91 results on '"Department of Physics and Electrical Engineering"'
Search Results
2. Bi ultra-thin crystalline films on InAs(1 1 1) A and B substrates: a combined core-level and valence-band angle-resolved and dichroic photoemission study
- Author
-
J-M Mariot, Thiagarajan Balasubramanian, Janusz Kanski, Uros Djukic, M. Leandersson, O. Heckmann, Juergen Braun, Jun Fujii, Ivana Vobornik, Hubert Ebert, Maria Christine Richter, Karol Hricovini, Jan Minár, Laurent Nicolaï, Janusz Sadowski, Weimin Wang, New Technologies Research Centre [Plzeň] (NTC), University of West Bohemia [Plzeň ], Laboratoire de Chimie Physique - Matière et Rayonnement (LCPMR), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des Matériaux et des Surfaces (LPMS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-CY Cergy Paris Université (CY), MAX IV Lab, Fotongatan 2, S-22594 Lund, Sweden, Laboratoire Interactions, Dynamiques et Lasers (ex SPAM) (LIDyl), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Dynamique et Interactions en phase Condensée (DICO), Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire Interactions, Dynamiques et Lasers (ex SPAM) (LIDyl), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Chalmers University of Technology [Gothenburg, Sweden], Department of Physics and Electrical Engineering, Linnaeus University, SE-391 82, Kalmar, Institute of Physics, Polish Academy of Sciences, Polska Akademia Nauk = Polish Academy of Sciences (PAN), Faculty of Physics, Warsaw University of Technology, Warsaw University of Technology [Warsaw], Department Chemie der Ludwigs-Maximilians-Universität, 81377 München, Germany, CNR Istituto Officina dei Materiali (IOM), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Elettra Sincrotrone, CNR-IMIP & INFM-TASC, Deutsche Forschungsgemeinschaft SPP1666 priority program (Grants No. EB144/26 and EB154/32), Computational and Experimental Design of Advanced Materials with New Functionalities (CZ.02.1.01/0.0/0.0/15_003/0000358), Institute of Physics Publishing Ltd, ANR-11-EQPX-0034,PATRIMEX,PATrimoines matériels : Réseau d'Instrumentation Multisites Expérimental(2011), and European Project: 312284,EC:FP7:INFRA,FP7-INFRASTRUCTURES-2012-1,CALIPSO(2012)
- Subjects
ultra-thin films ,growth ,electronic structure calculations ,General Physics and Astronomy ,Synchrotron radiation ,bismuth indium arsenide growth ultra-thin films angle-resolved photoemission electronic structure calculations circular dichroism ,Electronic structure ,Epitaxy ,Dichroic glass ,indium arsenide ,01 natural sciences ,Molecular physics ,angle-resolved photoemission ,010305 fluids & plasmas ,symbols.namesake ,X-ray photoelectron spectroscopy ,0103 physical sciences ,bismuth ,[CHIM]Chemical Sciences ,010306 general physics ,Physics ,[PHYS]Physics [physics] ,Fermi level ,circular dichroism ,Brillouin zone ,Electron diffraction ,symbols - Abstract
The growth of Bi on both the In-terminated (A) face and the As-terminated (B) face of InAs(1 1 1) has been investigated by low-energy electron diffraction, scanning tunnelling microscopy, and photoelectron spectroscopy using synchrotron radiation. The changes upon Bi deposition of the In 4d and Bi 5d 5/2 photoelectron signals allow to get a comprehensive picture of the Bi/InAs(1 1 1) interface. From the early stage the Bi growth on the A face is epitaxial, contrary to that on the B face that proceeds via the formation of islands. Angle-resolved photoelectron spectra show that the electronic structure of a Bi deposit of ≈10 bi-layers on the A face is identical to that of bulk Bi, while more than ≈30 bi-layers are needed for the B face. Both bulk and surface electronic states observed are well accounted for by fully relativistic ab initio calculations performed using the one-step model of photoemission. These calculations are used to analyse the dichroic photoemission data recorded in the vicinity of the Fermi level around the Γ ¯ point of the Brillouin zone.
- Published
- 2019
3. Low-frequency radio absorption in Cassiopeia A
- Author
-
M. Arias, J. Vink, F. de Gasperin, P. Salas, J. B. R. Oonk, R. J. van Weeren, A. S. van Amesfoort, J. Anderson, R. Beck, M. E. Bell, M. J. Bentum, P. Best, R. Blaauw, F. Breitling, J. W. Broderick, W. N. Brouw, M. Brüggen, H. R. Butcher, B. Ciardi, E. de Geus, A. Deller, P. C. G. van Dijk, S. Duscha, J. Eislöffel, M. A. Garrett, J. M. Grießmeier, A. W. Gunst, M. P. van Haarlem, G. Heald, J. Hessels, J. Hörandel, H. A. Holties, A. J. van der Horst, M. Iacobelli, E. Juette, A. Krankowski, J. van Leeuwen, G. Mann, D. McKay-Bukowski, J. P. McKean, H. Mulder, A. Nelles, E. Orru, H. Paas, M. Pandey-Pommier, V. N. Pandey, R. Pekal, R. Pizzo, A. G. Polatidis, W. Reich, H. J. A. Röttgering, H. Rothkaehl, D. J. Schwarz, O. Smirnov, M. Soida, M. Steinmetz, M. Tagger, S. Thoudam, M. C. Toribio, C. Vocks, M. H. D. van der Wiel, R. A. M. J. Wijers, O. Wucknitz, P. Zarka, P. Zucca, API (FNWI), High Energy Astrophys. & Astropart. Phys (API, FNWI), Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Centre National d’Études Spatiales [Paris] (CNES), Unité Scientifique de la Station de Nançay (USN), Université d'Orléans (UO)-Observatoire des Sciences de l'Univers en région Centre (OSUC), PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), LOFAR, Astronomy, Astronomical Institute Anton Pannekoek, University of Amsterdam, SRON Netherlands Institute for Space Research (SRON), Leiden Observatory, Netherlands Institute for Radio Astronomy (ASTRON), GeoForschungsZentrum (GFZ), Max-Planck-Institut für Astronomie (MPIA), University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia, University of Edinburgh, Leibniz-Institut für Astrophysik Potsdam (IAP), University of Hamburg, Gojenbergsweg 112, 21029, Hamburg, Germany, Mount Stromlo Observatory, Australian National University, Max-Planck-Institut für Astrophysik (MPA), Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Thüringer Landessternwarte, Tautenburg Observatory, JBCA School of Physics and Astronomy, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), CSIRO Astronomy and Space Science, Department of Astrophysics, Radboud University Nijmegen, PO Box 9010, 6500 GL, Nijmegen, The Netherlands, George Washington University, Astronomisches Institut der Ruhr-Universitat Bochum, Universitaetsstrasse 150, 44780, Bochum, Germany, University of Warmia and Mazury [Olsztyn], Department of Physics and Technology, University of Tromso, Tromso, Norway, Department of Physics and Astronomy, University of Missouri, Center for Information Technology, University of Groningen (CIT), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Poznan University of Technology, Space Research Center, Polish Academy of Sciences (Torun), Universität Bielefeld = Bielefeld University, Department of Physics and Electronics, Rhodes University, Astronomical Observatory, Jagiellonian University, Department of Physics and Electrical Engineering, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Electromagnetics, Center for Wireless Technology Eindhoven, EM for Radio Science Lab, Laboratoire de Physique et Chimie de l'Environnement et de l'Espace ( LPC2E ), Centre National de la Recherche Scientifique ( CNRS ) -Université d'Orléans ( UO ) -Institut national des sciences de l'Univers ( INSU - CNRS ), Unité Scientifique de la Station de Nançay ( USN ), Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire de Paris-Université d'Orléans ( UO ) -Centre National de la Recherche Scientifique ( CNRS ), Centre de Recherche Astrophysique de Lyon ( CRAL ), École normale supérieure - Lyon ( ENS Lyon ) -Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire d'études spatiales et d'instrumentation en astrophysique ( LESIA ), and Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS )
- Subjects
TI-44 ,[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph] ,Astronomy ,radio continuum: general ,Astrophysics ,7. Clean energy ,01 natural sciences ,supernova remnants / radiation mechanisms: general / radio continuum ,Astrophysics::Solar and Stellar Astrophysics ,individual ,Ejecta ,Absorption (electromagnetic radiation) ,010303 astronomy & astrophysics ,SUPERNOVA REMNANT CASSIOPEIA ,general [radiation mechanisms] ,ISM: supernova remnants ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,ABSOLUTE SPECTRUM ,supernova remnants [ISM] ,Radius ,Supernova ,EJECTA ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,general [radio continuum] ,Astrophysics - High Energy Astrophysical Phenomena ,Cas A / ISM ,individual: Cas A [supernovae] ,supernovae ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,radiation mechanisms: general ,LARGE ARRAY ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Low frequency ,Astronomy & Astrophysics ,ACCELERATION ,Radio spectrum ,VDP::Matematikk og Naturvitenskap: 400::Fysikk: 430::Astrofysikk, astronomi: 438 ,0103 physical sciences ,3-DIMENSIONAL STRUCTURE ,Astrophysics::Galaxy Astrophysics ,EXPLOSION ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,LOFAR ,Cassiopeia A ,VDP::Mathematics and natural science: 400::Physics: 430::Astrophysics, astronomy: 438 ,supernovae: individual: Cas A ,13. Climate action ,Space and Planetary Science ,general ,EMISSION ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,CAS-A - Abstract
Cassiopeia A is one of the best-studied supernova remnants. Its shocked ejecta emits brightly in radio and X-rays. Its unshocked ejecta can be studied through infrared emission, the radio-active decay of $^{44}$Ti, and low frequency free-free absorption due to cold gas internal to the shell. Free-free absorption is affected by the mass, geometry, temperature, and ionisation conditions in the absorbing gas. Observations at the lowest radio frequencies constrain a combination of these properties. We use LOFAR LBA observations at 30-77 MHz and L-band VLA observations to compare $u-v$-matched images with a common resolution of 17". We simultaneously fit, per pixel, for the emission measure and the ratio of the emission from the unabsorbed front of the shell versus the absorbed back of the shell. We explore the effects that low temperatures and a high degree of clumping can have on the derived physical properties, such as mass and density. We also compile published radio flux measurements, fit for the absorption processes that occur in the radio band, and consider how they affect the secular decline of the source. We find a mass in the unshocked ejecta of $M = 2.95 \pm {0.48} \,M_{\odot}$ for an assumed gas temperature of $T=100$ K. This estimate is reduced for colder gas temperatures and if the ejecta are clumped. We measure the reverse shock to have a radius of $114$" $\pm $6". We also find that a decrease in the amount of mass in the unshocked ejecta (as more and more material meets the reverse shock and heats up) cannot account for the observed low frequency behaviour of the secular decline rate. To reconcile our low frequency absorption measurements with models that predict little mass in the unshocked ejecta we need the ejecta to be very clumped, or the temperature in the cold gas to be low ($\sim10$ K). Both conditions can jointly contribute to the high absorption., Accepted for publication in A&A v2: including the DOI, language edits
- Published
- 2018
4. The H.E.S.S. Galactic plane survey
- Author
-
H.E.S.S, Collaboration, Abdalla, H., Abramowski, A., Aharonian, Felix, Ait Benkhali, F., Angüner, E. O., Arakawa, M., Arrieta, M., Aubert, P., Backes, M., Balzer, A., Barnard, M., Becherini, Y., Becker Tjus, J., Berge, D., Bernhard, S., Bernlöhr, K., Blackwell, R., Böttcher, M., Boisson, Catherine, Bolmont, J., Bonnefoy, S., Bordas, P., Bregeon, J., Brun, F., Brun, P., Bryan, M., Büchele, M., Bulik, Tomasz, Capasso, M., Carrigan, S., Caroff, S., Carosi, A., Casanova, S., Cerruti, Matteo, Chakraborty, N., Chaves, R. C. G., Chen, A., Chevalier, J., Colafrancesco, Sergio, Condon, B., Conrad, J., Davids, I. D., Decock, J., Deil, C., Devin, J., Dewilt, P., Dirson, L., Djannati-Ataï, Arache, Domainko, W., Donath, A., Drury, L. O.'C., Dutson, K., Dyks, J., Edwards, T., Egberts, K., Eger, P., Emery, G., Ernenwein, J.-P., Eschbach, S., Farnier, C., Fegan, S., Fernandes, M. V., Fiasson, A., Fontaine, G., Förster, A., Funk, S., Füßling, M., Gabici, Stefano, Gallant, Y. A., Garrigoux, T., Gast, H., Gate, F., Giavitto, G., Giebels, B., Glawion, D., Glicenstein, J.-F., Gottschall, D., Grondin, M.-H., Hahn, J., Haupt, M., Hawkes, J., Heinzelmann, G., Henri, G., Hermann, G., Hinton, J. A., Hofmann, W., Hoischen, C., Holch, T. L., Holler, M., Horns, D., Ivascenko, A., Iwasaki, H., Jacholkowska, A., Jamrozy, M., Jankowsky, D., Jankowsky, F., Jingo, M., Jouvin, L., Jung-Richardt, I., Kastendieck, M. A., Katarzynski, K., Katsuragawa, M., Katz, U., Kerszberg, D., Khangulyan, D., Khélifi, Bruno, King, J., Klepser, S., Klochkov, D., Kluzniak, Wlodek, Komin, Nu., Kosack, K., Krakau, S., Kraus, M., Krüger, P. P., Laffon, H., Lamanna, G., Lau, J., Lees, J.-P., Lefaucheur, Julien, Lemière, Anne, Lemoine-Goumard, M., Lenain, J.-P., Leser, E., Lohse, T., Lorentz, M., Liu, R., López-Coto, R., Lypova, I., Marandon, V., Malyshev, D., Marcowith, Alexandre, Mariaud, C., Marx, R., Maurin, G., Maxted, N., Mayer, M., Meintjes, P. J., Meyer, Michael R., Mitchell, A. M. W., Moderski, R., Mohamed, M., Mohrmann, L., Morâ, K., Moulin, E., Murach, T., Nakashima, S., de Naurois, M., Ndiyavala, H., Niederwanger, F., Niemiec, J., Oakes, L., O'Brien, P., Odaka, H., Ohm, S., Ostrowski, M., Oya, I., Padovani, Marco, Panter, M., Parsons, R. D., Paz Arribas, M., Pekeur, N. W., Pelletier, Guy, Perennes, Cédric, Petrucci, Pierre-Olivier, Peyaud, B., Piel, Q., Pita, Santiago, Poireau, V., Poon, H., Prokhorov, D. A., Prokoph, H., Pühlhofer, G., Punch, Michael, Quirrenbach, Andreas, Raab, S., Rauth, R., Reimer, A., Reimer, O., Renaud, M., de los Reyes, R., Rieger, F., Rinchiuso, L., Romoli, C., Rowell, G., Rudak, B., Rulten, Cameron, Safi-Harb, S., Sahakian, V., Saito, S., Sanchez, D. A., Santangelo, Andrea, Sasaki, Misao, Schandri, M., Schlickeiser, R., Schüssler, F., Schulz, A., Schwanke, U., Schwemmer, S., Seglar-Arroyo, M., Settimo, Mariangela, Seyffert, A. S., Shafi, N., Shilon, I., Shiningayamwe, K., Simoni, R., Sol, Hélène, Spanier, Felix, Spir-Jacob, M., Stawarz, L., Steenkamp, R., Stegmann, C., Steppa, C., Sushch, I., Takahashi, Tadayuki, Tavernet, J.-P., Tavernier, Thomas, Taylor, Andrew M., Terrier, R., Tibaldo, L., Tiziani, D., Tluczykont, M., Trichard, C., Tsirou, M., Tsuji, N., Tuffs, Richard J., Uchiyama, Y., van der Walt, D. J., van Eldik, C., van Rensburg, C., van Soelen, B., Vasileiadis, G., Veh, J., Venter, C., Viana, A., Vincent, P., Vink, Jacco, Voisin, F., Völk, H. J., Vuillaume, T., Wadiasingh, Z., Wagner, S. J., Wagner, P., Wagner, R. Mark, White, R., Wierzcholska, A., Willmann, P., Wörnlein, A., Wouters, D., Yang, R., Zaborov, D., Zacharias, M., Zanin, R., Zdziarski, A. A., Zech, Andreas, Zefi, F., Ziegler, A., Zorn, J., Zywucka, N., Laboratoire Univers et Théories (LUTH (UMR_8102)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire Univers et Particules de Montpellier (LUPM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Montpellier 2 - Sciences et Techniques (UM2), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire Leprince-Ringuet (LLR), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), HESS, Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), European Project: 332350,EC:FP7:PEOPLE,FP7-PEOPLE-2012-IEF,PRECISIONGAMMA(2014), Faculty of Science, High Energy Astrophys. & Astropart. Phys (API, FNWI), API Other Research (FNWI), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Aix Marseille Université (AMU), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Centre for Space Research, North-West University, Institut für Experimentalphysik, Universität Hamburg, Max-Planck-Institut für Kernphysik (MPIK), Instytut Fizyki Jadrowej, PAN (IFJ/PAN), Institute of Space and Astronautical Science (ISAS), University of Namibia, Department of Physics, Private Bag 13301, Windhoek, Namibia, Gravitation AstroParticle Physics Amsterdam (GRAPPA), Department of Physics and Electrical Engineering, Institut für Theoretische Physik and Astrophysik, Universität Würzburg, Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität Innsbruck, University of Adelaide, Sorbonne Université (SU), Deutsches Elektronen-Synchrotron (DESY), Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Physikalisches Institut, Universität Erlangen-Nürnberg, Astronomical Observatory, Eberhard Karls Universität Tübingen = Eberhard Karls University of Tuebingen, School of Physics, University of the Witwatersrand, Department of Physics, Oskar Klein Centre, Stockholm University (OKC), Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin, 2, Ireland, Department of Physics and Astronomy, Centrum Astronomiczne im. M. Kopernika, Warszawa (CAMK), Institut für Physik und Astronomie, Universität Potsdam, Landessternwarte, Universitat Heidelberg, Konigstuhl, 69117, Heidelberg, Germany, Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Institut für Physik, Humboldt-Universität zu Berlin (IFP-HUB), Obserwatorium Astronomiczne, Uniwersytet Jagiellonski, Centre for Astronomy, Faculty of Physics, Astronomy and Informatics, Now at The School of Physics, The University of New South Wales, Sydney, 2052, Australia, Department of Physics, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa, and Yerevan Physics Institute
- Subjects
media_common.quotation_subject ,Astrophysics::High Energy Astrophysical Phenomena ,Hochenergie-Astrophysik Theorie - Abteilung Hofmann ,Infrarot-Astrophysik - Abteilung Hofmann ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Pulsar ,surveys ,HESS ,0103 physical sciences ,supernova ,ddc:530 ,composite ,010303 astronomy & astrophysics ,Galaxy: general ,HESS - Abteilung Hofmann ,Astrophysics::Galaxy Astrophysics ,media_common ,pulsar ,Astroparticle physics ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,energy: high ,010308 nuclear & particles physics ,general [galaxy] ,Galactic Center ,Institut für Physik und Astronomie ,gamma ray: binary ,Astronomy and Astrophysics ,Radius ,gamma rays: general ,Galactic plane ,sensitivity ,Galaxy ,flux ,Supernova ,Cherenkov counter ,angular resolution ,gamma ray: VHE ,Space and Planetary Science ,Sky ,ddc:520 ,galaxy ,Astrophysics - High Energy Astrophysical Phenomena ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,general [gamma rays] - Abstract
著者人数: H.E.S.S. Collaboration 259名 (所属. 宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS): 桂川, 美穂; 中島, 真也; 小高, 裕和; 高橋, 忠幸), Number of authors: H.E.S.S. Collaboration 259 (Affiliation. Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency(JAXA)(ISAS): Katsuragawa, Miho; Nakashima, Shinya; Odaka, Hirokazu; Takahashi, Tadayuki), Accepted: 2018-01-15, 資料番号: SA1170367000
- Published
- 2018
5. Measuring the coherence length of mode-locked laser pulses in real time
- Author
-
Feinberg, J [Department of Physics and Electrical Engineering, University of Southern California, Los Angeles, California 90089-0484 (US)]
- Published
- 1990
- Full Text
- View/download PDF
6. H.E.S.S. detection of TeV emission from the interaction region between the supernova remnant G349.7+0.2 and a molecular cloud(Corrigendum)
- Author
-
Abramowski, A., Aharonian, F., Becker Tjus, J., Klochkov, D., Kluźniak, W., Kolitzus, D., Komin, Nu., Kosack, K., Krakau, S., Krayzel, F., Krüger, P. P., Laffon, H., Lamanna, G., Berge, D., Lefaucheur, J., Lefranc, V., Lemière, A., Lemoine-Goumard, M., Lenain, J.-P., Lohse, T., Lopatin, A., Lu, C.-C., Marandon, V., Marcowith, A., Bernhard, S., Marx, R., Maurin, G., Maxted, N., Mayer, M., McComb, T. J. L., Méhault, J., Meintjes, P. J., Menzler, U., Meyer, M., Mitchell, A. M. W., Bernlöhr, K., Moderski, R., Mohamed, M., Morå, K., Moulin, E., Murach, T., de Naurois, M., Niemiec, J., Nolan, S. J., Oakes, L., Odaka, H., Birsin, E., Ohm, S., Opitz, B., Ostrowski, M., Oya, I., Panter, M., Parsons, R. D., Paz Arribas, M., Pekeur, N. W., Pelletier, G., Petrucci, P.-O., Biteau, J., Peyaud, B., Pita, S., Poon, H., Pühlhofer, G., Punch, M., Quirrenbach, A., Raab, S., Reichardt, I., Reimer, A., Reimer, O., Böttcher, M., Renaud, M., de los Reyes, R., Rieger, F., Romoli, C., Rosier-Lees, S., Rowell, G., Rudak, B., Rulten, C. B., Sahakian, V., Salek, D., Boisson, C., Sanchez, D. A., Santangelo, A., Schlickeiser, R., Schüssler, F., Schulz, A., Schwanke, U., Schwarzburg, S., Schwemmer, S., Sol, H., Spanier, F., Bolmont, J., Spengler, G., Spies, F., Stawarz, Ł., Steenkamp, R., Stegmann, C., Stinzing, F., Stycz, K., Sushch, I., Tavernet, J.-P., Tavernier, T., Bordas, P., Taylor, A. M., Terrier, R., Tluczykont, M., Trichard, C., Valerius, K., van Eldik, C., van Soelen, B., Vasileiadis, G., Veh, J., Venter, C., Ait Benkhali, F., Bregeon, J., Viana, A., Vincent, P., Vink, J., Völk, H. J., Volpe, F., Vorster, M., Vuillaume, T., Wagner, S. J., Wagner, P., Wagner, R. M., Brun, F., Ward, M., Weidinger, M., Weitzel, Q., White, R., Wierzcholska, A., Willmann, P., Wörnlein, A., Wouters, D., Yang, R., Zabalza, V., Brun, P., Zaborov, D., Zacharias, M., Zdziarski, A. A., Zech, A., Zechlin, H.-S., H.E.S.S. Collaboration, Bryan, M., Bulik, T., Carrigan, S., Casanova, S., Chadwick, P. M., Chakraborty, N., Chalme-Calvet, R., Akhperjanian, A. G., Chaves, R. C. G., Chrétien, M., Colafrancesco, S., Cologna, G., Conrad, J., Couturier, C., Cui, Y., Davids, I. D., Degrange, B., Deil, C., Angüner, E. O., deWilt, P., Djannati-Ataï, A., Domainko, W., Donath, A., Drury, L. O’C., Dubus, G., Dutson, K., Dyks, J., Dyrda, M., Edwards, T., Backes, M., Egberts, K., Eger, P., Espigat, P., Farnier, C., Fegan, S., Feinstein, F., Fernandes, M. V., Fernandez, D., Fiasson, A., Fontaine, G., Balenderan, S., Förster, A., Füßling, M., Gabici, S., Gajdus, M., Gallant, Y. A., Garrigoux, T., Giavitto, G., Giebels, B., Glicenstein, J. F., Gottschall, D., Balzer, A., Grondin, M.-H., Grudzińska, M., Hadasch, D., Häffner, S., Hahn, J., Harris, J., Heinzelmann, G., Henri, G., Hermann, G., Hervet, O., Barnacka, A., Hillert, A., Hinton, J. A., Hofmann, W., Hofverberg, P., Holler, M., Horns, D., Ivascenko, A., Jacholkowska, A., Jahn, C., Jamrozy, M., Becherini, Y., Janiak, M., Jankowsky, F., Jung-Richardt, I., Kastendieck, M. A., Katarzyński, K., Katz, U., Kaufmann, S., Khélifi, B., Kieffer, M., Klepser, S., Universitat Hamburg, Institut fur Experimentalphysik, Luruper Chaussee 149, 22761, Hamburg, Germany, Max-Planck-Institut für Kernphysik (MPIK), Yerevan Physics Institute, Institut für Physik, Humboldt-Universität zu Berlin (IFP-HUB), University of Namibia, Department of Physics, 13301 Private Bag, Windhoek, Namibia, University of Durham, Department of Physics, South Road, Durham, DH1 3LE, UK, Gravitation AstroParticle Physics Amsterdam (GRAPPA), Obserwatorium Astronomiczne, UniwersytetJagiellonski, ul. Orla 171, 30-244, Krakow, Poland, Department of Physics and Electrical Engineering, Institut für Theoretische Physik, Ruhr-Universität Bochum, Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität Innsbruck, Laboratoire Leprince-Ringuet (LLR), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Santa Cruz Institute for Particle Physics (SCIPP), University of California [Santa Cruz] (UC Santa Cruz), University of California (UC)-University of California (UC), Centre for Space Research, North-West University, Laboratoire Univers et Théories (LUTH (UMR_8102)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Eberhard Karls Universität Tübingen = Eberhard Karls University of Tuebingen, Laboratoire Univers et Particules de Montpellier (LUPM), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Astronomical Observatory, Instytut Fizyki Jadrowej, PAN (IFJ/PAN), School of Physics, University of the Witwatersrand, Landessternwarte, Universitat Heidelberg, Konigstuhl, 69117, Heidelberg, Germany, Department of Physics, Oskar Klein Centre, Stockholm University (OKC), University of Adelaide, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2, Ireland, Institut de Planétologie et d'Astrophysique de Grenoble (IPAG ), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Department of Physics and Astronomy, Centrum Astronomiczne im. M. Kopernika, Warszawa (CAMK), Institut für Physik und Astronomie, Universität Potsdam, Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), DESY, 15738, Zeuthen, Germany, Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Physikalisches Institut, Universität Erlangen-Nürnberg, Centre for Astronomy, Faculty of Physics, Astronomy and Informatics, Department of Physics, University of Johannesburg, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, APC - Gravitation (APC-Gravitation), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), H.E.S.S. Collaboration, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), and PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)
- Subjects
Physics ,010308 nuclear & particles physics ,Molecular cloud ,Astronomy ,Astronomy and Astrophysics ,gamma rays: general ,Astrophysics ,Near-Earth supernova ,ISM: clouds ,01 natural sciences ,Space and Planetary Science ,0103 physical sciences ,ddc:520 ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Supernova remnant ,addenda ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,errata ,ISM: supernova remnants - Abstract
International audience; No abstract available
- Published
- 2015
7. Ultrasensitive detection of SCCA employing a graphene oxide integrated microfiber ring laser biosensor.
- Author
-
Li Z, Xie R, Sun G, Liu X, Xin H, Chen Y, Chen S, Rao L, Yan B, Wang K, Sang X, Yu C, Yuan J, and Wu Q
- Subjects
- Humans, Antibodies, Immobilized chemistry, Biomarkers, Tumor analysis, Equipment Design, Graphite chemistry, Biosensing Techniques instrumentation, Biosensing Techniques methods, Serpins analysis, Antigens, Neoplasm analysis, Lasers, Limit of Detection
- Abstract
Squamous cell carcinoma antigen (SCCA) is one of the most commonly detected cancer biomarkers for a variety of cancers. In this paper, a microfiber ring laser biosensor with a graphene oxide linking layer for SCCA detection was proposed and experimentally demonstrated. SCCA antibody immobilized on graphene oxide surface binds specifically to SCCA, and induces refractive index variation over the surface of the microfiber biosensor, which leads to a wavelength shift of the microfiber ring laser biosensor. The experimental results show that the proposed laser biosensor can detect SCCA with concentrations from 0.01 to 50 ng/mL, and the calculated detection limit can be as low as 1.3 pg/mL. Additionally, the label-free quantitative detection of SCCA using the proposed microfiber biosensor was verified experimentally according to the corresponding regression equation, and the results agree well with clinical examination detection. This constructed microfiber biosensor may have promising practical applications in analytical detection, medical diagnostics, etc., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2025
- Full Text
- View/download PDF
8. Recommendations for quantitative cerebral perfusion MRI using multi-timepoint arterial spin labeling: Acquisition, quantification, and clinical applications.
- Author
-
Woods JG, Achten E, Asllani I, Bolar DS, Dai W, Detre JA, Fan AP, Fernández-Seara MA, Golay X, Günther M, Guo J, Hernandez-Garcia L, Ho ML, Juttukonda MR, Lu H, MacIntosh BJ, Madhuranthakam AJ, Mutsaerts HJ, Okell TW, Parkes LM, Pinter N, Pinto J, Qin Q, Smits M, Suzuki Y, Thomas DL, Van Osch MJP, Wang DJJ, Warnert EAH, Zaharchuk G, Zelaya F, Zhao M, and Chappell MA
- Subjects
- Humans, Image Processing, Computer-Assisted methods, Magnetic Resonance Angiography methods, Magnetic Resonance Imaging methods, Perfusion Imaging, Brain diagnostic imaging, Brain blood supply, Cerebrovascular Circulation physiology, Spin Labels
- Abstract
Accurate assessment of cerebral perfusion is vital for understanding the hemodynamic processes involved in various neurological disorders and guiding clinical decision-making. This guidelines article provides a comprehensive overview of quantitative perfusion imaging of the brain using multi-timepoint arterial spin labeling (ASL), along with recommendations for its acquisition and quantification. A major benefit of acquiring ASL data with multiple label durations and/or post-labeling delays (PLDs) is being able to account for the effect of variable arterial transit time (ATT) on quantitative perfusion values and additionally visualize the spatial pattern of ATT itself, providing valuable clinical insights. Although multi-timepoint data can be acquired in the same scan time as single-PLD data with comparable perfusion measurement precision, its acquisition and postprocessing presents challenges beyond single-PLD ASL, impeding widespread adoption. Building upon the 2015 ASL consensus article, this work highlights the protocol distinctions specific to multi-timepoint ASL and provides robust recommendations for acquiring high-quality data. Additionally, we propose an extended quantification model based on the 2015 consensus model and discuss relevant postprocessing options to enhance the analysis of multi-timepoint ASL data. Furthermore, we review the potential clinical applications where multi-timepoint ASL is expected to offer significant benefits. This article is part of a series published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group, aiming to guide and inspire the advancement and utilization of ASL beyond the scope of the 2015 consensus article., (© 2024 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.)
- Published
- 2024
- Full Text
- View/download PDF
9. Pentagonal nanowires from topological crystalline insulators: a platform for intrinsic core-shell nanowires and higher-order topology.
- Author
-
Hussain G, Cuono G, Dziawa P, Janaszko D, Sadowski J, Kret S, Kurowska B, Polaczyński J, Warda K, Sattar S, Canali CM, Lau A, Brzezicki W, Story T, and Autieri C
- Abstract
We report on the experimental realization of Pb
1- x Snx Te pentagonal nanowires (NWs) with [110] orientation using molecular beam epitaxy techniques. Using first-principles calculations, we investigate the structural stability of NWs of SnTe and PbTe in three different structural phases: cubic, pentagonal with [001] orientation and pentagonal with [110] orientation. Within a semiclassical approach, we show that the interplay between ionic and covalent bonds favors the formation of pentagonal NWs. Additionally, we find that this pentagonal structure is more likely to occur in tellurides than in selenides. The disclination and twin boundary cause the electronic states originating from the NW core region to generate a conducting band connecting the valence and conduction bands, creating a symmetry-enforced metallic phase. The metallic core band has opposite slopes in the cases of Sn and Te twin boundaries, while the bands from the shell are insulating. We finally study the electronic and topological properties of pentagonal NWs unveiling their potential as a new platform for higher-order topology and fractional charge. These pentagonal NWs represent a unique case of intrinsic core-shell one-dimensional nanostructures with distinct structural, electronic and topological properties between the core and the shell region.- Published
- 2024
- Full Text
- View/download PDF
10. Chiral edge transport along domain walls in magnetic topological insulator nanoribbons.
- Author
-
Pournaghavi N and Canali CM
- Abstract
Quantum anomalous Hall insulators are topologically characterized by non-zero integer Chern numbers, the sign of which depends on the direction of the exchange field that breaks time-reversal symmetry. This feature allows the manipulation of the conducting chiral edge states present at the interface of two magnetic domains with opposite magnetization and opposite Chern numbers. Motivated by this broad understanding, the present study investigates the quantum transport properties of a magnetizedBi2Se3topological insulator nanoribbon with a domain wall (DW) oriented either parallel or perpendicular to the transport direction. Employing an atomistic tight-binding model and a non-equilibrium Green's function formalism, we calculate the quantum conductance and explore the nature of the edge states. We elucidate the conditions leading to exact conductance quantization and identify the origin of deviations from this behavior. Our analysis shows that although the conductance is quantized in the presence of the horizontal DW, the quantization is absent in the perpendicular DW case. Furthermore, the investigation of the spin character of the edge modes confirms that the conductance in the horizontal DW configuration is spin polarized. This finding underscores the potential of our system as a simple three dimensional spin-filter device., (Creative Commons Attribution license.)
- Published
- 2024
- Full Text
- View/download PDF
11. All-optical control of skyrmion configuration in CrI 3 monolayer.
- Author
-
Kazemi M, Kudlis A, Bessarab PF, and Shelykh IA
- Abstract
The potential for manipulating characteristics of skyrmions in a CrI 3 monolayer using circularly polarised light is explored. The effective skyrmion-light interaction is mediated by bright excitons whose magnetization is selectively influenced by the polarization of photons. The light-induced skyrmion dynamics is illustrated by the dependencies of the skyrmion size and the skyrmion lifetime on the intensity and polarization of the incident light pulse. Two-dimensional magnets hosting excitons thus represent a promising platform for the control of topological magnetic structures by light., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
12. High conductivity characteristics of phosphorus-doped nanocrystalline silicon thin films by KrF pulsed excimer laser irradiation method.
- Author
-
Wang X, Song C, Xu B, and Yang H
- Abstract
The microstructure and high conductivity properties of phosphorus-doped nanocrystalline silicon films were investigated on samples prepared by a plasma-enhanced chemical vapor deposition technique and the KrF pulsed excimer laser irradiation method. The results of Fourier transform infrared spectroscopy and Raman spectroscopy show that Si nanocrystallites with an average diameter of 2 nm to 3 nm are formed in the film. The degree of crystallinity increases with the increase of laser radiation intensity, while the content of hydrogen decreases gradually. More phosphorus atoms are substitutionally incorporated into the nc-Si dots under higher laser irradiation fluence, which is responsible for the high dark conductivity. By controlling the laser fluence at 1.0 J cm
-2 , the dark conductivity as high as 25.7 S cm-1 can be obtained. Based on the measurements of temperature-dependent conductivity, the carrier transport processes are discussed. The phosphorus doping and the increase of electron concentration are considered to be the reason for high dark conductivity and extremely low conductivity activation energy., Competing Interests: There are no conflicts to declare., (This journal is © The Royal Society of Chemistry.)- Published
- 2024
- Full Text
- View/download PDF
13. Reversible Transition of Semiconducting PtSe 2 and Metallic PtTe 2 for Scalable All-2D Edge-Contacted FETs.
- Author
-
Han SS, Sattar S, Kireev D, Shin JC, Bae TS, Ryu HI, Cao J, Shum AK, Kim JH, Canali CM, Akinwande D, Lee GH, Chung HS, and Jung Y
- Abstract
Two-dimensional (2D) transition metal dichalcogenide (TMD) layers are highly promising as field-effect transistor (FET) channels in the atomic-scale limit. However, accomplishing this superiority in scaled-up FETs remains challenging due to their van der Waals (vdW) bonding nature with respect to conventional metal electrodes. Herein, we report a scalable approach to fabricate centimeter-scale all-2D FET arrays of platinum diselenide (PtSe
2 ) with in-plane platinum ditelluride (PtTe2 ) edge contacts, mitigating the aforementioned challenges. We realized a reversible transition between semiconducting PtSe2 and metallic PtTe2 via a low-temperature anion exchange reaction compatible with the back-end-of-line (BEOL) processes. All-2D PtSe2 FETs seamlessly edge-contacted with transited metallic PtTe2 exhibited significant performance improvements compared to those with surface-contacted gold electrodes, e.g., an increase of carrier mobility and on/off ratio by over an order of magnitude, achieving a maximum hole mobility of ∼50.30 cm2 V-1 s-1 at room temperature. This study opens up new opportunities toward atomically thin 2D-TMD-based circuitries with extraordinary functionalities.- Published
- 2024
- Full Text
- View/download PDF
14. Femtosecond optical Kerr effect in normal and grades of cancerous breast tissues as a new optical biopsy method.
- Author
-
Meyer HJ, Mamani S, Li Z, Shi L, and Alfano RR
- Subjects
- Humans, Animals, Mice, Female, Biopsy, Breast Neoplasms diagnostic imaging
- Abstract
This study reports on the first use of the optical Kerr effect (OKE) in breast cancer tissue. This proposed optical biopsy method utilizes a Femtosecond Optical Kerr Gate to detect changes in dielectric relaxation and conductivity created by a cancerous infection. Here, the temporal behavior of the OKE is tracked in normal and cancerous samples of human and mouse breast. These tissues display a double peaked temporal structure and its decay rate changes depending on the tissue's infection status. The decay of the secondary peak, attributed to ultrafast plasma response, indicates that the tissue's conductivity has doubled once infected. A slower molecular contribution to the Kerr effect can also be observed in healthy tissues. These findings suggest two possible biomarkers for the use of OKE in optical biopsy. Both markers arise from alterations in the infected tissue's cellular structure, which changes the rate at which electronic and molecular processes occur., (© 2023 Wiley-VCH GmbH.)
- Published
- 2024
- Full Text
- View/download PDF
15. Acceleration and transport of relativistic electrons in the jets of the microquasar SS 433.
- Author
-
Aharonian F, Benkhali FA, Aschersleben J, Ashkar H, Backes M, Martins VB, Batzofin R, Becherini Y, Berge D, Bernlöhr K, Bi B, Böttcher M, Boisson C, Bolmont J, de Lavergne MB, Borowska J, Bouyahiaoui M, Breuhaus M, Brose R, Brown AM, Brun F, Bruno B, Bulik T, Burger-Scheidlin C, Caroff S, Casanova S, Cecil R, Celic J, Cerruti M, Chand T, Chandra S, Chen A, Chibueze J, Chibueze O, Cotter G, Dai S, Mbarubucyeye JD, Djannati-Ataï A, Dmytriiev A, Doroshenko V, Egberts K, Einecke S, Ernenwein JP, Filipovic M, Fontaine G, Füßling M, Funk S, Gabici S, Ghafourizadeh S, Giavitto G, Glawion D, Glicenstein JF, Grolleron G, Haerer L, Hinton JA, Hofmann W, Holch TL, Holler M, Horns D, Jamrozy M, Jankowsky F, Jardin-Blicq A, Joshi V, Jung-Richardt I, Kasai E, Katarzyński K, Khatoon R, Khélifi B, Klepser S, Kluźniak W, Komin N, Kosack K, Kostunin D, Kundu A, Lang RG, Le Stum S, Leitl F, Lemière A, Lenain JP, Leuschner F, Lohse T, Luashvili A, Lypova I, Mackey J, Malyshev D, Malyshev D, Marandon V, Marchegiani P, Marcowith A, Martí-Devesa G, Marx R, Mehta A, Mitchell A, Moderski R, Mohrmann L, Montanari A, Moulin E, Murach T, Nakashima K, de Naurois M, Niemiec J, Noel AP, Ohm S, Olivera-Nieto L, de Ona Wilhelmi E, Ostrowski M, Panny S, Panter M, Parsons RD, Peron G, Prokhorov DA, Pühlhofer G, Punch M, Quirrenbach A, Reichherzer P, Reimer A, Reimer O, Ren H, Renaud M, Reville B, Rieger F, Rowell G, Rudak B, Ricarte HR, Ruiz-Velasco E, Sahakian V, Salzmann H, Santangelo A, Sasaki M, Schäfer J, Schüssler F, Schwanke U, Shapopi JNS, Sol H, Specovius A, Spencer S, Stawarz L, Steenkamp R, Steinmassl S, Steppa C, Streil K, Sushch I, Suzuki H, Takahashi T, Tanaka T, Taylor AM, Terrier R, Tsirou M, Tsuji N, Unbehaun T, van Eldik C, Vecchi M, Veh J, Venter C, Vink J, Wach T, Wagner SJ, Werner F, White R, Wierzcholska A, Wong YW, Zacharias M, Zargaryan D, Zdziarski AA, Zech A, Zouari S, and Żywucka N
- Abstract
SS 433 is a microquasar, a stellar binary system that launches collimated relativistic jets. We observed SS 433 in gamma rays using the High Energy Stereoscopic System (H.E.S.S.) and found an energy-dependent shift in the apparent position of the gamma-ray emission from the parsec-scale jets. These observations trace the energetic electron population and indicate that inverse Compton scattering is the emission mechanism of the gamma rays. Our modeling of the energy-dependent gamma-ray morphology constrains the location of particle acceleration and requires an abrupt deceleration of the jet flow. We infer the presence of shocks on either side of the binary system, at distances of 25 to 30 parsecs, and that self-collimation of the precessing jets forms the shocks, which then efficiently accelerate electrons.
- Published
- 2024
- Full Text
- View/download PDF
16. Modelling and robust controller design for an underactuated self-balancing robot with uncertain parameter estimation.
- Author
-
Choudhry OA, Wasim M, Ali A, Choudhry MA, and Iqbal J
- Subjects
- Humans, Computer Simulation, Gravitation, Research Personnel, Uncertainty, Robotics
- Abstract
A comprehensive literature review of self-balancing robot (SBR) provides an insight to the strengths and limitations of the available control techniques for different applications. Most of the researchers have not included the payload and its variations in their investigations. To address this problem comprehensively, it was realized that a rigorous mathematical model of the SBR will help to design an effective control for the targeted system. A robust control for a two-wheeled SBR with unknown payload parameters is considered in these investigations. Although, its mechanical design has the advantage of additional maneuverability, however, the robot's stability is affected by changes in the rider's mass and height, which affect the robot's center of gravity (COG). Conventionally, variations in these parameters impact the performance of the controller that are designed with the assumption to operate under nominal values of the rider's mass and height. The proposed solution includes an extended Kalman filter (EKF) based sliding mode controller (SMC) with an extensive mathematical model describing the dynamics of the robot itself and the payload. The rider's mass and height are estimated using EKF and this information is used to improve the control of SBR. Significance of the proposed method is demonstrated by comparing simulation results with the conventional SMC under different scenarios as well as with other techniques in literature. The proposed method shows zero steady state error and no overshoot. Performance of the conventional SMC is improved with controller parameter estimation. Moreover, the stability issue in the reaching phase of the controller is also solved with the availability of parameter estimates. The proposed method is suitable for a wide range of indoor applications with no disturbance. This investigation provides a comprehensive comparison of available techniques to contextualize the proposed method within the scope of self-balancing robots for indoor applications., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2023 Choudhry et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2023
- Full Text
- View/download PDF
17. Author Correction: GLORIA - A globally representative hyperspectral in situ dataset for optical sensing of water quality.
- Author
-
Lehmann MK, Gurlin D, Pahlevan N, Alikas K, Conroy T, Anstee J, Balasubramanian SV, Barbosa CCF, Binding C, Bracher A, Bresciani M, Burtner A, Cao Z, Dekker AG, Di Vittorio C, Drayson N, Errera RM, Fernandez V, Ficek D, Fichot CG, Gege P, Giardino C, Gitelson AA, Greb SR, Henderson H, Higa H, Rahaghi AI, Jamet C, Jiang D, Jordan T, Kangro K, Kravitz JA, Kristoffersen AS, Kudela R, Li L, Ligi M, Loisel H, Lohrenz S, Ma R, Maciel DA, Malthus TJ, Matsushita B, Matthews M, Minaudo C, Mishra DR, Mishra S, Moore T, Moses WJ, Nguyễn H, Novo EMLM, Novoa S, Odermatt D, O'Donnell DM, Olmanson LG, Ondrusek M, Oppelt N, Ouillon S, Pereira Filho W, Plattner S, Verdú AR, Salem SI, Schalles JF, Simis SGH, Siswanto E, Smith B, Somlai-Schweiger I, Soppa MA, Spyrakos E, Tessin E, van der Woerd HJ, Vander Woude A, Vandermeulen RA, Vantrepotte V, Wernand MR, Werther M, Young K, and Yue L
- Published
- 2023
- Full Text
- View/download PDF
18. GLORIA - A globally representative hyperspectral in situ dataset for optical sensing of water quality.
- Author
-
Lehmann MK, Gurlin D, Pahlevan N, Alikas K, Conroy T, Anstee J, Balasubramanian SV, Barbosa CCF, Binding C, Bracher A, Bresciani M, Burtner A, Cao Z, Dekker AG, Di Vittorio C, Drayson N, Errera RM, Fernandez V, Ficek D, Fichot CG, Gege P, Giardino C, Gitelson AA, Greb SR, Henderson H, Higa H, Rahaghi AI, Jamet C, Jiang D, Jordan T, Kangro K, Kravitz JA, Kristoffersen AS, Kudela R, Li L, Ligi M, Loisel H, Lohrenz S, Ma R, Maciel DA, Malthus TJ, Matsushita B, Matthews M, Minaudo C, Mishra DR, Mishra S, Moore T, Moses WJ, Nguyễn H, Novo EMLM, Novoa S, Odermatt D, O'Donnell DM, Olmanson LG, Ondrusek M, Oppelt N, Ouillon S, Pereira Filho W, Plattner S, Verdú AR, Salem SI, Schalles JF, Simis SGH, Siswanto E, Smith B, Somlai-Schweiger I, Soppa MA, Spyrakos E, Tessin E, van der Woerd HJ, Vander Woude A, Vandermeulen RA, Vantrepotte V, Wernand MR, Werther M, Young K, and Yue L
- Abstract
The development of algorithms for remote sensing of water quality (RSWQ) requires a large amount of in situ data to account for the bio-geo-optical diversity of inland and coastal waters. The GLObal Reflectance community dataset for Imaging and optical sensing of Aquatic environments (GLORIA) includes 7,572 curated hyperspectral remote sensing reflectance measurements at 1 nm intervals within the 350 to 900 nm wavelength range. In addition, at least one co-located water quality measurement of chlorophyll a, total suspended solids, absorption by dissolved substances, and Secchi depth, is provided. The data were contributed by researchers affiliated with 59 institutions worldwide and come from 450 different water bodies, making GLORIA the de-facto state of knowledge of in situ coastal and inland aquatic optical diversity. Each measurement is documented with comprehensive methodological details, allowing users to evaluate fitness-for-purpose, and providing a reference for practitioners planning similar measurements. We provide open and free access to this dataset with the goal of enabling scientific and technological advancement towards operational regional and global RSWQ monitoring., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
19. Impact of Bismuth Incorporation into (Ga,Mn)As Dilute Ferromagnetic Semiconductor on Its Magnetic Properties and Magnetoresistance.
- Author
-
Andrearczyk T, Levchenko K, Sadowski J, Gas K, Avdonin A, Wróbel J, Figielski T, Sawicki M, and Wosinski T
- Abstract
The impact of bismuth incorporation into the epitaxial layer of a (Ga,Mn)As dilute ferromagnetic semiconductor on its magnetic and electromagnetic properties is studied in very thin layers of quaternary (Ga,Mn)(Bi,As) compound grown on a GaAs substrate under a compressive misfit strain. An addition of a small atomic fraction of 1% Bi atoms, substituting As atoms in the layer, predominantly enhances the spin-orbit coupling strength in its valence band. The presence of bismuth results in a small decrease in the ferromagnetic Curie temperature and a distinct increase in the coercive fields. On the other hand, the Bi incorporation into the layer strongly enhances the magnitude of negative magnetoresistance without affecting the hole concentration in the layer. The negative magnetoresistance is interpreted in terms of the suppression of weak localization in a magnetic field. Application of the weak-localization theory for two-dimensional ferromagnets by Dugaev et al. to the experimental magnetoresistance results indicates that the decrease in spin-orbit scattering length accounts for the enhanced magnetoresistance in (Ga,Mn)(Bi,As).
- Published
- 2023
- Full Text
- View/download PDF
20. The use of models and modelling in design projects in three different technology classrooms.
- Author
-
Citrohn B, Stolpe K, and Svensson M
- Abstract
In this study, we aim to investigate activities using models in a design project in three technology classrooms. Activities that use models are important for students' development of knowledge and skills connected to the design process. Nevertheless, few empirical studies have thus far examined how models and modelling are used in a classroom environment when students and teachers are involved in a design project. In order to meet our aim, we video-recorded eight lessons from three different technology classrooms (students aged 13-15), where the students were involved in different problem-solving activities using models and modelling. The three projects had different specifications, and the students' degrees of freedom thereby varied. The video recordings were analysed using a qualitative content analysis. The analysis resulted in seven activities being identified where the teachers and students talked about models and modelling in order to solve the problem. The results also revealed three different dimensions of models: material, structure and function. These dimensions are present in almost all activities that use models. In a project with a high degree of freedom, all three dimensions of models are present. On the contrary, in a project with a lower freedom, only one of the dimensions is present, resulting in a lower degree of complexity for the students. The study emphasizes that the presumptions and openness of a design project in technology education can provide different possibilities for students learning in relation to models and modelling., (© The Author(s) 2022.)
- Published
- 2023
- Full Text
- View/download PDF
21. A Surface Plasmon Resonance-Based Photonic Crystal Fiber Sensor for Simultaneously Measuring the Refractive Index and Temperature.
- Author
-
Zhang J, Yuan J, Qu Y, Qiu S, Mei C, Zhou X, Yan B, Wu Q, Wang K, Sang X, and Yu C
- Abstract
In this paper, a surface plasmon resonance (SPR)-based photonic crystal fiber (PCF) sensor is proposed for simultaneously measuring the refractive index (RI) and temperature. In the design, the central air hole and external surface of the proposed PCF are coated with gold films, and an air hole is filled with the temperature-sensitive material (TSM). By introducing the inner and outer gold films and TSM, the RI and temperature can be measured simultaneously at different wavelength regions. The simulation results show that the average wavelength sensitivities of the proposed SPR-based PCF sensor can reach 4520 nm/RIU and 4.83 nm/°C in the RI range of 1.35~1.40 and a temperature range of 20~60 °C, respectively. Moreover, because of using the different wavelength regions for sensing, the RI and temperature detections of the proposed SPR-based PCF sensor can be achieved independently. It is believed that the proposed SPR-based PCF RI and temperature sensor has important applications in biomedicine and in environmental science.
- Published
- 2022
- Full Text
- View/download PDF
22. Search for Dark Matter Annihilation Signals in the H.E.S.S. Inner Galaxy Survey.
- Author
-
Abdalla H, Aharonian F, Benkhali FA, Angüner EO, Armand C, Ashkar H, Backes M, Baghmanyan V, Martins VB, Batzofin R, Becherini Y, Berge D, Bernlöhr K, Bi B, Böttcher M, Bolmont J, de Lavergne MB, Brose R, Brun F, Cangemi F, Caroff S, Cerruti M, Chand T, Chen A, Cotter G, Mbarubucyeye JD, Devin J, Djannati-Ataï A, Dmytriiev A, Doroshenko V, Egberts K, Fiasson A, de Clairfontaine GF, Fontaine G, Funk S, Gabici S, Giavitto G, Glawion D, Glicenstein JF, Grondin MH, Hinton JA, Hofmann W, Holch TL, Holler M, Horns D, Huang Z, Jamrozy M, Jankowsky F, Kasai E, Katarzyński K, Katz U, Khélifi B, Kluźniak W, Komin N, Kosack K, Kostunin D, Lamanna G, Lemoine-Goumard M, Lenain JP, Leuschner F, Lohse T, Luashvili A, Lypova I, Mackey J, Malyshev D, Malyshev D, Marandon V, Marchegiani P, Martí-Devesa G, Marx R, Maurin G, Meyer M, Mitchell A, Moderski R, Montanari A, Moulin E, Muller J, de Naurois M, Niemiec J, Noel AP, Ohm S, Olivera-Nieto L, Wilhelmi EO, Ostrowski M, Panny S, Panter M, Parsons RD, Peron G, Poireau V, Prokoph H, Pühlhofer G, Punch M, Quirrenbach A, Reichherzer P, Reimer A, Reimer O, Renaud M, Rieger F, Rowell G, Rudak B, Ricarte HR, Ruiz-Velasco E, Sahakian V, Salzmann H, Santangelo A, Sasaki M, Schüssler F, Schutte HM, Schwanke U, Senniappan M, Shapopi JNS, Sol H, Specovius A, Spencer S, Stawarz Ł, Stegmann C, Steinmassl S, Steppa C, Takahashi T, Tanaka T, Terrier R, Thorpe-Morgan C, Tluczykont M, Tsirou M, Tsuji N, Uchiyama Y, van Eldik C, Veh J, Vink J, Wagner SJ, White R, Wierzcholska A, Wong YW, Zacharias M, Zargaryan D, Zdziarski AA, Zech A, Zhu SJ, Zouari S, and Żywucka N
- Abstract
The central region of the Milky Way is one of the foremost locations to look for dark matter (DM) signatures. We report the first results on a search for DM particle annihilation signals using new observations from an unprecedented γ-ray survey of the Galactic Center (GC) region, i.e., the Inner Galaxy Survey, at very high energies (≳100 GeV) performed with the H.E.S.S. array of five ground-based Cherenkov telescopes. No significant γ-ray excess is found in the search region of the 2014-2020 dataset and a profile likelihood ratio analysis is carried out to set exclusion limits on the annihilation cross section ⟨σv⟩. Assuming Einasto and Navarro-Frenk-White (NFW) DM density profiles at the GC, these constraints are the strongest obtained so far in the TeV DM mass range. For the Einasto profile, the constraints reach ⟨σv⟩ values of 3.7×10^{-26} cm^{3} s^{-1} for 1.5 TeV DM mass in the W^{+}W^{-} annihilation channel, and 1.2×10^{-26} cm^{3} s^{-1} for 0.7 TeV DM mass in the τ^{+}τ^{-} annihilation channel. With the H.E.S.S. Inner Galaxy Survey, ground-based γ-ray observations thus probe ⟨σv⟩ values expected from thermal-relic annihilating TeV DM particles.
- Published
- 2022
- Full Text
- View/download PDF
23. Quantum coherence of a circularly accelerated atom in a spacetime with a reflecting boundary.
- Author
-
Zhang W, Liu X, and Yang T
- Abstract
We investigate, in the paradigm of open quantum systems, the dynamics of quantum coherence of a circularly accelerated atom coupled to a bath of vacuum fluctuating massless scalar field in a spacetime with a reflecting boundary. The master equation that governs the system evolution is derived. Our results show that in the case without a boundary, the vacuum fluctuations and centripetal acceleration will always cause the quantum coherence to decrease. However, with the presence of a boundary, the quantum fluctuations of the scalar field are modified, which makes that quantum coherence could be enhanced as compared to that in the case without a boundary. Particularly, when the atom is very close to the boundary, although the atom still interacts with the environment, it behaves as if it were a closed system and quantum coherence can be shielded from the effect of the vacuum fluctuating scalar field., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
24. Prolonged Continuous Monitoring of Regional Lung Function in Infants with Respiratory Failure.
- Author
-
Becher TH, Miedema M, Kallio M, Papadouri T, Karaoli C, Sophocleous L, Rahtu M, van Leuteren RW, Waldmann AD, Strodthoff C, Yerworth R, Dupré A, Benissa MR, Nordebo S, Khodadad D, Bayford R, Vliegenthart R, Rimensberger PC, van Kaam AH, and Frerichs I
- Subjects
- Child, Child, Preschool, Electric Impedance, Humans, Infant, Infant, Newborn, Infant, Premature, Lung diagnostic imaging, Respiratory Insufficiency diagnosis, Respiratory Insufficiency therapy, Tomography methods
- Abstract
Rationale: Electrical impedance tomography (EIT) allows instantaneous and continuous visualization of regional ventilation and changes in end-expiratory lung volume at the bedside. There is particular interest in using EIT for monitoring in critically ill neonates and young children with respiratory failure. Previous studies have focused only on short-term monitoring in small populations. The feasibility and safety of prolonged monitoring with EIT in neonates and young children have not been demonstrated yet. Objectives: To evaluate the feasibility and safety of long-term EIT monitoring in a routine clinical setting and to describe changes in ventilation distribution and homogeneity over time and with positioning in a multicenter cohort of neonates and young children with respiratory failure. Methods: At four European University hospitals, we conducted an observational study (NCT02962505) on 200 patients with postmenstrual ages (PMA) between 25 weeks and 36 months, at risk for or suffering from respiratory failure. Continuous EIT data were obtained using a novel textile 32-electrode interface and recorded at 48 images/s for up to 72 hours. Clinicians were blinded to EIT images during the recording. EIT parameters and the effects of body position on ventilation distribution were analyzed offline. Results: The average duration of EIT measurements was 53 ± 20 hours. Skin contact impedance was sufficient to allow image reconstruction for valid ventilation analysis during a median of 92% (interquartile range, 77-98%) of examination time. EIT examinations were well tolerated, with minor skin irritations (temporary redness or imprint) occurring in 10% of patients and no moderate or severe adverse events. Higher ventilation amplitude was found in the dorsal and right lung areas when compared with the ventral and left regions, respectively. Prone positioning resulted in an increase in the ventilation-related EIT signal in the dorsal hemithorax, indicating increased ventilation of the dorsal lung areas. Lateral positioning led to a redistribution of ventilation toward the dependent lung in preterm infants and to the nondependent lung in patients with PMA > 37 weeks. Conclusions: EIT allows continuous long-term monitoring of regional lung function in neonates and young children for up to 72 hours with minimal adverse effects. Our study confirmed the presence of posture-dependent changes in ventilation distribution and their dependency on PMA in a large patient cohort. Clinical trial registered with www.clinicaltrials.gov (NCT02962505).
- Published
- 2022
- Full Text
- View/download PDF
25. Peel-and-Stick Integration of Atomically Thin Nonlayered PtS Semiconductors for Multidimensionally Stretchable Electronic Devices.
- Author
-
Han SS, Ko TJ, Shawkat MS, Shum AK, Bae TS, Chung HS, Ma J, Sattar S, Hafiz SB, Mahfuz MMA, Mofid SA, Larsson JA, Oh KH, Ko DK, and Jung Y
- Abstract
Various near-atom-thickness two-dimensional (2D) van der Waals (vdW) crystals with unparalleled electromechanical properties have been explored for transformative devices. Currently, the availability of 2D vdW crystals is rather limited in nature as they are only obtained from certain mother crystals with intrinsically possessed layered crystallinity and anisotropic molecular bonding. Recent efforts to transform conventionally non-vdW three-dimensional (3D) crystals into ultrathin 2D-like structures have seen rapid developments to explore device building blocks of unique form factors. Herein, we explore a "peel-and-stick" approach, where a nonlayered 3D platinum sulfide (PtS) crystal, traditionally known as a cooperate mineral material, is transformed into a freestanding 2D-like membrane for electromechanical applications. The ultrathin (∼10 nm) 3D PtS films grown on large-area (>cm
2 ) silicon dioxide/silicon (SiO2 /Si) wafers are precisely "peeled" inside water retaining desired geometries via a capillary-force-driven surface wettability control. Subsequently, they are "sticked" on strain-engineered patterned substrates presenting prominent semiconducting properties, i.e., p -type transport with an optical band gap of ∼1.24 eV. A variety of mechanically deformable strain-invariant electronic devices have been demonstrated by this peel-and-stick method, including biaxially stretchable photodetectors and respiratory sensing face masks. This study offers new opportunities of 2D-like nonlayered semiconducting crystals for emerging mechanically reconfigurable and stretchable device technologies.- Published
- 2022
- Full Text
- View/download PDF
26. Bi incorporation and segregation in the MBE-grown GaAs-(Ga,Al)As-Ga(As,Bi) core-shell nanowires.
- Author
-
Sadowski J, Kaleta A, Kryvyi S, Janaszko D, Kurowska B, Bilska M, Wojciechowski T, Domagala JZ, Sanchez AM, and Kret S
- Abstract
Incorporation of Bi into GaAs-(Ga,Al)As-Ga(As,Bi) core-shell nanowires grown by molecular beam epitaxy is studied with transmission electron microscopy. Nanowires are grown on GaAs(111)B substrates with Au-droplet assisted mode. Bi-doped shells are grown at low temperature (300 °C) with a close to stoichiometric Ga/As flux ratio. At low Bi fluxes, the Ga(As,Bi) shells are smooth, with Bi completely incorporated into the shells. Higher Bi fluxes (Bi/As flux ratio ~ 4%) led to partial segregation of Bi as droplets on the nanowires sidewalls, preferentially located at the nanowire segments with wurtzite structure. We demonstrate that such Bi droplets on the sidewalls act as catalysts for the growth of branches perpendicular to the GaAs trunks. Due to the tunability between zinc-blende and wurtzite polytypes by changing the nanowire growth conditions, this effect enables fabrication of branched nanowire architectures with branches generated from selected (wurtzite) nanowire segments., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
27. Time-resolved hadronic particle acceleration in the recurrent nova RS Ophiuchi.
- Author
-
Aharonian F, Ait Benkhali F, Angüner EO, Ashkar H, Backes M, Baghmanyan V, Barbosa Martins V, Batzofin R, Becherini Y, Berge D, Bernlöhr K, Bi B, Böttcher M, Boisson C, Bolmont J, de Bony de Lavergne M, Breuhaus M, Brose R, Brun F, Caroff S, Casanova S, Cerruti M, Chand T, Chen A, Cotter G, Damascene Mbarubucyeye J, Djannati-Ataï A, Dmytriiev A, Doroshenko V, Duffy C, Egberts K, Ernenwein JP, Fegan S, Feijen K, Fiasson A, Fichet de Clairfontaine G, Fontaine G, Füßling M, Funk S, Gabici S, Gallant YA, Ghafourizadeh S, Giavitto G, Giunti L, Glawion D, Glicenstein JF, Grondin MH, Hermann G, Hinton JA, Hörbe M, Hofmann W, Hoischen C, Holch TL, Holler M, Horns D, Huang Z, Jamrozy M, Jankowsky F, Jung-Richardt I, Kasai E, Katarzyński K, Katz U, Khangulyan D, Khélifi B, Klepser S, Kluźniak W, Komin N, Konno R, Kosack K, Kostunin D, Le Stum S, Lemière A, Lemoine-Goumard M, Lenain JP, Leuschner F, Lohse T, Luashvili A, Lypova I, Mackey J, Malyshev D, Malyshev D, Marandon V, Marchegiani P, Marcowith A, Martí-Devesa G, Marx R, Maurin G, Meyer M, Mitchell A, Moderski R, Mohrmann L, Montanari A, Moulin E, Muller J, Murach T, Nakashima K, de Naurois M, Nayerhoda A, Niemiec J, Priyana Noel A, O'Brien P, Ohm S, Olivera-Nieto L, de Ona Wilhelmi E, Ostrowski M, Panny S, Panter M, Parsons RD, Peron G, Pita S, Poireau V, Prokhorov DA, Prokoph H, Pühlhofer G, Punch M, Quirrenbach A, Reichherzer P, Reimer A, Reimer O, Renaud M, Reville B, Rieger F, Rowell G, Rudak B, Rueda Ricarte H, Ruiz-Velasco E, Sahakian V, Sailer S, Salzmann H, Sanchez DA, Santangelo A, Sasaki M, Schäfer J, Schüssler F, Schutte HM, Schwanke U, Senniappan M, Shapopi JNS, Simoni R, Sinha A, Sol H, Specovius A, Spencer S, Stawarz Ł, Steinmassl S, Steppa C, Takahashi T, Tanaka T, Taylor AM, Terrier R, Thorpe-Morgan C, Tsirou M, Tsuji N, Tuffs R, Uchiyama Y, Unbehaun T, van Eldik C, van Soelen B, Veh J, Venter C, Vink J, Wagner SJ, Werner F, White R, Wierzcholska A, Wong YW, Yusafzai A, Zacharias M, Zargaryan D, Zdziarski AA, Zech A, Zhu SJ, Zouari S, and Żywucka N
- Abstract
Recurrent novae are repeating thermonuclear explosions in the outer layers of white dwarfs, due to the accretion of fresh material from a binary companion. The shock generated when ejected material slams into the companion star's wind can accelerate particles. We report very-high-energy (VHE; [Formula: see text]) gamma rays from the recurrent nova RS Ophiuchi, up to 1 month after its 2021 outburst, observed using the High Energy Stereoscopic System (H.E.S.S.). The temporal profile of VHE emission is similar to that of lower-energy giga-electron volt emission, indicating a common origin, with a 2-day delay in peak flux. These observations constrain models of time-dependent particle energization, favoring a hadronic emission scenario over the leptonic alternative. Shocks in dense winds provide favorable environments for efficient acceleration of cosmic rays to very high energies.
- Published
- 2022
- Full Text
- View/download PDF
28. High-directionality spin-selective routing of photons in plasmonic nanocircuits.
- Author
-
Ma Y, Liu B, Huang Z, Li J, Han Z, Wu D, Zhou J, Ma Y, Wu Q, and Maeda H
- Abstract
Efficient on-chip manipulation of photon spin is of crucial importance in developing future integrated nanophotonics as is electron spin in spintronics. The unidirectionality induced by the interaction between spin and orbital angular momenta suffers low efficiency in classical macroscopic optics, while it can be highly enhanced on subwavelength scales with suitable architectures. Here we propose and demonstrate a spin-sorting achiral split-ring coupler to unidirectionally excite dielectric-loaded plasmonic modes in two independent waveguides. We found experimentally that the impinging light with different spin can be selectively directed into one of two branching plasmonic waveguides with a directionality contrast up to 15.1 dB. A circular-helicity-independent compact beam splitter is also realized demonstrating great potential in designing complex interconnect nanocircuits. The illustrated approach is believed to open new avenues for developing advanced optical functionalities with a flexible degree of freedom in manipulation of on-chip chirality within chiral optics.
- Published
- 2022
- Full Text
- View/download PDF
29. Electronic properties of TaAs 2 topological semimetal investigated by transport and ARPES.
- Author
-
Wadge AS, Grabecki G, Autieri C, Kowalski BJ, Iwanowski P, Cuono G, Islam MF, Canali CM, Dybko K, Hruban A, Łusakowski A, Wojciechowski T, Diduszko R, Lynnyk A, Olszowska N, Rosmus M, Kołodziej J, and Wiśniewski A
- Abstract
We have performed electron transport and angle-resolved photo-emission spectroscopy (ARPES) measurements on single crystals of transition metal dipnictide TaAs
2 cleaved along the (2¯01) surface which has the lowest cleavage energy. A Fourier transform of the Shubnikov-de Haas oscillations shows four different peaks whose angular dependence was studied with respect to the angle between magnetic field and the [2¯01] direction. The results indicate elliptical shape of the Fermi surface cross-sections. Additionally, a mobility spectrum analysis was carried out, which also reveals at least four types of carriers contributing to the conductance (two kinds of electrons and two kinds of holes). ARPES spectra were taken on freshly cleaved (2¯01) surface and it was found that bulk states pockets at constant energy surface are elliptical, which confirms the magnetotransport angle dependent studies. First-principles calculations support the interpretation of the experimental results. The theoretical calculations better reproduce the ARPES data if the theoretical Fermi level (FL) is increased, which is due to a small n-doping of the samples. This shifts the FL closer to the Dirac point, allowing investigating the physics of the Dirac and Weyl points, making this compound a platform for the investigation of the Dirac and Weyl points in three-dimensional materials., (© 2022 IOP Publishing Ltd.)- Published
- 2022
- Full Text
- View/download PDF
30. Hydrogen Storage in Bilayer Hexagonal Boron Nitride: A First-Principles Study.
- Author
-
Rai DP, Chettri B, Patra PK, and Sattar S
- Abstract
Using first-principles calculations, we report on the structural and electronic properties of bilayer hexagonal boron nitride ( h -BN), incorporating hydrogen (H
2 ) molecules inside the cavity for potential H2 -storage applications. Decrease in binding energies and desorption temperatures with an accompanying increase in the weight percentage (upto 4%) by increasing the H2 molecular concentration hints at the potential applicability of this study. Moreover, we highlight the role of different density functionals in understanding the decreasing energy gaps and effective carrier masses and the underlying phenomenon for molecular adsorption. Furthermore, energy barriers involving H2 diffusion across minimum-energy sites are also discussed. Our findings provide significant insights into the potential of using bilayer h -BN in hydrogen-based energy-storage applications., Competing Interests: The authors declare no competing financial interest., (© 2021 The Authors. Published by American Chemical Society.)- Published
- 2021
- Full Text
- View/download PDF
31. Tunable Planar Hall Effect in (Ga,Mn)(Bi,As) Epitaxial Layers.
- Author
-
Andrearczyk T, Sadowski J, Wróbel J, Figielski T, and Wosinski T
- Abstract
We have thoroughly investigated the planar Hall effect (PHE) in the epitaxial layers of the quaternary compound (Ga,Mn)(Bi,As). The addition of a small amount of heavy Bi atoms to the prototype dilute ferromagnetic semiconductor (Ga,Mn)As enhances significantly the spin-orbit coupling strength in its valence band, which essentially modifies certain magnetoelectric properties of the material. Our investigations demonstrate that an addition of just 1% Bi atomic fraction, substituting As atoms in the (Ga,Mn)As crystal lattice, causes an increase in the PHE magnitude by a factor of 2.5. Moreover, Bi incorporation into the layers strongly enhances their coercive fields and uniaxial magneto-crystalline anisotropy between the in-plane ⟨110⟩ crystallographic directions in the layers grown under a compressive misfit strain. The displayed two-state behaviour of the PHE resistivity at zero magnetic field, which may be tuned by the control of applied field orientation, could be useful for application in spintronic devices, such as nonvolatile memory elements.
- Published
- 2021
- Full Text
- View/download PDF
32. Revealing x-ray and gamma ray temporal and spectral similarities in the GRB 190829A afterglow.
- Author
-
Abdalla H, Aharonian F, Ait Benkhali F, Angüner EO, Arcaro C, Armand C, Armstrong T, Ashkar H, Backes M, Baghmanyan V, Barbosa Martins V, Barnacka A, Barnard M, Becherini Y, Berge D, Bernlöhr K, Bi B, Bissaldi E, Böttcher M, Boisson C, Bolmont J, de Bony de Lavergne M, Breuhaus M, Brun F, Brun P, Bryan M, Büchele M, Bulik T, Bylund T, Caroff S, Carosi A, Casanova S, Chand T, Chandra S, Chen A, Cotter G, Curyło M, Damascene Mbarubucyeye J, Davids ID, Davies J, Deil C, Devin J, Dirson L, Djannati-Ataï A, Dmytriiev A, Donath A, Doroshenko V, Dreyer L, Duffy C, Dyks J, Egberts K, Eichhorn F, Einecke S, Emery G, Ernenwein JP, Feijen K, Fegan S, Fiasson A, Fichet de Clairfontaine G, Fontaine G, Funk S, Füßling M, Gabici S, Gallant YA, Giavitto G, Giunti L, Glawion D, Glicenstein JF, Grondin MH, Hahn J, Haupt M, Hermann G, Hinton JA, Hofmann W, Hoischen C, Holch TL, Holler M, Hörbe M, Horns D, Huber D, Jamrozy M, Jankowsky D, Jankowsky F, Jardin-Blicq A, Joshi V, Jung-Richardt I, Kasai E, Kastendieck MA, Katarzyński K, Katz U, Khangulyan D, Khélifi B, Klepser S, Kluźniak W, Komin N, Konno R, Kosack K, Kostunin D, Kreter M, Lamanna G, Lemière A, Lemoine-Goumard M, Lenain JP, Leuschner F, Levy C, Lohse T, Lypova I, Mackey J, Majumdar J, Malyshev D, Malyshev D, Marandon V, Marchegiani P, Marcowith A, Mares A, Martí-Devesa G, Marx R, Maurin G, Meintjes PJ, Meyer M, Mitchell A, Moderski R, Mohrmann L, Montanari A, Moore C, Morris P, Moulin E, Muller J, Murach T, Nakashima K, Nayerhoda A, de Naurois M, Ndiyavala H, Niemiec J, Oakes L, O'Brien P, Odaka H, Ohm S, Olivera-Nieto L, de Ona Wilhelmi E, Ostrowski M, Panny S, Panter M, Parsons RD, Peron G, Peyaud B, Piel Q, Pita S, Poireau V, Priyana Noel A, Prokhorov DA, Prokoph H, Pühlhofer G, Punch M, Quirrenbach A, Raab S, Rauth R, Reichherzer P, Reimer A, Reimer O, Remy Q, Renaud M, Rieger F, Rinchiuso L, Romoli C, Rowell G, Rudak B, Ruiz-Velasco E, Sahakian V, Sailer S, Salzmann H, Sanchez DA, Santangelo A, Sasaki M, Scalici M, Schäfer J, Schüssler F, Schutte HM, Schwanke U, Seglar-Arroyo M, Senniappan M, Seyffert AS, Shafi N, Shapopi JNS, Shiningayamwe K, Simoni R, Sinha A, Sol H, Specovius A, Spencer S, Spir-Jacob M, Stawarz Ł, Sun L, Steenkamp R, Stegmann C, Steinmassl S, Steppa C, Takahashi T, Tam T, Tavernier T, Taylor AM, Terrier R, Thiersen JHE, Tiziani D, Tluczykont M, Tomankova L, Tsirou M, Tuffs R, Uchiyama Y, van der Walt DJ, van Eldik C, van Rensburg C, van Soelen B, Vasileiadis G, Veh J, Venter C, Vincent P, Vink J, Völk HJ, Wadiasingh Z, Wagner SJ, Watson J, Werner F, White R, Wierzcholska A, Wong YW, Yusafzai A, Zacharias M, Zanin R, Zargaryan D, Zdziarski AA, Zech A, Zhu SJ, Zorn J, Zouari S, Żywucka N, Evans P, and Page K
- Abstract
Gamma-ray bursts (GRBs), which are bright flashes of gamma rays from extragalactic sources followed by fading afterglow emission, are associated with stellar core collapse events. We report the detection of very-high-energy (VHE) gamma rays from the afterglow of GRB 190829A, between 4 and 56 hours after the trigger, using the High Energy Stereoscopic System (H.E.S.S.). The low luminosity and redshift of GRB 190829A reduce both internal and external absorption, allowing determination of its intrinsic energy spectrum. Between energies of 0.18 and 3.3 tera-electron volts, this spectrum is described by a power law with photon index of 2.07 ± 0.09, similar to the x-ray spectrum. The x-ray and VHE gamma-ray light curves also show similar decay profiles. These similar characteristics in the x-ray and gamma-ray bands challenge GRB afterglow emission scenarios., (Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
- Published
- 2021
- Full Text
- View/download PDF
33. Observed interannual changes beneath Filchner-Ronne Ice Shelf linked to large-scale atmospheric circulation.
- Author
-
Hattermann T, Nicholls KW, Hellmer HH, Davis PED, Janout MA, Østerhus S, Schlosser E, Rohardt G, and Kanzow T
- Abstract
Floating ice shelves are the Achilles' heel of the Antarctic Ice Sheet. They limit Antarctica's contribution to global sea level rise, yet they can be rapidly melted from beneath by a warming ocean. At Filchner-Ronne Ice Shelf, a decline in sea ice formation may increase basal melt rates and accelerate marine ice sheet mass loss within this century. However, the understanding of this tipping-point behavior largely relies on numerical models. Our new multi-annual observations from five hot-water drilled boreholes through Filchner-Ronne Ice Shelf show that since 2015 there has been an intensification of the density-driven ice shelf cavity-wide circulation in response to reinforced wind-driven sea ice formation in the Ronne polynya. Enhanced southerly winds over Ronne Ice Shelf coincide with westward displacements of the Amundsen Sea Low position, connecting the cavity circulation with changes in large-scale atmospheric circulation patterns as a new aspect of the atmosphere-ocean-ice shelf system.
- Published
- 2021
- Full Text
- View/download PDF
34. A Novel Gold Film-Coated V-Shape Dual-Core Photonic Crystal Fiber Polarization Beam Splitter Covering the E + S + C + L + U Band.
- Author
-
Qu Y, Yuan J, Qiu S, Zhou X, Li F, Yan B, Wu Q, Wang K, Sang X, Long K, and Yu C
- Abstract
In this paper, a novel gold film-coated V-shape dual-core photonic crystal fiber (V-DC-PCF) polarization beam splitter (PBS) based on surface plasmon resonance effect is proposed. The coupling lengths of the X-polarization (X-pol) and Y-polarization (Y-pol) and the corresponding coupling length ratio of the proposed V-DC-PCF PBS without gold film and with gold film are compared. The fiber structure parameters and thickness of the gold film are optimized through investigating their effects on the coupling lengths and coupling length ratio. As the propagation length increases, the normalized output powers of the X-pol and Y-pol of the proposed V-DC-PCF PBS at the three wavelengths 1.610, 1.631, and 1.650 μm are demonstrated. The relationships between the extinction ratio (ER), insertion loss (IL) and wavelength for the three splitting lengths (SLs) 188, 185, and 182 μm are investigated. Finally, it is demonstrated that for the proposed V-DC-PCF PBS, the optimal SL is 188 μm, the ILs of the X-pol and Y-pol are less than 0.22 dB, and the splitting bandwidth (SB) can cover the E + S + C + L + U band. The proposed V-DC-PCF PBS has the ultra-short SL, ultra-wide SB, and ultra-low IL, so it is expected to have important applications in the laser, sensing, and dense wavelength division multiplexing systems.
- Published
- 2021
- Full Text
- View/download PDF
35. Estimating the short-time rate of change in the trend of the Keeling curve.
- Author
-
Nordebo S, Naeem MF, and Tans P
- Abstract
What exactly is the short-time rate of change (growth rate) in the trend of [Formula: see text] data such as the Keeling curve? The answer to this question will obviously depend very much on the duration in time over which the trend has been defined, as well as the smoothing technique that has been used. As an estimate of the short-time rate of change we propose to employ a very simple and robust definition of the trend based on a centered 1-year sliding data window for averaging and a corresponding centered 1-year difference (2-year data window) to estimate its rate of change. In this paper, we show that this simple strategy applied to weekly data of the Keeling curve (1974-2020) gives an estimated rate of change which is perfectly consistent with a more sophisticated regression analysis technique based on Taylor and Fourier series expansions. From a statistical analysis of the regression model and by using the Cramér-Rao lower bound, it is demonstrated that the relative error in the estimated rate of change is less than 5 [Formula: see text]. As an illustration, the estimates are finally compared to some other publicly available data regarding anthropogenic [Formula: see text] emissions and natural phenomena such as the El Niño.
- Published
- 2020
- Full Text
- View/download PDF
36. Structural Quality and Magnetotransport Properties of Epitaxial Layers of the (Ga,Mn)(Bi,As) Dilute Magnetic Semiconductor.
- Author
-
Andrearczyk T, Levchenko K, Sadowski J, Domagala JZ, Kaleta A, Dłużewski P, Wróbel J, Figielski T, and Wosinski T
- Abstract
Structural analysis of epitaxial layers of the (Ga,Mn)(Bi,As) quaternary dilute magnetic semiconductor (DMS), together with investigations of their magnetotransport properties, has been thoroughly performed. The obtained results are compared with those for the reference (Ga,Mn)As layers, grown under similar conditions, with the aim to reveal an impact of Bi incorporation on the properties of this DMS material. Incorporation of Bi into GaAs strongly enhances the spin-orbit coupling strength in this semiconductor, and the same has been expected for the (Ga,Mn)(Bi,As) alloy. In turn, importantly for specific spintronic applications, strong spin-orbit coupling in ferromagnetic systems opens a possibility of directly controlling the direction of magnetization by the electric current. Our investigations, performed with high-resolution X-ray diffractometry and transmission electron microscopy, demonstrate that the (Ga,Mn)(Bi,As) layers of high structural quality and smooth interfaces can be grown by means of the low-temperature molecular-beam epitaxy method, despite a large difference between the sizes of Bi and As atoms. Depending on the applied buffer layer, the DMS layers can be grown under either compressive or tensile misfit strain, which influences their magnetic properties. It is shown that even small 1% Bi content in the layers strongly affects their magnetoelectric properties, such as the coercive field and anisotropic magnetoresistance.
