6 results on '"Devendra K Namburi"'
Search Results
2. Design of Cuprate HTS Superconductors
- Author
-
Devendra K. Namburi and David A. Cardwell
- Published
- 2022
3. A trapped field of 14.3 T in Y–Ba–Cu–O bulk superconductors fabricated by buffer-assisted seeded infiltration and growth.
- Author
-
Devendra K Namburi, John H Durrell, Jan Jaroszynski, Yunhua Shi, Mark Ainslie, Kaiyuan Huang, Anthony R Dennis, Eric E Hellstrom, and David A Cardwell
- Subjects
- *
SUPERCONDUCTORS , *COPPER oxide , *RARE earth metals , *MICROSTRUCTURE - Abstract
The two-step top seeded infiltration and growth (TSIG) melt process has emerged as a successful and reliable technique for the fabrication of single grain (RE)Ba2Cu3O7−δ (where RE is a rare-earth element or yttrium) bulk high temperature superconductors with engineered microstructures that exhibit improved superconducting properties. In this study, the performance of these materials in large applied magnetic fields has been investigated by field cooling single grain samples in a magnetic field of 18 T. YBa2Cu3O7−δ samples processed without added Ag by the TSIG technique, in the two-sample stack configuration, trapped a magnetic field of 14.3 T at 28 K after field cooling from 100 K and subsequent removal of the applied field. This result is particularly significant in that, previously, only single grain (RE)Ba2Cu3O7−δ bulk superconductors containing Ag have been reported to be able to tolerate the large stresses on the samples inherent in the magnetisation process at large fields. The samples prepared in the present study were pre-stressed using a reinforcing stainless-steel ring, although, otherwise, they did not contain any additives, dopants or resin impregnation. The ability of samples processed by TSIG to withstand large tensile forces without Ag addition is attributed to the reduced incidence of intrinsic cracks/pores in the single grain microstructure. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
4. A robust seeding technique for the growth of single grain (RE)BCO and (RE)BCO–Ag bulk superconductors.
- Author
-
Devendra K Namburi, Yunhua Shi, Anthony R Dennis, John H Durrell, and David A Cardwell
- Subjects
- *
CRYSTAL growth , *SILVER nanoparticles , *SUPERCONDUCTORS - Abstract
Bulk, single grains of RE–Ba–Cu–O [(RE)BCO] high temperature superconductors have significant potential for a wide range of applications, including trapped field magnets, energy storage flywheels, superconducting mixers and magnetic separators. One of the main challenges in the production of these materials by the so-called top seeded melt growth technique is the reliable seeding of large, single grains, which are required for high field applications. A chemically aggressive liquid phase comprising of BaCuO2 and CuO is generated during the single grain growth process, which comes into direct contact with the seed crystal either instantaneously or via infiltration through a buffer pellet, if employed in the process. This can cause either partial or complete melting of the seed, leading subsequently to growth failure. Here, the underlying mechanisms of seed crystal melting and the role of seed porosity in the single grain growth process are investigated. We identify seed porosity as a key limitation in the reliable and successful fabrication of large grain (RE)BCO bulk superconductors for the first time, and propose the use of Mg-doped NdBCO generic seeds fabricated via the infiltration growth technique to reduce the effects of seed porosity on the melt growth process. Finally, we demonstrate that the use of such seeds leads to better resistance to melting during the single grain growth process, and therefore to a more reliable fabrication technique. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
5. A novel, two-step top seeded infiltration and growth process for the fabrication of single grain, bulk (RE)BCO superconductors.
- Author
-
Devendra K Namburi, Yunhua Shi, Kysen G Palmer, Anthony R Dennis, John H Durrell, and David A Cardwell
- Subjects
- *
SUPERCONDUCTORS , *MICROSTRUCTURE , *POROSITY , *FABRICATION (Manufacturing) , *MELTING - Abstract
A fundamental requirement of the fabrication of high performing, (RE)–Ba–Cu–O bulk superconductors is achieving a single grain microstructure that exhibits good flux pinning properties. The top seeded melt growth (TSMG) process is a well-established technique for the fabrication of single grain (RE)BCO bulk samples and is now applied routinely by a number of research groups around the world. The introduction of a buffer layer to the TSMG process has been demonstrated recently to improve significantly the general reliability of the process. However, a number of growth-related defects, such as porosity and the formation of micro-cracks, remain inherent to the TSMG process, and are proving difficult to eliminate by varying the melt process parameters. The seeded infiltration and growth (SIG) process has been shown to yield single grain samples that exhibit significantly improved microstructures compared to the TSMG technique. Unfortunately, however, SIG leads to other processing challenges, such as the reliability of fabrication, optimisation of RE2BaCuO5 (RE-211) inclusions (size and content) in the sample microstructure, practical oxygenation of as processed samples and, hence, optimisation of the superconducting properties of the bulk single grain. In the present paper, we report the development of a near-net shaping technique based on a novel two-step, buffer-aided top seeded infiltration and growth (BA-TSIG) process, which has been demonstrated to improve greatly the reliability of the single grain growth process and has been used to fabricate successfully bulk, single grain (RE)BCO superconductors with improved microstructures and superconducting properties. A trapped field of ∼0.84 T and a zero field current density of 60 kA cm−2 have been measured at 77 K in a bulk, YBCO single grain sample of diameter 25 mm processed by this two-step BA-TSIG technique. To the best of our knowledge, this value of trapped field is the highest value ever reported for a sample fabricated by an infiltration and growth process. In this study we report the successful fabrication of 14 YBCO samples, with diameters of up to 32 mm, by this novel technique with a success rate of greater than 92%. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
6. Control of Y-211 content in bulk YBCO superconductors fabricated by a buffer-aided, top seeded infiltration and growth melt process.
- Author
-
Devendra K Namburi, Yunhua Shi, Kysen G Palmer, Anthony R Dennis, John H Durrell, and David A Cardwell
- Subjects
- *
BULK solids , *SUPERCONDUCTORS , *MELTING , *MAGNETIC fields , *LOW temperatures - Abstract
Bulk (RE)–Ba–Cu–O ((RE)BCO, where RE stands for rare-earth), single grain superconductors can trap magnetic fields of several tesla at low temperatures and therefore can function potentially as high field magnets. Although top seeded melt growth (TSMG) is an established process for fabricating relatively high quality single grains of (RE)BCO for high field applications, this technique suffers from inherent problems such as sample shrinkage, a large intrinsic porosity and the presence of (RE)2BaCuO5 (RE-211)-free regions in the single grain microstructure. Seeded infiltration and growth (SIG), therefore, has emerged as a practical alternative to TSMG that overcomes many of these problems. Until now, however, the superconducting properties of bulk materials processed by SIG have been inferior to those fabricated using the TSMG technique. In this study, we identify that the inferior properties of SIG processed bulk superconductors are related to the presence of a relatively large Y-211 content (∼41.8%) in the single grain microstructure. Controlling the RE-211 content in SIG bulk samples is particularly challenging because it is difficult to regulate the entry of the liquid phase into the solid RE-211 preform during the infiltration process. In an attempt to solve this issue, we have investigated the effect of careful control of both the infiltration temperature and the quantity of liquid phase powder present in the sample preforms prior to processing. We conclude that careful control of the infiltration temperature is the most promising of these two process variables. Using this knowledge, we have fabricated successfully a YBCO bulk single grain using the SIG process of diameter 25 mm that exhibits a trapped field of 0.69 T at 77 K, which is the largest value reported to date for a sample fabricated by the SIG technique. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.