, Raphael Flauger, Cristian Franceschet, Unni Fuskeland, Mathew Galloway, Ken Ganga, Jian R. Gao, Ricardo Genova-Santos, Martina Gerbino, Massimo Gervasi, Tommaso Ghigna, Eirik Gjerløw, Marcin L. Gradziel, Julien Grain, Frank Grupp, Alessandro Gruppuso, Jon E. Gudmundsson, Tijmen de Haan, Nils W. Halverson, Peter Hargrave, Takashi Hasebe, Masaya Hasegawa, Makoto Hattori, Sophie Henrot-Versillé, Daniel Herman, Diego Herranz, Charles A. Hill, Gene Hilton, Yukimasa Hirota, Eric Hivon, Renee A. Hlozek, Yurika Hoshino, Elena de la Hoz, Johannes Hubmayr, Kiyotomo Ichiki, Teruhito Iida, Hiroaki Imada, Kosei Ishimura, Hirokazu Ishino, Greg Jaehnig, Tooru Kaga, Shingo Kashima, Nobuhiko Katayama, Akihiro Kato, Takeo Kawasaki, Reijo Keskitalo, Theodore Kisner, Yohei Kobayashi, Nozomu Kogiso, Alan Kogut, Kazunori Kohri, Eiichiro Komatsu, Kunimoto Komatsu, Kuniaki Konishi, Nicoletta Krachmalnicoff, Ingo Kreykenbohm, Chao-Lin L. Kuo, Akihiro Kushino, Luca Lamagna, Jeff V. Lanen, Massimiliano Lattanzi, Adrian T. Lee, Clément Leloup, François Levrier, Eric Linder, Thibaut Louis, Gemma Luzzi, Thierry Maciaszek, Bruno Maffei, Davide Maino, Muneyoshi Maki, Stefano Mandelli, Enrique Martinez-Gonzalez, Silvia Masi, Tomotake Matsumura, Aniello Mennella, Marina Migliaccio, Yuto Minami, Kazuhisa Mitsuda, Joshua Montgomery, Ludovic Montier, Gianluca Morgante, Baptiste Mot, Yasuhiro Murata, John A. Murphy, Makoto Nagai, Yuya Nagano, Taketo Nagasaki, Ryo Nagata, Shogo Nakamura, Toshiya Namikawa, Paolo Natoli, Simran Nerval, Toshiyuki Nishibori, Haruki Nishino, Fabio Noviello, Créidhe O'Sullivan, Hideo Ogawa, Hiroyuki Ogawa, Shugo Oguri, Hiroyuki Ohsaki, Izumi S. Ohta, Norio Okada, Nozomi Okada, Luca Pagano, Alessandro Paiella, Daniela Paoletti, Guillaume Patanchon, Julien Peloton, Francesco Piacentini, Giampaolo Pisano, Gianluca Polenta, Davide Poletti, Thomas Prouvé, Giuseppe Puglisi, Damien Rambaud, Christopher Raum, Sabrina Realini, Martin Reinecke, Mathieu Remazeilles, Alessia Ritacco, Gilles Roudil, Jose A. Rubino-Martin, Megan Russell, Haruyuki Sakurai, Yuki Sakurai, Maura Sandri, Manami Sasaki, Giorgio Savini, Douglas Scott, Joseph Seibert, Yutaro Sekimoto, Blake Sherwin, Keisuke Shinozaki, Maresuke Shiraishi, Peter Shirron, Giovanni Signorelli, Graeme Smecher, Samantha Stever, Radek Stompor, Hajime Sugai, Shinya Sugiyama, Aritoki Suzuki, Junichi Suzuki, Trygve L. Svalheim, Eric Switzer, Ryota Takaku, Hayato Takakura, Satoru Takakura, Yusuke Takase, Youichi Takeda, Andrea Tartari, Ellen Taylor, Yutaka Terao, Harald Thommesen, Keith L. Thompson, Ben Thorne, Takayuki Toda, Maurizio Tomasi, Mayu Tominaga, Neil Trappe, Matthieu Tristram, Masatoshi Tsuji, Masahiro Tsujimoto, Carole Tucker, Joe Ullom, Gerard Vermeulen, Patricio Vielva, Fabrizio Villa, Michael Vissers, Nicola Vittorio, Ingunn Wehus, Jochen Weller, Benjamin Westbrook, Joern Wilms, Berend Winter, Edward J. Wollack, Noriko Y. Yamasaki, Tetsuya Yoshida, Junji Yumoto, Mario Zannoni, Andrea Zonca, Astrophysique, Laboratoire de physique de l'ENS - ENS Paris (LPENS), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National d’Études Spatiales [Paris] (CNES), Centre National d'Études Spatiales [Toulouse] (CNES), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), LiteBIRD, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Département des Systèmes Basses Températures (DSBT ), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Laboratoire des Cryoréfrigérateurs et Cryogénie Spatiale (LCCS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Hélium : du fondamental aux applications (NEEL - HELFA), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), European Commission, Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Lystrup, Makenzie, Hazumi, M, Ade, P, Adler, A, Allys, E, Arnold, K, Auguste, D, Aumont, J, Aurlien, R, Austermann, J, Baccigalupi, C, Banday, A, Banjeri, R, Barreiro, R, Basak, S, Beall, J, Beck, D, Beckman, S, Bermejo, J, de Bernardis, P, Bersanelli, M, Bonis, J, Borrill, J, Boulanger, F, Bounissou, S, Brilenkov, M, Brown, M, Bucher, M, Calabrese, E, Campeti, P, Carones, A, Casas, F, Challinor, A, Chan, V, Cheung, K, Chinone, Y, Cliche, J, Colombo, L, Columbro, F, Cubas, J, Cukierman, A, Curtis, D, D'Alessandro, G, Dachlythra, N, De Petris, M, Dickinson, C, Diego-Palazuelos, P, Dobbs, M, Dotani, T, Duband, L, Duff, S, Duval, J, Ebisawa, K, Elleflot, T, Eriksen, H, Errard, J, Essinger-Hileman, T, Finelli, F, Flauger, R, Franceschet, C, Fuskeland, U, Galloway, M, Ganga, K, Gao, J, Genova-Santos, R, Gerbino, M, Gervasi, M, Ghigna, T, Gjerløw, E, Gradziel, M, Grain, J, Grupp, F, Gruppuso, A, Gudmundsson, J, de Haan, T, Halverson, N, Hargrave, P, Hasebe, T, Hasegawa, M, Hattori, M, Henrot-Versillé, S, Herman, D, Herranz, D, Hill, C, Hilton, G, Hirota, Y, Hivon, E, Hlozek, R, Hoshino, Y, de la Hoz, E, Hubmayr, J, Ichiki, K, Iida, T, Imada, H, Ishimura, K, Ishino, H, Jaehnig, G, Kaga, T, Kashima, S, Katayama, N, Kato, A, Kawasaki, T, Keskitalo, R, Kisner, T, Kobayashi, Y, Kogiso, N, Kogut, A, Kohri, K, Komatsu, E, Komatsu, K, Konishi, K, Krachmalnicoff, N, Kreykenbohm, I, Kuo, C, Kushino, A, Lamagna, L, Lanen, J, Lattanzi, M, Lee, A, Leloup, C, Levrier, F, Linder, E, Louis, T, Luzzi, G, Maciaszek, T, Maffei, B, Maino, D, Maki, M, Mandelli, S, Martinez-Gonzalez, E, Masi, S, Matsumura, T, Mennella, A, Migliaccio, M, Minami, Y, Mitsuda, K, Montgomery, J, Montier, L, Morgante, G, Mot, B, Murata, Y, Murphy, J, Nagai, M, Nagano, Y, Nagasaki, T, Nagata, R, Nakamura, S, Namikawa, T, Natoli, P, Nerval, S, Nishibori, T, Nishino, H, Noviello, F, O'Sullivan, C, Ogawa, H, Oguri, S, Ohsaki, H, Ohta, I, Okada, N, Pagano, L, Paiella, A, Paoletti, D, Patanchon, G, Peloton, J, Piacentini, F, Pisano, G, Polenta, G, Poletti, D, Prouvé, T, Puglisi, G, Rambaud, D, Raum, C, Realini, S, Reinecke, M, Remazeilles, M, Ritacco, A, Roudil, G, Rubino-Martin, J, Russell, M, Sakurai, H, Sakurai, Y, Sandri, M, Sasaki, M, Savini, G, Scott, D, Seibert, J, Sekimoto, Y, Sherwin, B, Shinozaki, K, Shiraishi, M, Shirron, P, Signorelli, G, Smecher, G, Stever, S, Stompor, R, Sugai, H, Sugiyama, S, Suzuki, A, Suzuki, J, Svalheim, T, Switzer, E, Takaku, R, Takakura, H, Takakura, S, Takase, Y, Takeda, Y, Tartari, A, Taylor, E, Terao, Y, Thommesen, H, Thompson, K, Thorne, B, Toda, T, Tomasi, M, Tominaga, M, Trappe, N, Tristram, M, Tsuji, M, Tsujimoto, M, Tucker, C, Ullom, J, Vermeulen, G, Vielva, P, Villa, F, Vissers, M, Vittorio, N, Wehus, I, Weller, J, Westbrook, B, Wilms, J, Winter, B, Wollack, E, Yamasaki, N, Yoshida, T, Yumoto, J, Zannoni, M, and Zonca, A
- Subjects
cosmological model ,experimental methods ,detector: satellite ,Physics beyond the Standard Model ,Cosmic microwave background ,LiteBIRD, cosmic inflation, cosmic microwave background, B-mode polarization, primordial gravi- tational waves, quantum gravity, space telescope ,cosmic background radiation: polarization ,detector: noise ,02 engineering and technology ,7. Clean energy ,01 natural sciences ,expansion: multipole ,Cosmology ,General Relativity and Quantum Cosmology ,B-mode: primordial ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology (hep-ph) ,general relativity ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,B-mode polarization ,media_common ,Physics ,new physics ,quantum mechanics ,Astrophysics::Instrumentation and Methods for Astrophysics ,021001 nanoscience & nanotechnology ,BICEP ,inflation: model ,High Energy Physics - Phenomenology ,error: statistical ,experimental equipment ,cryogenics ,power spectrum: angular dependence ,[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,readout ,Astrophysics::Earth and Planetary Astrophysics ,dust ,control system ,0210 nano-technology ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics ,cosmic microwave background ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,satellite: Planck ,cosmic inflation ,media_common.quotation_subject ,Astrophysics::High Energy Astrophysical Phenomena ,primordial gravi- tational waves ,Cosmic background radiation ,space telescope ,Lagrangian point ,FOS: Physical sciences ,LiteBIRD ,General Relativity and Quantum Cosmology (gr-qc) ,Astrophysics::Cosmology and Extragalactic Astrophysics ,polarization: sensitivity ,010309 optics ,FIS/05 - ASTRONOMIA E ASTROFISICA ,Settore FIS/05 - Astronomia e Astrofisica ,gravitation: lens ,0103 physical sciences ,ionization ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,cosmic background radiation: power spectrum ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics::Galaxy Astrophysics ,Inflation (cosmology) ,synchrotron radiation ,primordial gravitational waves ,gravitational radiation: primordial ,Astronomy ,calibration ,Physics::History of Physics ,recombination ,detector: sensitivity ,angular resolution ,Sky ,quantum gravity ,gravitational radiation: emission ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,Satellite ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,experimental results - Abstract
Event: SPIE Astronomical Telescopes + Instrumentation, 2020, Online.-- et al., LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. JAXA selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with its expected launch in the late 2020s using JAXA’s H3 rocket. LiteBIRD plans to map the cosmic microwave background (CMB) polarization over the full sky with unprecedented precision. Its main scientific objective is to carry out a definitive search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with an insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. To this end, LiteBIRD will perform full-sky surveys for three years at the Sun-Earth Lagrangian point L2 for 15 frequency bands between 34 and 448 GHz with three telescopes, to achieve a total sensitivity of 2.16 µK-arcmin with a typical angular resolution of 0.5◦ at 100 GHz. We provide an overview of the LiteBIRD project, including scientific objectives, mission requirements, top-level system requirements, operation concept, and expected scientific outcomes., This work is supported in Japan by ISAS/JAXA for Pre-Phase A2 studies, by the acceleration program of JAXA research and development directorate, by the World Premier International Research Center Initiative (WPI) of MEXT, by the JSPS Core-to-Core Program of A. Advanced Research Networks, and by JSPS KAKENHI Grant Numbers JP15H05891, JP17H01115, and JP17H01125. The Italian LiteBIRD phase A contribution is supported by the Italian Space Agency (ASI Grants No. 2020-9-HH.0 and 2016-24-H.1-2018), the National Institute for Nuclear Physics (INFN) and the National Institute for Astrophysics (INAF). The French LiteBIRD phase A contribution is supported by the Centre National d’Etudes Spatiale (CNES), by the Centre National de la Recherche Scientifique (CNRS), and by the Commissariat a l’Energie Atomique (CEA). The Canadian contribution is supported by the Canadian Space Agency. The US contribution is supported by NASA grant no. 80NSSC18K0132. Norwegian participation in LiteBIRD is supported by the Research Council of Norway (Grant No. 263011). The Spanish LiteBIRD phase A contribution is supported by the Spanish Agencia Estatal de Investigacion (AEI), project refs. PID2019-110610RB-C21 and AYA2017-84185-P. Funds that support the Swedish contributions come from the Swedish National Space Agency (SNSA/Rymdstyrelsen) and the Swedish Research Council (Reg. no. 2019-03959). The German participation in LiteBIRD is supported in part by the Excellence Cluster ORIGINS, which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy (Grant No. EXC-2094 - 390783311). This research used resources of the Central Computing System owned and operated by the Computing Research Center at KEK, as well as resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy.
