1. Augmenting dermal collagen synthesis through hyaluronic acid-based microneedle-mediated delivery of poly(l-lactic acid) microspheres.
- Author
-
Chen MC, Chang CC, Wu CL, Chiang PM, Yeh CC, Chen YH, and Sheu MT
- Subjects
- Animals, Rats, Rats, Sprague-Dawley, Skin metabolism, Skin drug effects, Male, Drug Delivery Systems, Wound Healing drug effects, Dermis metabolism, Dermis drug effects, Hyaluronic Acid chemistry, Polyesters chemistry, Microspheres, Collagen chemistry, Needles
- Abstract
Poly(L-lactic acid) (PLLA) can stimulate collagen synthesis through a foreign body response. However, inappropriate injection techniques and localized PLLA clustering can lead to complications and adverse events. This study developed a composite microneedle (MN) device comprising an array of PLLA microsphere (PLLA MP)-loaded hyaluronic acid needle tips with a supporting patch (PLLA MP-MN). This device was designed to deliver PLLA MPs precisely and uniformly to the dermis and to provide dual stimulation through MN puncture and MP implantation, thereby enabling the rapid and long-lasting regeneration of dermal collagen. When applied to rat skin, the MN array evenly distributed the PLLA MPs throughout the penetrated regions, which prevented local PLLA overdosing and elicited a milder inflammatory response compared with that induced by intradermal PLLA MP injections. An in vivo efficacy study revealed that MN-mediated delivery of PLLA MPs not only promptly initiated collagen production through microwound-triggered wound-healing cascades in the early treatment stage but also enabled the long-term stimulation of collagen deposition through MP-induced foreign body reactions, thereby significantly enhancing neocollagenesis. This innovative PLLA MP-MN system can augment the benefits and minimize the adverse effects associated with traditional PLLA fillers, providing a safe and reliable anti-aging therapeutic option., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF