1. Direct Experimental Observation of in situ Dehydrogenation of an Amine–Borane System Using Gas Electron Diffraction
- Author
-
João Nunes, Aliyu M. Ja’o, Jean-Claude Guillemin, Derek A. Wann, Sarah L. Masters, Conor D. Rankine, University of Canterbury [Christchurch], University of York [York, UK], Institut des Sciences Chimiques de Rennes (ISCR), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), EPSRC [EP/1004122, EP/1651146], Federal University Kashere (Nigeria) through the Tertiary Education Trust Fund (TETFund), Dumont d'Urville exchange, Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Exergonic reaction ,010304 chemical physics ,Hydrogen ,chemistry.chemical_element ,Boranes ,Borane ,010402 general chemistry ,Photochemistry ,7. Clean energy ,01 natural sciences ,0104 chemical sciences ,Catalysis ,Hydrogen storage ,chemistry.chemical_compound ,chemistry ,13. Climate action ,0103 physical sciences ,[CHIM]Chemical Sciences ,Dehydrogenation ,Amine gas treating ,Physical and Theoretical Chemistry - Abstract
International audience; In situ dehydrogenation of azetidine-BH 3 , which is a candidate for hydrogen storage, was observed with the parent and dehydrogenated analogue subjected to rigorous structural and thermochemical investigations. The structural analyses utilized gas electron diffraction supported by high-level quantum calculations, whilst the pathway for the unimolecular hydrogen release reaction in the absence and presence of BH 3 as a bifunctional catalyst was predicted at CBS-QB3 level. The catalyzed dehydrogenation pathway has a barrier lower than the predicted B-N bond dissociation energy, hence favoring the dehydrogenation process over the dissociation of the complex. The predicted enthalpy of dehydrogenation at CCSD(T)/CBS level indicates mild reaction conditions would be required for the hydrogen release and that the compound is closer to thermoneutral than the linear amine boranes. The entropy and free energy change for the dehydrogenation process show that the reaction is exergonic, energetically feasible and will proceed spontaneously towards hydrogen release; all important factors for hydrogen storage.
- Published
- 2019
- Full Text
- View/download PDF