- Published
- 2020
- Full Text
- View/download PDF
28. An Analog Delay Compensation System to Reduce the Effect of Variable Transit Time in PMTs
- Author
-
Diego Herranz, Florent Dubois, Juan Boix, Juan Abel Barrio, Yusuke Konno, Jos I. Alonso, and Luis Ángel Tejedor
- Subjects
Physics ,Nuclear and High Energy Physics ,Photomultiplier ,Photodetector ,Compensation (engineering) ,law.invention ,Telescope ,Nuclear Energy and Engineering ,law ,Nuclear electronics ,Electronic engineering ,Metre ,Electrical and Electronic Engineering ,Cherenkov radiation ,Electronic circuit - Abstract
Photomultiplier transit time variation due to different high-voltage settings is a significant problem that degrades the performance of the systems that try to recognize fast image patterns in arrays of this type of photosensors. This effect is especially harmful for the performance of the trigger system of Cherenkov telescope cameras. With the aim of overcoming this effect, an electronic system has been designed, manufactured, and tested. This system can reduce the delay differences by introducing the appropriate variable delay for each photomultiplier (PMT), which is calculated by making use of a delay meter specially designed for this application. The specifications of the system have been defined by means of simulations and the measurements fulfill the requirements. The circuits used in this delay compensation system, as well as the simulations and measurements of the prototypes, are presented in this paper.
- Published
- 2013
- Full Text
- View/download PDF
29. Statistical properties of extragalactic sources in the New Extragalactic WMAP Point Source (NEWPS) catalogue
- Author
-
G. de Zotti, J. González-Nuevo, L. Toffolatti, Marcella Massardi, M. López-Caniego, Francisco Argüeso, J. L. Sanz, and Diego Herranz
- Subjects
Physics ,Spectral index ,Space and Planetary Science ,Point source ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,CMB cold spot ,Astrophysics::Galaxy Astrophysics ,Redshift - Abstract
We present results on spectral index distributions, number counts, redshift distribution and other general statistical properties of extragalactic point sources in the NEWPS5 sample L\'opez-Caniego et al. (2007). The flux calibrations at all the WMAP channels have been reassessed both by comparison with ground based observations and through estimates of the effective beam areas. The two methods yield consistent statistical correction factors. A search of the NED has yielded optical identifications for 89% of sources in the complete sub-sample of 252 sources with S/N>5 and S>1.1 Jy at 23 GHz; 5 sources turned out to be Galactic and were removed. The NED also yielded redshifts for 92% of the extragalactic sources at |b|>10deg. Their distribution was compared with model predictions; the agreement is generally good but a possible discrepancy is noted. Using the 5 GHz fluxes from the GB6 or PMN surveys, we find that 76% of the 191 extragalactic sources with S_23GHz>1.3,Jy can be classified as flat-spectrum sources between 5 and 23 GHz. A spectral steepening is observed at higher frequencies: only 59% of our sources are still flat-spectrum sources between 23 and 61 GHz and the average spectral indexes steepen from = 0.01\pm 0.03 to = 0.37\pm 0.03. We think, however, that the difference may be due to a selection effect. The source number counts have a close to Euclidean slope and are in good agreement with the predictions of the cosmological evolution model by De Zotti et al. (2005). The observed spectral index distributions were exploited to get model-independent extrapolations of counts to higher frequencies. The risks of such operations are discussed and reasons of discrepancies with other recent estimates are clarified.
- Published
- 2008
- Full Text
- View/download PDF
30. Observing high-redshift galaxy clusters through lensing of the Ostriker-Vishniac effect
- Author
-
Jose M. Diego and Diego Herranz
- Subjects
Physics ,Space and Planetary Science ,Cosmic microwave background ,Instrumental noise ,Astronomy and Astrophysics ,Astrophysics ,Filter (signal processing) ,Sensitivity (control systems) ,Focus (optics) ,Redshift ,Galaxy cluster - Abstract
In this paper we study the possibility of detecting lensing signals in high-resolution and high-sensitivity CMB experiments. At scales below 1 arcmin, the CMB background is dominated by the Sunyaev-Zel'dovich effect in clusters and by Ostriker-Vishniac effect distortions elsewhere. Assuming the Sunyaev-Zel'dovich component in clusters can be removed, we focus on the Ostriker-Vishniac effect and study the possibility of its detection while paying special attention to contaminants, such as instrumental noise and point sources. After designing an optimal filter for this particular lensing signal we explore the signal-to-noise ratio for different scenarios varying the resolution of the experiment, its sensitivity, and the level of contamination due to point sources. Our results show that the next generation of experiments should be able to do new and exciting science through the lensing effect of the Ostriker-Vishniac background.
- Published
- 2007
- Full Text
- View/download PDF
31. Comparison of filters for the detection of point sources in Planck simulations
- Author
-
M. López-Caniego, R. B. Barreiro, J. L. Sanz, L. Toffolatti, J. González-Nuevo, Diego Herranz, Francisco Argüeso, and P. Vielva
- Subjects
Physics ,media_common.quotation_subject ,Matched filter ,Astrophysics::Instrumentation and Methods for Astrophysics ,Mexican hat wavelet ,Flux ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,symbols.namesake ,Wavelet ,Space and Planetary Science ,Sky ,symbols ,Point (geometry) ,Planck ,Spurious relationship ,Astrophysics::Galaxy Astrophysics ,media_common - Abstract
We study the detection of extragalactic point sources in two-dimensional flat simulations for all the frequencies of the forthcoming ESA's Planck mission. In this work we have used the most recent available templates of the microwave sky: as for the diffuse Galactic components and the Sunyaev-Zel'dovich clusters we have used the ``Plank Reference Sky Model''; as for the extragalactic point sources, our simulations - which comprise all the source populations relevant in this frequency interval - are based on up-to-date cosmological evolution models for sources. To consistently compare the capabilities of different filters for the compilation of the - hopefully - most complete blind catalogue of point sources, we have obtained three catalogues by filtering the simulated sky maps with: the Matched Filter (MF), the Mexican Hat Wavelet (MHW1) and the Mexican Hat Wavelet 2 (MHW2), the first two members of the MHW Family. For the nine Planck frequencies we show the number of real and spurious detections and the percentage of spurious detections at different flux detection limits as well as the completeness level of the catalogues and the average errors in the estimation of the flux density of detected sources. Allowing a 5 % of spurious detections, we obtain the following number of detections by filtering with the MHW2 an area equivalent to half of the sky: 580 (30 GHz), 342 (44 GHz), 341 (70 GHz), 730 (100 GHz), 1130 (143 GHz), 1233 (217 GHz), 990 (353 GHz), 1025 (545 GHz) and 3183 (857 GHz). Our current results indicate that the MF and the MHW2 yield similar results, whereas the MHW1 performs worse in some cases and especially at very low fluxes. This is a relevant result, because we are able to obtain comparable results with the well known Matched Filter and with this specific wavelet, the MHW2, which is much easier to implement and use.
- Published
- 2006
- Full Text
- View/download PDF
32. The Mexican hat wavelet family: application to point-source detection in cosmic microwave background maps
- Author
-
P. Vielva, J. L. Sanz, J. González-Nuevo, L. Toffolatti, M. López-Caniego, Francisco Argüeso, and Diego Herranz
- Subjects
Physics ,Point source ,media_common.quotation_subject ,Cosmic microwave background ,Astrophysics::Instrumentation and Methods for Astrophysics ,Mexican hat wavelet ,Cosmic background radiation ,Astronomy ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Cosmology ,symbols.namesake ,Wavelet ,Space and Planetary Science ,Sky ,symbols ,Planck ,Astrophysics::Galaxy Astrophysics ,media_common - Abstract
We propose a new detection technique in the plane based on an isotropic wavelet family. This family is naturally constructed as an extension of the Gaussian–Mexican hat wavelet pair and for that reason we call it the Mexican hat wavelet family (MHWF). We show the performance of these wavelets when dealing with the detection of extragalactic point sources in cosmic microwave background (CMB) maps: a very important issue within the most general problem of the component separation of the microwave sky. Specifically, flat two-dimensional simulations of the microwave sky comprising all astrophysical components plus instrumental noise have been analysed for the channels at 30, 44 and 70 GHz of the forthcoming ESA Planck mission Low Frequency Instrument (LFI). We adopt up-to-date cosmological evolution models of extragalactic sources able to fit well the new data on high-frequency radio surveys and we discuss our current results on point-source detection by comparing them with those obtained using the Mexican hat wavelet (MHW) technique, which has been already proven a suitable tool for detecting point sources. By assuming a 5 per cent reliability level, the first new members of the MHWF, at their ‘optimal scale’, provide three point-source catalogues on half of the sky (at Galactic latitude |b| > 30°) at 30, 44 and 70 GHz of 639, 387 and 340 extragalactic sources, respectively. The corresponding flux detection limits are 0.38, 0.45 and 0.47 Jy. By using the same simulated sky patches and at the same frequencies as before, the MHW at its optimal scale provides 543, 322 and 311 sources with flux detection limits of 0.44, 0.51 and 0.50 Jy, respectively (5 per cent reliability level). These results show a clear improvement when we use the new members of the MHWF and, in particular, the MHW2 with respect to the MHW.
- Published
- 2006
- Full Text
- View/download PDF
33. Extragalactic sources in Cosmic Microwave Background maps
- Author
-
Jean-Baptiste Melin, M. Tucci, Luisa Toffolatti, Boudewijn F. Roukema, Zhen-Yi Cai, G. Castex, Jacques Delabrouille, Mattia Negrello, Maciej Bilicki, Laura Bonavera, Marcel Clemens, M. López-Caniego, Stephen Serjeant, G. de Zotti, Paola Andreani, J. González-Nuevo, David L. Clements, Diego Herranz, Science and Technology Facilities Council (STFC), Science and Technology Facilities Council [2006-2012], Istituto Nazionale di Astrofisica, South African Medical Research Council, and Polish Academy of Sciences
- Subjects
ACTIVE GALACTIC NUCLEI ,RADIO-SOURCES ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Cosmic microwave background ,FOS: Physical sciences ,galaxy evolution ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astronomy & Astrophysics ,7. Clean energy ,law.invention ,Hubble sequence ,Physics, Particles & Fields ,Telescope ,symbols.namesake ,0202 Atomic, Molecular, Nuclear, Particle And Plasma Physics ,law ,CMBR experiments ,STAR-FORMING GALAXIES ,Planck ,galaxy surveys ,Astrophysics::Galaxy Astrophysics ,Physics ,HIGH-FREQUENCY PEAKERS ,Science & Technology ,Star formation ,Astronomy and Astrophysics ,HERSCHEL-ATLAS ,Polarization (waves) ,LENSED SUBMILLIMETER GALAXIES ,POINT-SOURCE DETECTION ,Nuclear & Particles Physics ,Redshift ,Galaxy ,0201 Astronomical And Space Sciences ,13. Climate action ,COMPACT SOURCE CATALOG ,ANGULAR-CORRELATION FUNCTION ,Physical Sciences ,symbols ,SKY SURVEY ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
arXiv:1501.02170v2.-- et al., We discuss the potential of a next generation space-borne CMB experiment for studies of extragalactic sources with reference to COrE+, a project submitted to ESA in response to the call for a Medium-size mission (M4). We consider three possible options for the telescope size: 1 m, 1.5 m and 2 m (although the last option is probably impractical, given the M4 boundary conditions). The proposed instrument will be far more sensitive than Planck and will have a diffraction-limited angular resolution. These properties imply that even the 1 m telescope option will perform substantially better than Planck for studies of extragalactic sources. The source detection limits as a function of frequency have been estimated by means of realistic simulations taking into account all the relevant foregrounds. Predictions for the various classes of extragalactic sources are based on up-to-date models. The most significant improvements over Planck results are presented for each option. COrE+ will provide much larger samples of truly local star-forming galaxies (by about a factor of 8 for the 1 m telescope, of 17 for 1.5 m, of 30 for 2 m), making possible analyses of the properties of galaxies (luminosity functions, dust mass functions, star formation rate functions, dust temperature distributions, etc.) across the Hubble sequence. Even more interestingly, COrE+ will detect, at |b| > 30°, thousands of strongly gravitationally lensed galaxies (about 2,000, 6,000 and 13,000 for the 1 m, 1.5 m and 2 m options, respectively). Such large samples are of extraordinary astrophysical and cosmological value in many fields. Moreover, COrE+ high frequency maps will be optimally suited to pick up proto-clusters of dusty galaxies, i.e. to investigate the evolution of large scale structure at larger redshifts than can be reached by other means. Thanks to its high sensitivity COrE+ will also yield a spectacular advance in the blind detection of extragalactic sources in polarization: we expect that it will detect up to a factor of 40 (1 m option) or of 160 (1.5 m option) more radio sources than can be detected by Planck and, for the first time, from several tens (1 m option) to a few hundreds (1.5 m option) of star forming galaxies. This will open a new window for studies of the global properties of magnetic fields in star forming galaxies and of their relationships with star formation rates., Work supported in part by ASI/INAF agreement n. 2014-024-R.0. MB acknowledges the financial assistance of the South African National Research Foundation (NRF) and of the Polish National Science Centre under contract #UMO-2012/07/D/ST9/02785.
- Published
- 2015
34. The ASKAP/EMU Source Finding Data Challenge
- Author
-
M. López-Caniego, Hugh Garsden, Rosita Paladino, Ray P. Norris, N. Mohan, John D. Swinbank, Huub Röttgering, Thomas M. O. Franzen, D. Carbone, R. Pizzo, Kate Chow, A. J. van der Horst, Marcella Massardi, Eugenio Schisano, Chiara Ferrari, Rene P. Breton, D. Rafferty, Sergio Molinari, Paul Hancock, Christopher A. Hales, George Heald, J. González-Nuevo, Andrew M. Hopkins, Diego Herranz, Laura Bonavera, R. J. Jurek, M. R. Pestalozzi, Lawrence Rudnick, Minh Huynh, Matthew Whiting, Emanuela Orrú, Russell H. Taylor, Nick Seymour, Aleksandar Shulevski, High Energy Astrophys. & Astropart. Phys (API, FNWI), and Astronomy
- Subjects
Computer science ,Process (engineering) ,FOS: Physical sciences ,Machine learning ,computer.software_genre ,01 natural sciences ,Declination ,Set (abstract data type) ,0103 physical sciences ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,Southern Hemisphere ,Reliability (statistics) ,010308 nuclear & particles physics ,business.industry ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Variety (cybernetics) ,Identification (information) ,Pathfinder ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Artificial intelligence ,Astrophysics - Instrumentation and Methods for Astrophysics ,business ,computer - Abstract
The Evolutionary Map of the Universe (EMU) is a proposed radio continuum survey of the Southern Hemisphere up to declination +30 deg., with the Australian Square Kilometre Array Pathfinder (ASKAP). EMU will use an automated source identification and measurement approach that is demonstrably optimal, to maximise the reliability, utility and robustness of the resulting radio source catalogues. As part of the process of achieving this aim, a "Data Challenge" has been conducted, providing international teams the opportunity to test a variety of source finders on a set of simulated images. The aim is to quantify the accuracy of existing automated source finding and measurement approaches, and to identify potential limitations. The Challenge attracted nine independent teams, who tested eleven different source finding tools. In addition, the Challenge initiators also tested the current ASKAPsoft source-finding tool to establish how it could benefit from incorporating successful features of the other tools. Here we present the results of the Data Challenge, identifying the successes and limitations for this broad variety of the current generation of radio source finding tools. As expected, most finders demonstrate completeness levels close to 100% at 10sigma dropping to levels around 10% by 5sigma. The reliability is typically close to 100% at 10sigma, with performance to lower sensitivities varying greatly between finders. All finders demonstrate the usual trade-off between completeness and reliability, whereby maintaining a high completeness at low signal-to-noise comes at the expense of reduced reliability, and vice-versa. We conclude with a series of recommendations for improving the performance of the ASKAPsoft source-finding tool., Accepted for publication in PASA. 27 pages, 10 figures, 5 tables
- Published
- 2015
- Full Text
- View/download PDF
35. Optimal Detection of Sources on a Homogeneous and Isotropic Background
- Author
-
Diego Herranz, Enrique Martínez-González, and J. L. Sanz
- Subjects
Physics ,Random field ,Gaussian ,Astrophysics (astro-ph) ,Emphasis (telecommunications) ,Isotropy ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Spectral line ,Exponential function ,Power (physics) ,symbols.namesake ,Space and Planetary Science ,Homogeneous ,symbols ,Statistical physics - Abstract
This paper introduces the use of pseudo-filters that optimize the detection/extraction of sources on a background. We assume as a first approach that such sources are described by a spherical (central) profile and that the background is represented by a homogeneous and isotropic random field. We make an n-dimensional treatment making emphasis in astrophysical applications for spectra, images and volumes, for the cases of exponential and Gaussian source profiles and scale-free power spectra to represent the background., 27 pages, 3 figures
- Published
- 2001
- Full Text
- View/download PDF
36. Performance studies of the new stereoscopic Sum-Trigger-II of MAGIC after one year of operation
- Author
-
Dazzi, Francesco, primary, Lazaro, Diego Herranz, additional, López Moya, Marcos, additional, Nakajima, Daisuke, additional, Garcia, Jezabel Rodriguez, additional, and Schweizer, Thomas, additional
- Published
- 2016
- Full Text
- View/download PDF
37. The Herschel Virgo Cluster survey, XV : Planck submillimetre sources in the Virgo Cluster
- Author
-
Jacopo Fritz, I. De Looze, George J. Bendo, Catherine Vlahakis, Médéric Boquien, Sébastien Viaene, G. de Zotti, Thomas M. Hughes, Laure Ciesla, Maarten Baes, Gianfranco Gentile, Marcel Clemens, Alessandro Boselli, J. González-Nuevo, S. di Serego Alighieri, Diego Herranz, Robbie Richard Auld, Joris Verstappen, Simone Bianchi, Matthew Smith, F. Allaert, Jonathan Ivor Davies, David L. Clements, Luca Cortese, Belgian Science Policy Office, Agenzia Spaziale Italiana, Istituto Nazionale di Astrofisica, Research Foundation - Flanders, Astrophysics, Astronomy and Astrophysics Research Group, Laboratoire d'Astrophysique de Marseille (LAM), and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
submillimeter: galaxies ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,DWARF GALAXIES ,INFRARED-EMISSION ,Flux ,FOS: Physical sciences ,galaxies [submillimeter] ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,symbols.namesake ,EARLY-TYPE GALAXIES ,NEARBY GALAXIES ,Planck ,QC ,Astrophysics::Galaxy Astrophysics ,QB ,Physics ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,ISM [galaxies] ,STRONGLY LENSED GALAXIES ,Astronomy and Astrophysics ,Virgo Cluster ,Astrophysics - Astrophysics of Galaxies ,Galaxy ,GAS MASS-RATIO ,Photometry (astronomy) ,Spire ,SPECTRAL ENERGY-DISTRIBUTION ,Physics and Astronomy ,Space and Planetary Science ,COMPACT SOURCE CATALOG ,LUMINOSITY FUNCTION ,Astrophysics of Galaxies (astro-ph.GA) ,symbols ,Cirrus ,galaxies: ISM ,INTERSTELLAR DUST ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
M. Baes et al., We cross-correlate the Planck Catalogue of Compact Sources (PCCS) with the fully sampled 84 deg2Herschel Virgo Cluster Survey (HeViCS) fields. We search for and identify the 857 and 545 GHz PCCS sources in the HeViCS fields by studying their FIR/submm and optical counterparts. We find 84 and 48 compact Planck sources in the HeViCS fields at 857 and 545 GHz, respectively. Almost all sources correspond to individual bright Virgo Cluster galaxies. The vast majority of the Planck detected galaxies are late-type spirals, with the Sc class dominating the numbers, while early-type galaxies are virtually absent from the sample, especially at 545 GHz. We compare the HeViCS SPIRE flux densities for the detected galaxies with the four different PCCS flux density estimators and find an excellent correlation with the aperture photometry flux densities, even at the highest flux density levels. We find only seven PCCS sources in the HeViCS fields without a nearby galaxy as obvious counterpart, and conclude that all of these are dominated by Galactic cirrus features or are spurious detections. No Planck sources in the HeViCS fields seem to be associated to high-redshift proto-clusters of dusty galaxies or strongly lensed submm sources. Finally, our study is the first empirical confirmation of the simulation-based estimated completeness of the PCCS, and provides a strong support of the internal PCCS validation procedure. © 2014 ESO., M.B., J.F. and T.H. acknowledge financial support from the Belgian Science Policy Office (BELSPO) through the PRODEX project “Herschel-PACS Guaranteed Time and Open Time Programs: Science Exploitation” (C90370). M.C. and G.D.Z. acknowledge financial support from ASI/INAF Agreement I/072/09/0. M.B., F.A., I.D.L., G.G., S.V. and J.V. acknowledge support from the Flemish Fund for Scientific Research (FWO-Vlaanderen). SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCLMSSL, UKATC, Univ. Sussex (UK); and Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); and NASA (USA). The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England.
- Published
- 2014
- Full Text
- View/download PDF
38. Planck 2013 results. VII. HFI time response and beams
- Author
-
Marc-Antoine Miville-Deschênes, Federico Nati, Luca Terenzi, Ben Rusholme, S. Donzelli, M. Bridges, Francesca Perrotta, Pavel Naselsky, Marian Douspis, Torsten A. Enßlin, A. Moneti, F. Atrio-Barandela, S. Ricciardi, Enrique Martínez-González, M. Rowan-Robinson, R. D. Davies, Jörg P. Rachen, W. Holmes, M. Tomasi, F. Cuttaia, Silvia Masi, K. Benabed, Davide Pietrobon, Florent Sureau, Tomotake Matsumura, Calvin B. Netterfield, T. Riller, Elena Pierpaoli, J. R. Bond, Marco Bersanelli, Serge Gratton, A. Sauvé, F.-X. Désert, Duncan Hanson, J.-F. Cardoso, K. Ganga, D. L. Harrison, X. Dupac, James J. Bock, Jean-Loup Puget, Jose M. Diego, Hannu Kurki-Suonio, Jean-Luc Starck, Allan Hornstrup, Stéphane Plaszczynski, Etienne Pointecouteau, Herve Dole, Olivier Doré, F. Matthai, Lloyd Knox, Alessandro Melchiorri, Olivier Forni, F. K. Hansen, L. Popa, Luigi Danese, F. Pasian, S. R. Hildebrandt, A. Coulais, R. Kneissl, F. Pajot, David L. Clements, J. F. Macías-Pérez, Reijo Keskitalo, Bruno Maffei, Carlo Burigana, F. Piacentini, Graca Rocha, E. P. S. Shellard, E. Franceschi, Matthieu Tristram, M. Piat, A. Mennella, Ted Kisner, Andrea Zonca, A. Gregorio, Douglas Scott, Pasquale Mazzotta, C. Renault, Diego Herranz, V. Stolyarov, H. C. Chiang, Monique Arnaud, G. de Zotti, A. Curto, P. M. McGehee, J. Aumont, Anthony Lasenby, E. Keihänen, G. W. Pratt, L. Pagano, T. R. Jaffe, M. Migliaccio, M. Frailis, Carlo Baccigalupi, I. Ristorcelli, E. Hivon, C. Hernández-Monteagudo, François R. Bouchet, Joanna Dunkley, G. Prézeau, Martin Kunz, D. Santos, Charles R. Lawrence, Mathieu Remazeilles, Hans Ulrik Nørgaard-Nielsen, S. Galeotta, Alain Benoit, M. Linden-Vørnle, T. Poutanen, J.-M. Delouis, Sarah E. Church, A. H. Jaffe, L. Mendes, J.-F. Sygnet, A. Benoit-Lévy, Radek Stompor, C. A. Oxborrow, Jon E. Gudmundsson, M. Giard, Guilaine Lagache, Sabino Matarrese, Guillaume Patanchon, Alessandro Gruppuso, M. Tucci, W. C. Jones, Luca Valenziano, Peter G. Martin, A. de Rosa, B. P. Crill, Lung-Yih Chiang, Michael P. Hobson, Mika Juvela, M. López-Caniego, J. Haissinski, G. Umana, B. Van Tent, Kevin M. Huffenberger, Rashmikant V. Sudiwala, J. A. Murphy, E. Battaner, Locke D. Spencer, R. B. Barreiro, M. Ashdown, J. Knoche, J. W. Bowyer, Simon Prunet, Nicola Vittorio, Fabrizio Villa, Andrea Zacchei, Z. Hou, C. Armitage-Caplan, Gianluca Morgante, F. Noviello, Igor D. Novikov, Sophie Henrot-Versille, A.-S. Suur-Uski, J.-M. Lamarre, Stephane Colombi, Paolo Natoli, M. Sandri, Nabila Aghanim, S. Osborne, Krzysztof M. Gorski, O. Perdereau, Peter A. R. Ade, Daniel J. Mortlock, Nicolas Ponthieu, P. R. Christensen, C. J. MacTavish, Anthony Challinor, J.-P. Bernard, D. Sutton, Benjamin D. Wandelt, Julian Borrill, P. de Bernardis, Giorgio Savini, F. Paci, A. Catalano, Michele Liguori, Ranga-Ram Chary, F. Couchot, Subhabrata Mitra, J. A. Tauber, R. Leonardi, C. Rosset, G. Roudier, Martin Bucher, Jussi Valiviita, H. K. Eriksen, Douglas J. Marshall, G. Polenta, D. Tavagnacco, A. A. Fraisse, A. J. Banday, J. Lesgourgues, P. Vielva, Marcella Massardi, J. González-Nuevo, Jacques Delabrouille, René J. Laureijs, Fabio Finelli, L. A. Montier, W. Hovest, P. B. Lilje, P. Bielewicz, L. Perotto, A. M. Polegre, C. Leroy, M. Maris, M. Reinecke, L. P. L. Colombo, Dmitry Novikov, L. A. Wade, Daniela Paoletti, Dipak Munshi, George Efstathiou, N. Mandolesi, Philip Lubin, Jérôme Bobin, A. Chamballu, D. Yvon, Y. Giraud-Héraud, Universidad de Cantabria, HELFA - Hélium : du fondamental aux applications, Institut Néel (NEEL), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), APC - Cosmologie, Physique Corpusculaire et Cosmologie - Collège de France (PCC), Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), AstroParticule et Cosmologie (APC (UMR_7164)), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), APC - Gravitation (APC-Gravitation), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, PLANCK, Hélium : du fondamental aux applications (NEEL - HELFA), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Science and Technology Facilities Council (STFC), Science and Technology Facilities Council [2006-2012], Hélium : du fondamental aux applications (HELFA), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS Paris), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Department of Physics, Helsinki Institute of Physics, Tauber, J, Ade, P, Aghanim, N, Armitage Caplan, C, Arnaud, M, Ashdown, M, Atrio Barandela, F, Aumont, J, Baccigalupi, C, Banday, A, Barreiro, R, Battaner, E, Benabed, K, Benoît, A, Benoit Lévy, A, Bernard, J, Bersanelli, M, Bielewicz, P, Bobin, J, Bock, J, Bond, J, Borrill, J, Bouchet, F, Bowyer, J, Bridges, M, Bucher, M, Burigana, C, Cardoso, J, Catalano, A, Challinor, A, Chamballu, A, Chary, R, Chiang, H, Chiang, L, Christensen, P, Church, S, Clements, D, Colombi, S, Colombo, L, Couchot, F, Coulais, A, Crill, B, Curto, A, Cuttaia, F, Danese, L, Davies, R, DE BERNARDIS, P, De Rosa, A, De Zotti, G, Delabrouille, J, Delouis, J, Désert, F, Diego, J, Dole, H, Donzelli, S, Doré, O, Douspis, M, Dunkley, J, Dupac, X, Efstathiou, G, Enßlin, T, Eriksen, H, Finelli, F, Forni, O, Frailis, M, Fraisse, A, Franceschi, E, Galeotta, S, Ganga, K, Giard, M, Giraud Héraud, Y, González Nuevo, J, Górski, K, Gratton, S, Gregorio, A, Gruppuso, A, Gudmundsson, J, Haissinski, J, Hansen, F, Hanson, D, Harrison, D, Henrot Versillé, S, Hernández Monteagudo, C, Herranz, D, Hildebrandt, S, Hivon, E, Hobson, M, Holmes, W, Hornstrup, A, Hou, Z, Hovest, W, Huffenberger, K, Jaffe, A, Jaffe, T, Jones, W, Juvela, M, Keihänen, E, Keskitalo, R, Kisner, T, Kneissl, R, Knoche, J, Knox, L, Kunz, M, Kurki Suonio, H, Lagache, G, Lamarre, J, Lasenby, A, Laureijs, R, Lawrence, C, Leonardi, R, Leroy, C, Lesgourgues, J, Liguori, M, Lilje, P, Linden Vørnle, M, López Caniego, M, Lubin, P, MacIás Pérez, J, Mactavish, C, Maffei, B, Mandolesi, N, Maris, M, Marshall, D, Martin, P, Martínez González, E, Masi, S, Massardi, M, Matarrese, S, Matsumura, T, Matthai, F, Mazzotta, P, Mcgehee, P, Melchiorri, A, Mendes, L, Mennella, A, Migliaccio, M, Mitra, S, Miville Deschênes, M, Moneti, A, Montier, L, Morgante, G, Mortlock, D, Munshi, D, Murphy, J, Naselsky, P, Nati, F, Natoli, P, Netterfield, C, Nørgaard Nielsen, H, Noviello, F, Novikov, D, Novikov, I, Osborne, S, Oxborrow, C, Paci, F, Pagano, L, Pajot, F, Paoletti, D, Pasian, F, Patanchon, G, Perdereau, O, Perotto, L, Perrotta, F, Piacentini, F, Piat, M, Pierpaoli, E, Pietrobon, D, Plaszczynski, S, Pointecouteau, E, Polegre, A, Polenta, G, Ponthieu, N, Popa, L, Poutanen, T, Pratt, G, Prézeau, G, Prunet, S, Puget, J, Rachen, J, Reinecke, M, Remazeilles, M, Renault, C, Ricciardi, S, Riller, T, Ristorcelli, I, Rocha, G, Rosset, C, Roudier, G, Rowan Robinson, M, Rusholme, B, Sandri, M, Santos, D, Sauvé, A, Savini, G, Scott, D, Shellard, E, Spencer, L, Starck, J, Stolyarov, V, Stompor, R, Sudiwala, R, Sureau, F, Sutton, D, Suur Uski, A, Sygnet, J, Tavagnacco, D, Terenzi, L, Tomasi, M, Tristram, M, Tucci, M, Umana, G, Valenziano, L, Valiviita, J, Van Tent, B, Vielva, P, Villa, F, Vittorio, N, Wade, L, Wandelt, B, Yvon, D, Zacchei, A, Zonca, A, Tauber, Jan, Ade, P. A. R., Aghanim, N., Armitage Caplan, C., Arnaud, M., Ashdown, M., Atrio Barandela, F., Aumont, J., Baccigalupi, C., Banday, A. J., Barreiro, R. B., Battaner, E., Benabed, K., Benoît, A., Benoit Lévy, A., Bernard, J. P., Bersanelli, M., Bielewicz, P., Bobin, J., Bock, J. J., Bond, J. R., Borrill, J., Bouchet, F. R., Bowyer, J. W., Bridges, M., Burigana, C., Cardoso, J. F., Catalano, A., Challinor, A., Chamballu, A., Chary, R. R., Chiang, H. C., Chiang, L. Y., Christensen, P. R., Church, S., Clements, D. L., Colombi, S., Colombo, L. P. L., Couchot, F., Coulais, A., Crill, B. P., Curto, A., Cuttaia, F., Danese, L., Davies, R. D., De Bernardis, P., De Rosa, A., De Zotti, G., Delabrouille, J., Delouis, J. M., Désert, F. X., Diego, J. M., Dole, H., Donzelli, S., Doré, O., Douspis, M., Dunkley, J., Dupac, X., Efstathiou, G., Enßlin, T. A., Eriksen, H. K., Finelli, F., Forni, O., Frailis, M., Fraisse, A. A., Franceschi, E., Galeotta, S., Ganga, K., Giard, M., Giraud Héraud, Y., González Nuevo, J., Górski, K. M., Gratton, S., Gregorio, Anna, Gruppuso, A., Gudmundsson, J. E., Haissinski, J., Hansen, F. K., Hanson, D., Harrison, D., Henrot Versillé, S., Hernández Monteagudo, C., Herranz, D., Hildebrandt, S. R., Hivon, E., Hobson, M., Holmes, W. A., Hornstrup, A., Hou, Z., Hovest, W., Huffenberger, K. M., Jaffe, A. H., Jaffe, T. R., Jones, W. C., Juvela, M., Keihänen, E., Keskitalo, R., Kisner, T. S., Kneissl, R., Knoche, J., Knox, L., Kunz, M., Kurki Suonio, H., Lagache, G., Lamarre, J. M., Lasenby, A., Laureijs, R. J., Lawrence, C. R., Leonardi, R., Leroy, C., Lesgourgues, J., Liguori, M., Lilje, P. B., Linden Vørnle, M., López Caniego, M., Lubin, P. M., MacIás Pérez, J. F., Mactavish, C. J., Maffei, B., Mandolesi, N., Maris, M., Marshall, D. J., Martin, P. G., Martínez González, E., Masi, S., Massardi, M., Matarrese, S., Matsumura, T., Matthai, F., Mazzotta, P., Mcgehee, P., Melchiorri, A., Mendes, L., Mennella, A., Migliaccio, M., Mitra, S., Miville Deschênes, M. A., Moneti, A., Montier, L., Morgante, G., Mortlock, D., Munshi, D., Murphy, J. A., Naselsky, P., Nati, F., Natoli, P., Netterfield, C. B., Nørgaard Nielsen, H. U., Noviello, F., Novikov, D., Novikov, I., Osborne, S., Oxborrow, C. A., Paci, F., Pagano, L., Pajot, F., Paoletti, D., Pasian, F., Patanchon, G., Perdereau, O., Perotto, L., Perrotta, F., Piacentini, F., Piat, M., Pierpaoli, E., Pietrobon, D., Plaszczynski, S., Pointecouteau, E., Polegre, A. M., Polenta, G., Ponthieu, N., Popa, L., Poutanen, T., Pratt, G. W., Prézeau, G., Prunet, S., Puget, J. L., Rachen, J. P., Reinecke, M., Remazeilles, M., Renault, C., Ricciardi, S., Riller, T., Ristorcelli, I., Rocha, G., Rosset, C., Roudier, G., Rowan Robinson, M., Rusholme, B., Sandri, M., Santos, D., Sauvé, A., Savini, G., Scott, D., Shellard, E. P. S., Spencer, L. D., Starck, J. L., Stolyarov, V., Stompor, R., Sudiwala, R., Sureau, F., Sutton, D., Suur Uski, A. S., Sygnet, J. F., Tauber, J. A., Tavagnacco, Daniele, Terenzi, L., Tomasi, M., Tristram, M., Tucci, M., Umana, G., Valenziano, L., Valiviita, J., Van Tent, B., Vielva, P., Villa, F., Vittorio, N., Wade, L. A., Wandelt, B. D., Yvon, D., Zacchei, A., and Zonca, A.
- Subjects
MAP-MAKING ,POWER SPECTRUM ,[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Astronomy ,Cosmic microwave background ,cosmic background radiation ,Surveys ,CMB ,Cosmic background radiation ,7. Clean energy ,Cosmology: observation ,Window function ,MICROWAVE ,observations [Cosmology] ,Survey ,detectors [Instrumentation] ,Physics ,CALIBRATION ,Instrumentation: detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Physical Sciences ,Harmonic ,Cosmology: observations ,Instrumentation: detectors ,Astronomy and Astrophysics ,Space and Planetary Science ,astro-ph.CO ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,detector [Instrumentation] ,Deconvolution ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics and Astronomy ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Frequency band ,education ,FOS: Physical sciences ,observation [Cosmology] ,Astronomy & Astrophysics ,NO ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Optics ,Settore FIS/05 - Astronomia e Astrofisica ,surveys ,PRE-LAUNCH STATUS ,Sample variance ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Science & Technology ,business.industry ,instrumentation: detectors ,Spectral density ,Astronomy and Astrophysic ,115 Astronomy, Space science ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,0201 Astronomical And Space Sciences ,cosmology: observations ,business ,Beam (structure) ,PLANETS ,astro-ph.IM - Abstract
This paper characterizes the effective beams, the effective beam window functions and the associated errors for the Planck High Frequency Instrument (HFI) detectors. The effective beam is theangular response including the effect of the optics, detectors, data processing and the scan strategy. The window function is the representation of this beam in the harmonic domain which is required to recover an unbiased measurement of the cosmic microwave background angular power spectrum. The HFI is a scanning instrument and its effective beams are the convolution of: a) the optical response of the telescope and feeds; b) the processing of the time-ordered data and deconvolution of the bolometric and electronic transfer function; and c) the merging of several surveys to produce maps. The time response transfer functions are measured using observations of Jupiter and Saturn and by minimizing survey difference residuals. The scanning beam is the post-deconvolution angular response of the instrument, and is characterized with observations of Mars. The main beam solid angles are determined to better than 0.5% at each HFI frequency band. Observations of Jupiter and Saturn limit near sidelobes (within 5°) to about 0.1% of the total solid angle. Time response residuals remain as long tails in the scanning beams, but contribute less than 0.1% of the total solid angle. The bias and uncertainty in the beam products are estimated using ensembles of simulated planet observations that include the impact of instrumental noise and known systematic effects. The correlation structure of these ensembles is well-described by five error eigenmodes that are sub-dominant to sample variance and instrumental noise in the harmonic domain. A suite of consistency tests provide confidence that the error model represents a sufficient description of the data. The total error in the effective beam window functions is below 1% at 100 GHz up to multipole â.,> ~ 1500, and below 0.5% at 143 and 217 GHz up to ~ 2000., The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU).
- Published
- 2014
- Full Text
- View/download PDF
39. A comparison of algorithms for the construction of SZ cluster catalogues
- Author
-
James G. Bartlett, Michael P. Hobson, Ruediger Kneissl, Jacques Delabrouille, Pasquale Mazzotta, Diego Herranz, Gayoung Chon, Matthias Bartelmann, Jose M. Diego, M. Le Jeune, Jean-Baptiste Melin, Jérôme Bobin, P. Carvalho, D. L. Harrison, B. M. Schaefer, Anthony Lasenby, D. Yvon, Jean-Luc Starck, Marc Betoule, Graca Rocha, M. López-Caniego, Nabila Aghanim, Jean-Claude Waizmann, AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), and Universidad de Cantabria
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,media_common.quotation_subject ,FOS: Physical sciences ,clusters: intracluster medium [Galaxies] ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,clusters: general [Ggalaxies] ,Expected value ,Cosmic background radiation ,01 natural sciences ,Settore FIS/05 - Astronomia e Astrofisica ,Methods: data analysis ,Completeness (order theory) ,0103 physical sciences ,Cluster (physics) ,observations [Cosmology] ,data analysis [Methods] ,010303 astronomy & astrophysics ,Galaxy cluster ,Astrophysics::Galaxy Astrophysics ,ComputingMilieux_MISCELLANEOUS ,media_common ,Physics ,[PHYS]Physics [physics] ,010308 nuclear & particles physics ,Cosmology: observations ,Astrophysics::Instrumentation and Methods for Astrophysics ,Ggalaxies: clusters: general ,Astronomy and Astrophysics ,galaxies: clusters: general ,Space and Planetary Science ,Sky ,cosmology: observations, galaxies: clusters: general, galaxies: clusters: intracluster medium, cosmic background radiation, methods: data analysis ,Millimeter ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Algorithm ,Galaxies: clusters: intracluster medium ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
J.-B. Melin et al., We evaluate the construction methodology of an all-sky catalogue of galaxy clusters detected through the Sunyaev-Zel'dovich (SZ) effect. We perform an extensive comparison of twelve algorithms applied to the same detailed simulations of the millimeter and submillimeter sky based on a Planck-like case. We present the results of this >SZ Challenge> in terms of catalogue completeness, purity, astrometric and photometric reconstruction. Our results provide a comparison of a representative sample of SZ detection algorithms and highlight important issues in their application. In our study case, we show that the exact expected number of clusters remains uncertain (about a thousand cluster candidates at |b| > 20 deg with 90% purity) and that it depends on the SZ model and on the detailed sky simulations, and on algorithmic implementation of the detection methods. We also estimate the astrometric precision of the cluster candidates which is found of the order of ~2 arcmin on average, and the photometric uncertainty of about 30%, depending on flux. © ESO, 2012.
- Published
- 2012
- Full Text
- View/download PDF
40. Cosmic Microwave Background Images
- Author
-
P. Vielva and Diego Herranz
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Applied Mathematics ,media_common.quotation_subject ,Cosmic microwave background ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Compact star ,Galaxy ,Cosmology ,Universe ,Physical cosmology ,Microwave imaging ,Signal Processing ,Electrical and Electronic Engineering ,Galaxy cluster ,media_common ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
9 páginas, 2 figuras.-- El Pdf del artículo es la versión pre-print: arXiv:1101.0707v1, Cosmology concerns itself with the fundamental questions about the formation, structure, and evolution of the Universe as a whole. Cosmic microwave background (CMB) radiation is one of the foremost pillars of physical cosmology. Joint analyses of CMB and other astronomical observations are able to determine with ever increasing precision the value of the fundamental cosmological parameters and to provide us with valuable insight about the dynamics of the Universe in evolution. The CMB radiation is a relic of the hot and dense first moments of the Universe: a extraordinarily homogeneous and isotropic blackbody radiation, which shows small temperature anisotropies that are the key for understanding the conditions of the primitive Universe, testing cosmological models and probing fundamental physics at the very dawn of time. CMB observations are obtained by imaging of the sky at microwave wavelengths. However, the CMB signal is mixed with other astrophysical signals of both Galactic and extragalactic origin. To properly exploit the cosmological information contained in CMB images, they must be cleansed of these other astrophysical emissions first. Blind source separation (BSS) has been a very active field in the last few years. Conversely, the term "compact sources" is often used in the CMB literature referring to spatially bounded, small features in the images, such as galaxies and galaxy clusters. Compact sources and diffuse sources are usually treated separately in CMB image processing. We devote this tutorial to the case of compact sources. Many of the compact source-detection techniques that are widespread inmost fields of astronomy are not easily applicable to CMB images. In this tutorial, we present an overview of the fundamentals of compact object detection theory keeping in mind at every moment these particularities. Throughout the article, we briefly consider Bayesian object detection, model selection, optimal linear filtering, nonlinear filtering, and multif- requency detection of compact sources in CMB images. This article's goal is to present a tutorial on the detection, parameter estimation and statistical analysis of compact sources (far galaxies, galaxy clusters, and Galactic dense emission regions) in CMB observations., We also acknowledge partial financial support from the Spanish Ministerio de Ciencia e Innovación project AYA2007-68058-C03-02. PV acknowledges financial support from the Ramón y Cajal programme.
- Published
- 2011
- Full Text
- View/download PDF
41. Planck pre-launch status: The Planck-LFI programme
- Author
-
P. B. Lilje, Amedeo Balbi, Fabio Finelli, S. Leach, Roger J. Hoyland, L. A. Wade, Krzysztof M. Gorski, F. Gasparo, E. Franceschi, Luigi Danese, Jose M. Diego, T. Riller, Christopher G. Paine, M. C. Falvella, Hannu Kurki-Suonio, A. Mennella, Francesca Perrotta, Joseph Silk, Matthias Bartelmann, U. Dörl, L. Mendes, A. Bonaldi, Jose Alberto Rubino-Martin, Carlo Burigana, Sabino Matarrese, Anne Lähteenmäki, G. de Zotti, Torsten A. Enßlin, G. Prézeau, M. Bremer, E. Keihänen, M. Prina, S. Galeotta, M. Sandri, G. De Troia, X. Dupac, L. Popa, L. Pérez-Cuevas, S. Donzelli, Althea Wilkinson, Adam Moss, M. Maris, Alessandro Melchiorri, F. Pasian, Kevin M. Huffenberger, R. Hell, J. Dick, Rafael Rebolo, R. J. Davis, Reijo Keskitalo, F. Gomez, M. López-Caniego, Michael Janssen, Ted Kisner, G. Giardino, Luca Terenzi, Davide Maino, Anna Gregorio, M. Tomasi, N. Mandolesi, F. K. Hansen, Pradeep Bhandari, Eduardo Artal, Fabrizio Villa, Enrique Martínez-González, Charles R. Lawrence, Todd Gaier, J. P. Leahy, O. D'Arcangelo, Andrea Zacchei, T. Passvogel, J. Sternberg, Alessandro Gruppuso, F. Matthai, Julian Borrill, Paolo Cabella, S. Ricciardi, Steven Levin, Jörg P. Rachen, Nicola Vittorio, Peter Meinhold, N. Morisset, Marc Türler, Jussi Varis, Marco Bersanelli, R. Rohlfs, A. Nash, Sergi R. Hildebrandt, B. Cappellini, Diego Herranz, J. Marti-Canales, J. González-Nuevo, Martin White, Douglas Scott, George F. Smoot, R. B. Barreiro, N. Roddis, Emanuele Salerno, Michael Seiffert, P. Vielva, S. N. White, Marcella Massardi, J. A. Tauber, F. Cuttaia, Renzo Nesti, T. Poutanen, A. J. Banday, R. C. Butler, R. D. Davies, Robert C. Bowman, S. R. Lowe, José Miguel Herreros, Luca Stringhetti, Paolo Natoli, J. Tuovinen, H. K. Eriksen, Rodrigo Leonardi, David Pearson, Bruce Partridge, T. Jaffe, G. Polenta, Clive Dickinson, G. de Gasperis, M. Frailis, L. De Angelis, Carlo Baccigalupi, Philip Lubin, C. Cantalupo, A. de Rosa, F. Stivoli, Gianluca Morgante, Andrea Zonca, G. Crone, Luca Valenziano, T. J. L. Courvoisier, M. Malaspina, Carlo Sozzi, Graca Rocha, M. Reinecke, A. Simonetto, G. Morigi, K. Bennett, W. Hovest, Department of Physics, Helsinki Institute of Physics, APC - Cosmologie, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), PLANCK, Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Mandolesi, N, Bersanelli, M, BUTLER R., C, Artal, E, Baccigalupi, C, Balbi, A, BANDAY A., J, BARREIRO R., B, Bartelmann, M, Bennett, K, Bhandari, P, Bonaldi, A, Borrill, J, Bremer, M, Burigana, C, BOWMAN R., C, Cabella, P, Cantalupo, C, Cappellini, B, Courvoisier, T, Crone, G, Cuttaia, F, Danese, L, Darcangelo, O, DAVIES R., D, DAVIS R., J, DE ANGELIS, L, DE GASPERIS, G, DE ROSA, A, DE TROIA, G, DE ZOTTI, G, Dick, J, Dickinson, C, DIEGO J., M, Donzelli, S, Dorl, U, Dupac, X, ENLIN T., A, ERIKSEN H., K, FALVELLA M., C, Finelli, F, Frailis, M, Franceschi, E, Gaier, T, Galeotta, S, Gasparo, F, Giardino, G, Gomez, F, GONZALEZ NUEVO, J, GORSKI K., M, Gregorio, Anna, Gruppuso, A, Hansen, F, Hell, R, Herranz, D, HERREROS J., M, Hildebrandt, S, Hovest, W, Hoyland, R, Huffenberger, K, Janssen, M, Jaffe, T, Keihanen, E, Keskitalo, R, Kisner, T, KURKI SUONIO, H, Lahteenmaki, A, LAWRENCE C., R, M., S, J., Leach, Leahy, P, Leonardi, R, Levin, S, LILJE P., B, LOPEZ CANIEGO, M, LOWE S., R, LUBIN P., M, Maino, D, Malaspina, M, Maris, M, MARTI CANALES, J, MARTINEZ GONZALEZ, E, Massardi, M, Matarrese, S, Matthai, F, Meinhold, P, Melchiorri, A, Mendes, L, Mennella, A, Morgante, G, Morigi, G, Morisset, N, Moss, A, Nash, A, Natoli, P, Nesti, R, Paine, C, Partridge, B, Pasian, F, Passvogel, T, Pearson, D, PEREZ CUEVAS, L, Perrotta, F, Polenta, G, POPA L., A, Poutanen, T, Prezeau, G, Prina, M, RACHEN J., P, Rebolo, R, Reinecke, M, Ricciardi, S, Riller, T, Rocha, G, Roddis, N, Rohlfs, R, RUBINO MARTIN J., A, Salerno, E, Sandri, M, Scott, D, Seiffert, M, Silk, J, Simonetto, A, SMOOT G., F, Sozzi, C, Sternberg, J, Stivoli, F, Stringhetti, L, Tauber, J, Terenzi, L, Tomasi, M, Tuovinen, J, Turler, M, Valenziano, L, Varis, J, Vielva, P, Villa, F, Vittorio, N, Wade, L, White, M, White, S, Wilkinson, A, Zacchei, A, Zonca, A., Physique Corpusculaire et Cosmologie - Collège de France (PCC), Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), and Universidad de Cantabria
- Subjects
Electromagnetic spectrum ,[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,submillimeter: generaltelescopes ,cosmic microwave background ,space vehicles: instruments ,submillimeter: general ,instrumentation: polarimeters ,telescopes ,instrumentation: detectors ,Cosmic microwave background ,data analysis ,Astrophysics ,general [Submillimeter] ,7. Clean energy ,01 natural sciences ,LARGE-AREA TELESCOPE ,CMB physics ,cosmic microwave backgroundin ,010303 astronomy & astrophysics ,detectors [Instrumentation] ,media_common ,Physics ,Data processing ,Planck ESA mission ,Galactic and extragalactic asrophysics ,Astrophysics::Instrumentation and Methods for Astrophysics ,STRAYLIGHT CONTAMINATION ,LOW-FREQUENCY INSTRUMENT ,DMR SKY MAPS ,MICROWAVE BACKGROUND MAPS ,galactic and extragalactic astrophysics ,symbols ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics ,GALACTIC FOREGROUNDS ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,COMPONENT SEPARATION ,Cosmic microwawe background ,media_common.quotation_subject ,ANGULAR POWER SPECTRA ,education ,strumentation: detectors ,FOS: Physical sciences ,Context (language use) ,Astrophysics::Cosmology and Extragalactic Astrophysics ,114 Physical sciences ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,instruments [Space vehicles] ,symbols.namesake ,Settore FIS/05 - Astronomia e Astrofisica ,0103 physical sciences ,Calibration ,Ground segment ,Planck ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,DATA-PROCESSING CENTERS ,Remote sensing ,polarimeters [Instrumentation] ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,calibration ,115 Astronomy, Space science ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Space and Planetary Science ,Sky ,NON-GAUSSIANITY ,space vehicles ,Telescopes - Abstract
24 páginas, 16 figuras, 5 tablas.-- et al., This paper provides an overview of the Low Frequency Instrument (LFI) programme within the ESA Planck mission. The LFI instrument has been developed to produce high precision maps of the microwave sky at frequencies in the range 27–77 GHz, below the peak of the cosmic microwave background (CMB) radiation spectrum. The scientific goals are described, ranging from fundamental cosmology to Galactic and extragalactic astrophysics. The instrument design and development are outlined, together with the model philosophy and testing strategy. The instrument is presented in the context of the Planck mission. The LFI approach to ground and inflight calibration is described. We also describe the LFI ground segment. We present the results of a number of tests demonstrating the capability of the LFI data processing centre (DPC) to properly reduce and analyse LFI flight data, from telemetry information to calibrated and cleaned time ordered data, sky maps at each frequency (in temperature and polarization), component emission maps (CMB and diffuse foregrounds), catalogs for various classes of sources (the Early Release Compact Source Catalogue and the Final Compact Source Catalogue). The organization of the LFI consortium is briefly presented as well as the role of the core team in data analysis and scientific exploitation. All tests carried out on the LFI flight model demonstrate the excellent performance of the instrument and its various subunits. The data analysis pipeline has been tested and its main steps verified. In the first three months after launch, the commissioning, calibration, performance, and verification phases will be completed, after which Planck will begin its operational life, in which LFI will have an integral part., The Planck-LFI project is developed by an International Consortium led by Italy and involving Canada, Finland, Germany, Norway, Spain, Switzerland, UK and USA. The Italian contribution to Planck is supported by the Agenzia Spaziale Italiana (ASI) and INAF. We also wish to thank the many people of the Herschel/Planck Project and RSSD of ESA, ASI, THALES Alenia Space Industries and the LFI Consortium that have contributed to the realization of LFI. We are grateful to our HFI colleagues for such a fruitful collaboration during so many years of common work. The German participation at the Max-Planck-Institut für Astrophysik is funded by the Bundesministerium für Wirtschaft und Technologie through the Raumfahrt- Agentur of the Deutsches Zentrum für Luft- und Raumfahrt (DLR) [FKZ: 50 OP 0901] and by the Max-Planck-Gesellschaft (MPG). The Finnish contribution is supported by the Finnish Funding Agency for Technology and Innovation (Tekes) and the Academy of Finland. The Spanish participation is funded by Ministerio de Ciencia e Innovacion through the project ESP2004-07067-C03 and AYA2007-68058-C03. The UK contribution is supported by the Science and Technology Facilities Council (STFC). C. Baccigalupi and F. Perrotta acknowledge partial support of the NASA LTSA Grant NNG04CG90G.
- Published
- 2010
- Full Text
- View/download PDF
42. Detection/estimation of the modulus of a vector. Application to point source detection in polarization data
- Author
-
Diego Herranz, M. López-Caniego, J. L. Sanz, Francisco Argüeso, and J. González-Nuevo
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Linear polarization ,Point source ,Cosmic microwave background ,Cosmic background radiation ,FOS: Physical sciences ,Astronomy and Astrophysics ,Image processing ,Polarization (waves) ,Computational physics ,symbols.namesake ,Space and Planetary Science ,symbols ,Planck ,Circular polarization ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Given a set of images, whose pixel values can be considered as the components of a vector, it is interesting to estimate the modulus of such a vector in some localised areas corresponding to a compact signal. For instance, the detection/estimation of a polarized signal in compact sources immersed in a background is relevant in some fields like astrophysics. We develop two different techniques, one based on the Neyman-Pearson lemma, the Neyman-Pearson filter (NPF), and another based on prefiltering-before-fusion, the filtered fusion (FF), to deal with the problem of detection of the source and estimation of the polarization given two or three images corresponding to the different components of polarization (two for linear polarization, three including circular polarization). For the case of linear polarization, we have performed numerical simulations on two-dimensional patches to test these filters following two different approaches (a blind and a non-blind detection), considering extragalactic point sources immersed in cosmic microwave background (CMB) and non-stationary noise with the conditions of the 70 GHz \emph{Planck} channel. The FF outperforms the NPF, especially for low fluxes. We can detect with the FF extragalactic sources in a high noise zone with fluxes >= (0.42,0.36) Jy for (blind/non-blind) detection and in a low noise zone with fluxes >= (0.22,0.18) Jy for (blind/non-blind) detection with low errors in the estimated flux and position., 11 pages, 5 figures
- Published
- 2009
43. Polarization of the WMAP point sources
- Author
-
Marcella Massardi, M. López-Caniego, Francisco Argüeso, G. de Zotti, Diego Herranz, L. F. Lanz, J. L. Sanz, J. González-Nuevo, Agenzia Spaziale Italiana, CSIC-UC - Instituto de Física de Cantabria (IFCA), Consejo Superior de Investigaciones Científicas (España), University of Cambridge, Scuola Internazionale Superiore di Studi Avanzati, and Ministerio de Economía y Competitividad (España)
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,FOS: Physical sciences ,Techniques: image processing ,Astronomy and Astrophysics ,Astrophysics ,galaxies [Radio continuum] ,Polarization (waves) ,CMB cold spot ,Radio continuum: galaxies ,Cosmic microwave background ,symbols.namesake ,Space and Planetary Science ,Position (vector) ,Polarization ,symbols ,image processing [Techniques] ,Point (geometry) ,Limit (mathematics) ,Radio frequency ,Planck ,Linear filter ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
arXiv:0909.4311, The detection of polarized sources in the WMAP five-year data is a very difficult task. The maps are dominated by instrumental noise and only a handful of sources show up as clear peaks in the Q and U maps. Optimal linear filters applied at the position of known bright sources detect with a high level of significance a polarized flux P from many more sources, but estimates of P are liable to biases. Using a new technique, named the filtered fusion technique, we have detected in polarization, with a significance level greater than 99.99% in at least one WMAP channel, 22 objects, five of which, however, do not have a plausible low radio frequency counterpart and are therefore doubtful. Estimated polarized fluxes P < 400 mJy at 23 GHz were found to be severely affected by the Eddington bias. The corresponding polarized flux limit for Planck/LFI at 30 GHz, obtained via realistic simulations, is 300 mJy. We have also obtained statistical estimates of, or upper limits to the mean polarization degrees of bright WMAP sources at 23, 33, 41, and 61 GHz, finding that they are of a few percent., M.L.C. acknowledges a postdoctoral fellowship from the Spanish MEC in Cambridge (UK) and an EGEE-III postdoctoral contract at IFCA. J.G.N. acknowledges a researcher position grant at the SISSA-ISAS (Trieste). Partial financial support for this research has been provided to M.M., J.G.N., and G.D.Z. by the Italian ASI (contracts Planck LFI Activity of Phase E2 and I/016/07/0 “COFIS”), and to JLS by the Spanish MEC. L.L. acknowledges a JAE-predoc fellowship from the Spanish CSIC.
- Published
- 2009
44. A multifrequency method based on the Matched Multifilter for the detection of point sources in CMB maps
- Author
-
J. L. Sanz, L. F. Lanz, Diego Herranz, J. González-Nuevo, M. López-Caniego, and Universidad de Cantabria
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,media_common.quotation_subject ,Astrophysics::High Energy Astrophysical Phenomena ,Cosmic microwave background ,Techniques: image processing ,FOS: Physical sciences ,Astrophysics ,galaxies [Radio continuum] ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Surveys ,01 natural sciences ,Radio continuum: galaxies ,symbols.namesake ,Methods: data analysis ,0103 physical sciences ,image processing [Techniques] ,Point (geometry) ,Planck ,data analysis [Methods] ,010303 astronomy & astrophysics ,Remote sensing ,media_common ,Physics ,Spectral index ,010308 nuclear & particles physics ,Matched filter ,Astronomy and Astrophysics ,Filter (signal processing) ,Space and Planetary Science ,Sky ,symbols ,Linear filter ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
11 páginas, 6 figuras, 1 tabla.-- El Pdf del artículo es la versión pre-print: arXiv:0907.0603v1.-- Trabajo presentado al "Spanish Astrophysics VI, Proceedings of the IX Scientific Meeting of the Spanish Astronomical Society (SEA)" celebrado en Madrid del 13 al 17 de septiembre de 2010., In this work, we deal with the problem of simultaneous multifrequency detection of extragalactic point sources in maps of the Cosmic Microwave Background. We developed a linear filtering technique that takes into account the spatial and the cross-power spectrum information at the same time. By using realistic simulations, we compared this technique with the monofrequency matched filter in terms of completeness, reliability, flux and spectral index accuracy. The multifrequency method outperforms the matched filter in all the studied cases in this work., The authors acknowledge partial financial support from the Spanish Ministry of Education (MEC) under project ESP2004-07067- C03-01 and the joint CNR-CSIC research projects 2006-IT-0037 and 2008IT0059. LFL acknowledges the Spanish CSIC for a JAEPredoc fellowship. Partial financial support for this research has been provided to JLS by the Spanish MEC and to JG-N by the Italian ASI (contracts Planck LFI Activity of Phase E2 and I/016/07/0 COFIS) and MUR. JG-N also acknowledges a researcher position grant at the SISSA (Trieste). MLC acknowledges a post-doctoral fellowship from EGEE-III (FP7 INFSO-RI 222667).
- Published
- 2009
- Full Text
- View/download PDF
45. Blind and non-blind source detection in WMAP 5-year maps
- Author
-
Diego Herranz, J. González-Nuevo, J. L. Sanz, G. de Zotti, Marcella Massardi, and M. López-Caniego
- Subjects
Physics ,010308 nuclear & particles physics ,Point source ,media_common.quotation_subject ,Astrophysics (astro-ph) ,Flux ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Filter (signal processing) ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,CMB cold spot ,Space and Planetary Science ,Sky ,0103 physical sciences ,Anisotropy ,Spurious relationship ,010303 astronomy & astrophysics ,Smoothing ,media_common - Abstract
We have analyzed the efficiency in source detection and flux density estimation of blind and non-blind detection techniques exploiting the MHW2 filter applied to the Wilkinson Microwave Anisotropy Probe (WMAP) 5-year maps. A comparison with the AT20G Bright Source Sample (Massardi et al. 2008), with a completeness limit of 0.5 Jy and accurate flux measurements at 20 GHz, close to the lowest frequency of WMAP maps, has allowed us to assess the completeness and the reliability of the samples detected with the two approaches, as well as the accuracy of flux and error estimates, and their variations across the sky. The uncertainties on flux estimates given by our procedure turned out to be about a factor of 2 lower than the rms differences with AT20G measurements, consistent with the smoothing of the fluctuation field yielded by map filtering. Flux estimates were found to be essentially unbiased except that, close to the detection limit, a substantial fraction of fluxes are found to be inflated by the contribution of underlying positive fluctuations. This is consistent with expectations for the Eddington bias associated to the true errors on flux density estimates. The blind and non-blind approaches are found to be complementary: each of them allows the detection of sources missed by the other. Combining results of the two methods on the WMAP 5-year maps we have expanded the non-blindly generated New Extragalactic WMAP Point Source (NEWPS) catalogue (Lopez-Caniego et al. 2007) that was based on WMAP 3-year maps. After having removed the probably spurious objects not identified with known radio sources, the new version of the NEWPS catalogue, NEWPS_5yr comprises 484 sources detected with a signal-to-noise ratio SNR>5., 11 pages, 7 figures, table 3 available at http://max.ifca.unican.es/caniego/NEWPS/
- Published
- 2008
46. The Quijote CMB Experiment
- Author
-
Michael P. Hobson, Ana Gómez, Enrique Villa, Enrique Martinez-Gonzalez, Rafael Rebolo, R. J. Davis, R. D. Davies, José Miguel Herreros, C. Lopez Caraballo, J. Arino, Juan Pablo Pascual, Richard A. Battye, F. J. Casas, Keith Grainge, M. Tucci, Diego Herranz, Anthony Lasenby, Jose Alberto Rubino-Martin, J. Pan, P. Vielva, Eduardo Artal, Sergi R. Hildebrandt, Ricardo Genova-Santos, Juan Luis Cano, L. de la Fuente, A. Mediavilla, Bruno Maffei, Giampaolo Pisano, A. Vizcarguenaga, Lucio Piccirillo, Roger J. Hoyland, Richard D. E. Saunders, Rubén Sanquirce, Paul F. Scott, C. Gomez, Robert A. Watson, Gaizka Murga, Beatriz Aja, Borja Etxeita, and F. Gómez-Reñasco
- Subjects
Physics ,Cosmic microwave background ,Astrophysics (astro-ph) ,Cosmic Microwave Background radiation, B-Modes, Instrumentation, Polarimetry, Millimetre waves, Microwave receivers, Polarization ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Polarization (waves) ,symbols.namesake ,Observatory ,symbols ,Planck ,Astrophysics::Galaxy Astrophysics - Abstract
We present the current status of the QUIJOTE (Q-U-I JOint TEnerife) CMB Experiment, a new instrument which will start operations early 2009 at Teide Observatory, with the aim of characterizing the polarization of the CMB and other processes of galactic and extragalactic emission in the frequency range 10-30 GHz and at large angular scales. QUIJOTE will be a valuable complement at low frequencies for the PLANCK mission, and will have the required sensitivity to detect a primordial gravitational-wave component if the tensor-to-scalar ratio is larger than r=0.05., Comment: 9 pages, 5 figures. To appear in "Highlights of Spanish Astrophysics V", Proceedings of the VIII Scientific Meeting of the Spanish Astronomical Society (SEA) held in Santander, 7-11 July, 2008. Edited by J. Gorgas, L. J. Goicoechea, J. I. Gonzalez-Serrano, J. M. Diego
- Published
- 2008
- Full Text
- View/download PDF
47. Statistical analysis of undetected point sources in cosmic microwave background maps
- Author
-
R. B. Barreiro, J. L. Sanz, Francisco Argüeso, J. González-Nuevo, and Diego Herranz
- Subjects
Physics ,Gaussian ,Astrophysics (astro-ph) ,Cosmic microwave background ,Mexican hat wavelet ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Filter (signal processing) ,Astrophysics::Cosmology and Extragalactic Astrophysics ,symbols.namesake ,Wavelet ,Space and Planetary Science ,symbols ,Kurtosis ,Source counts ,Planck - Abstract
Cosmic microwave background (CMB) temperature anisotropies follow a Gaussian statistical distribution in the standard inflationary model, but there are non-Gaussian contributions due to astrophysical foregrounds. The detection of the non-Gaussian signal due to extragalactic point sources and its distinction from the possible intrinsic non-Gaussianity is an issue of great importance in CMB analysis. The Mexican Hat Wavelet Family (MHWF), which has been proved very useful for the detection of extragalactic point sources, is applied here to the study of non-Gaussianity due to point sources in CMB maps. We carry out simulations of CMB maps with the characteristics of the forthcoming Planck mission at 70 and 100 GHz and filter them with the MHWF. By comparing the skewness and kurtosis of simulated maps with and without point sources, we are able to detect clearly the non-Gaussian signal due to point sources for flux limits as low as 0.4 Jy (70 GHz) and 0.3 Jy (100 GHz). The second and third members of the MHWF perform better in this respect than the Mexican Hat Wavelet (MHW1) and much better than the Daubechies 4 wavelet. We have also estimated the third order, $K_3$, and fourth order, $K_4$, cumulants produced by point sources at these Planck channels by means of a fit with the MHWF. The average relative errors with respect to the real values are below 12% for fluxes down to 0.6 Jy (70 GHz) and 0.4 Jy (100 GHz). The values of these cumulants allow us to distinguish between different source counts models., 15 pages, 3 figures. Accepted for publication in MNRAS
- Published
- 2006
48. Wavelets on the sphere. Application to the detection problem
- Author
-
Sanz, J. L., Diego Herranz, López-Caniego, M., and Argüeso, F.
- Subjects
Astrophysics (astro-ph) ,FOS: Physical sciences ,Astrophysics - Abstract
A new method is presented for the construction of a natural continuous wavelet transform on the sphere. It incorporates the analysis and synthesis with the same wavelet and the definition of translations and dilations on the sphere through the spherical harmonic coefficients. We construct a couple of wavelets as an extension of the flat Mexican Hat Wavelet to the sphere and we apply them to the detection of sources on the sphere. We remark that no projections are used with this methodology., Comment: 5 pages, 3 figures, Proceedings of the EUSIPCO 2006
- Published
- 2006
- Full Text
- View/download PDF
49. Filter design for the detection of compact sources based on the Neyman-Pearson detector
- Author
-
Diego Herranz, J. L. Sanz, R. B. Barreiro, and M. López-Caniego
- Subjects
Physics ,Matched filter ,Astrophysics (astro-ph) ,Detector ,Mexican hat wavelet ,FOS: Physical sciences ,Estimator ,Astronomy and Astrophysics ,Astrophysics ,White noise ,Filter (signal processing) ,Filter design ,Space and Planetary Science ,Algorithm ,Linear filter - Abstract
This paper considers the problem of compact source detection on a Gaussian background in 1D. Two aspects of this problem are considered: the design of the detector and the filtering of the data. Our detection scheme is based on local maxima and it takes into account not only the amplitude but also the curvature of the maxima. A Neyman-Pearson test is used to define the region of acceptance, that is given by a sufficient linear detector that is independent on the amplitude distribution of the sources. We study how detection can be enhanced by means of linear filters with a scaling parameter and compare some of them (the Mexican Hat wavelet, the matched and the scale-adaptive filters). We introduce a new filter, that depends on two free parameters (biparametric scale-adaptive filter). The value of these two parameters can be determined, given the a priori pdf of the amplitudes of the sources, such that the filter optimizes the performance of the detector in the sense that it gives the maximum number of real detections once fixed the number density of spurious sources. The combination of a detection scheme that includes information on the curvature and a flexible filter that incorporates two free parameters (one of them a scaling) improves significantly the number of detections in some interesting cases. In particular, for the case of weak sources embedded in white noise the improvement with respect to the standard matched filter is of the order of 40%. Finally, an estimation of the amplitude of the source is introduced and it is proven that such an estimator is unbiased and it has maximum efficiency. We perform numerical simulations to test these theoretical ideas and conclude that the results of the simulations agree with the analytical ones., 15 pages, 13 figures, version accepted for publication in MNRAS. Corrected typos in Tab. 2
- Published
- 2005
50. A Bayesian approach to filter design: detection of compact sources
- Author
-
J. L. Sanz, M. López-Caniego, Diego Herranz, and R. B. Barreiro
- Subjects
Physics ,A priori probability ,Gaussian ,Bayesian probability ,Astrophysics (astro-ph) ,Spectral density ,FOS: Physical sciences ,Astrophysics ,Filter (signal processing) ,Gaussian random field ,symbols.namesake ,Filter design ,symbols ,Spurious relationship ,Algorithm - Abstract
We consider filters for the detection and extraction of compact sources on a background. We make a one-dimensional treatment (though a generalization to two or more dimensions is possible) assuming that the sources have a Gaussian profile whereas the background is modeled by an homogeneous and isotropic Gaussian random field, characterized by a scale-free power spectrum. Local peak detection is used after filtering. Then, a Bayesian Generalized Neyman-Pearson test is used to define the region of acceptance that includes not only the amplification but also the curvature of the sources and the a priori probability distribution function of the sources. We search for an optimal filter between a family of Matched-type filters (MTF) modifying the filtering scale such that it gives the maximum number of real detections once fixed the number density of spurious sources. We have performed numerical simulations to test theoretical ideas., Comment: 10 pages, 2 figures. SPIE Proceedings "Electronic Imaging II", San Jose, CA. January 2004
- Published
- 2005
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.