- Published
- 2020
- Full Text
- View/download PDF
37. Hollow-Core Negative Curvature Fiber with High Birefringence for Low Refractive Index Sensing Based on Surface Plasmon Resonance Effect.
- Author
-
Qiu S, Yuan J, Zhou X, Li F, Wang Q, Qu Y, Yan B, Wu Q, Wang K, Sang X, Long K, and Yu C
- Abstract
In this paper, a hollow-core negative curvature fiber (HC-NCF) with high birefringence is proposed for low refractive index (RI) sensing based on surface plasmon resonance effect. In the design, the cladding region of the HC-NCF is composed of only one ring of eight silica tubes, and two of them are selectively filled with the gold wires. The influences of the gold wires-filled HC-NCF structure parameters on the propagation characteristic are investigated by the finite element method. Moreover, the sensing performances in the low RI range of 1.20-1.34 are evaluated by the traditional confinement loss method and novel birefringence analysis method, respectively. The simulation results show that for the confinement loss method, the obtained maximum sensitivity, resolution, and figure of merit of the gold wires-filled HC-NCF-based sensor are -5700 nm/RIU, 2.63 × 10
-5 RIU, and 317 RIU-1 , respectively. For the birefringence analysis method, the obtained maximum sensitivity, resolution, and birefringence of the gold wires-filled HC-NCF-based sensor are -6100 nm/RIU, 2.56 × 10-5 RIU, and 1.72 × 10-3 , respectively. It is believed that the proposed gold wires-filled HC-NCF-based low RI sensor has important applications in the fields of biochemistry and medicine.- Published
- 2020
- Full Text
- View/download PDF
38. Charge transport in MBE-grown 2H-MoTe 2 bilayers with enhanced stability provided by an AlO x capping layer.
- Author
-
Ogorzałek Z, Seredyński B, Kret S, Kwiatkowski A, Korona KP, Grzeszczyk M, Mierzejewski J, Wasik D, Pacuski W, Sadowski J, and Gryglas-Borysiewicz M
- Abstract
Thin layers of transition metal dichalcogenides have been intensively studied over the last few years due to their novel physical phenomena and potential applications. One of the biggest problems in laboratory handling and moving on to application-ready devices lies in the high sensitivity of their physicochemical properties to ambient conditions. We demonstrate that novel, in situ capping with an ultra-thin, aluminum film efficiently protects thin MoTe2 layers stabilizing their electronic transport properties after exposure to ambient conditions. The experiments have been performed on bilayers of 2H-MoTe2 grown by molecular beam epitaxy on large area GaAs(111)B substrates. The crystal structure, surface morphology and thickness of the deposited MoTe2 layers have been precisely controlled in situ with a reflection high energy electron diffraction system. As evidenced by high resolution transmission electron microscopy, MoTe2 films exhibit perfect arrangement in the 2H phase and the epitaxial relation to the GaAs(111)B substrates. After the growth, the samples were in situ capped with a thin (3 nm) film of aluminum, which oxidizes after exposure to ambient conditions. This oxide serves as a protective layer to the underlying MoTe2. Resistivity measurements of the MoTe2 layers with and without the cap, exposed to low vacuum, nitrogen and air, revealed a huge difference in their stability. The significant rise of resistance is observed for the unprotected sample while the resistance of the protected one is constant. Wide range temperature resistivity studies showed that charge transport in MoTe2 is realized by hopping with an anomalous hopping exponent of x ≃ 0.66, reported also previously for ultra-thin, metallic layers.
- Published
- 2020
- Full Text
- View/download PDF
39. Narrow Excitonic Lines and Large-Scale Homogeneity of Transition-Metal Dichalcogenide Monolayers Grown by Molecular Beam Epitaxy on Hexagonal Boron Nitride.
- Author
-
Pacuski W, Grzeszczyk M, Nogajewski K, Bogucki A, Oreszczuk K, Kucharek J, Połczyńska KE, Seredyński B, Rodek A, Bożek R, Taniguchi T, Watanabe K, Kret S, Sadowski J, Kazimierczuk T, Potemski M, and Kossacki P
- Abstract
Monolayer transition-metal dichalcogenides (TMDs) manifest exceptional optical properties related to narrow excitonic resonances. However, these properties have been so far explored only for structures produced by techniques inducing considerable large-scale inhomogeneity. In contrast, techniques which are essentially free from this disadvantage, such as molecular beam epitaxy (MBE), have to date yielded only structures characterized by considerable spectral broadening, which hinders most of the interesting optical effects. Here, we report for the first time on the MBE-grown TMD exhibiting narrow and resolved spectral lines of neutral and charged exciton. Moreover, our material exhibits unprecedented high homogeneity of optical properties, with variation of the exciton energy as small as ±0.16 meV over a distance of tens of micrometers. Our recipe for MBE growth is presented for MoSe
2 and includes the use of atomically flat hexagonal boron nitride substrate. This recipe opens a possibility of producing TMD heterostructures with optical quality, dimensions, and homogeneity required for optoelectronic applications.- Published
- 2020
- Full Text
- View/download PDF
40. Quasi-Herglotz functions and convex optimization.
- Author
-
Ivanenko Y, Nedic M, Gustafsson M, Jonsson BLG, Luger A, and Nordebo S
- Abstract
We introduce the set of quasi-Herglotz functions and demonstrate that it has properties useful in the modelling of non-passive systems. The linear space of quasi-Herglotz functions constitutes a natural extension of the convex cone of Herglotz functions. It consists of differences of Herglotz functions and we show that several of the important properties and modelling perspectives are inherited by the new set of quasi-Herglotz functions. In particular, this applies to their integral representations, the associated integral identities or sum rules (with adequate additional assumptions), their boundary values on the real axis and the associated approximation theory. Numerical examples are included to demonstrate the modelling of a non-passive gain medium formulated as a convex optimization problem, where the generating measure is modelled by using a finite expansion of B-splines and point masses., Competing Interests: The authors declare that they have no competing interests., (© 2020 The Authors.)
- Published
- 2020
- Full Text
- View/download PDF
41. A multiferroic molecular magnetic qubit.
- Author
-
Johnson AI, Islam F, Canali CM, and Pederson MR
- Abstract
The chiral Fe
3 O(NC5 H5 )3 (O2 CC6 H5 )6 molecular cation, with C3 symmetry, is composed of three six-fold coordinated spin-carrying Fe3+ cations that form a perfect equilateral triangle. Experimental reports demonstrating the spin-electric effect in this system also identify the presence of a magnetic uniaxis and suggest that this molecule may be a good candidate for an externally controllable molecular qubit. Here, we demonstrate, using standard density-functional methods, that the spin-electric behavior of this molecule could be even more interesting as there are energetically competitive reference states associated with both high and low local spins (S = 5/2 vs S = 1/2) on the Fe3+ ions. Each of these structures allow for spin-electric ground states. We find that qualitative differences in the broadening of the Fe(2s) and O(1s) core levels, shifts in the core-level energies, and the magnetic signatures of the single-spin anisotropy Hamiltonian may be used to confirm whether a transition between a high-spin manifold and a low spin manifold occurs.- Published
- 2019
- Full Text
- View/download PDF
42. A very-high-energy component deep in the γ-ray burst afterglow.
- Author
-
Abdalla H, Adam R, Aharonian F, Ait Benkhali F, Angüner EO, Arakawa M, Arcaro C, Armand C, Ashkar H, Backes M, Barbosa Martins V, Barnard M, Becherini Y, Berge D, Bernlöhr K, Bissaldi E, Blackwell R, Böttcher M, Boisson C, Bolmont J, Bonnefoy S, Bregeon J, Breuhaus M, Brun F, Brun P, Bryan M, Büchele M, Bulik T, Bylund T, Capasso M, Caroff S, Carosi A, Casanova S, Cerruti M, Chand T, Chandra S, Chen A, Colafrancesco S, Curyło M, Davids ID, Deil C, Devin J, deWilt P, Dirson L, Djannati-Ataï A, Dmytriiev A, Donath A, Doroshenko V, Dyks J, Egberts K, Emery G, Ernenwein JP, Eschbach S, Feijen K, Fegan S, Fiasson A, Fontaine G, Funk S, Füßling M, Gabici S, Gallant YA, Gaté F, Giavitto G, Giunti L, Glawion D, Glicenstein JF, Gottschall D, Grondin MH, Hahn J, Haupt M, Heinzelmann G, Henri G, Hermann G, Hinton JA, Hofmann W, Hoischen C, Holch TL, Holler M, Horns D, Huber D, Iwasaki H, Jamrozy M, Jankowsky D, Jankowsky F, Jardin-Blicq A, Jung-Richardt I, Kastendieck MA, Katarzyński K, Katsuragawa M, Katz U, Khangulyan D, Khélifi B, King J, Klepser S, Kluźniak W, Komin N, Kosack K, Kostunin D, Kreter M, Lamanna G, Lemière A, Lemoine-Goumard M, Lenain JP, Leser E, Levy C, Lohse T, Lypova I, Mackey J, Majumdar J, Malyshev D, Marandon V, Marcowith A, Mares A, Mariaud C, Martí-Devesa G, Marx R, Maurin G, Meintjes PJ, Mitchell AMW, Moderski R, Mohamed M, Mohrmann L, Moore C, Moulin E, Muller J, Murach T, Nakashima S, de Naurois M, Ndiyavala H, Niederwanger F, Niemiec J, Oakes L, O'Brien P, Odaka H, Ohm S, de Ona Wilhelmi E, Ostrowski M, Oya I, Panter M, Parsons RD, Perennes C, Petrucci PO, Peyaud B, Piel Q, Pita S, Poireau V, Priyana Noel A, Prokhorov DA, Prokoph H, Pühlhofer G, Punch M, Quirrenbach A, Raab S, Rauth R, Reimer A, Reimer O, Remy Q, Renaud M, Rieger F, Rinchiuso L, Romoli C, Rowell G, Rudak B, Ruiz-Velasco E, Sahakian V, Sailer S, Saito S, Sanchez DA, Santangelo A, Sasaki M, Schlickeiser R, Schüssler F, Schulz A, Schutte HM, Schwanke U, Schwemmer S, Seglar-Arroyo M, Senniappan M, Seyffert AS, Shafi N, Shiningayamwe K, Simoni R, Sinha A, Sol H, Specovius A, Spir-Jacob M, Stawarz Ł, Steenkamp R, Stegmann C, Steppa C, Takahashi T, Tavernier T, Taylor AM, Terrier R, Tiziani D, Tluczykont M, Trichard C, Tsirou M, Tsuji N, Tuffs R, Uchiyama Y, van der Walt DJ, van Eldik C, van Rensburg C, van Soelen B, Vasileiadis G, Veh J, Venter C, Vincent P, Vink J, Völk HJ, Vuillaume T, Wadiasingh Z, Wagner SJ, White R, Wierzcholska A, Yang R, Yoneda H, Zacharias M, Zanin R, Zdziarski AA, Zech A, Ziegler A, Zorn J, Żywucka N, de Palma F, Axelsson M, and Roberts OJ
- Abstract
Gamma-ray bursts (GRBs) are brief flashes of γ-rays and are considered to be the most energetic explosive phenomena in the Universe
1 . The emission from GRBs comprises a short (typically tens of seconds) and bright prompt emission, followed by a much longer afterglow phase. During the afterglow phase, the shocked outflow-produced by the interaction between the ejected matter and the circumburst medium-slows down, and a gradual decrease in brightness is observed2 . GRBs typically emit most of their energy via γ-rays with energies in the kiloelectronvolt-to-megaelectronvolt range, but a few photons with energies of tens of gigaelectronvolts have been detected by space-based instruments3 . However, the origins of such high-energy (above one gigaelectronvolt) photons and the presence of very-high-energy (more than 100 gigaelectronvolts) emission have remained elusive4 . Here we report observations of very-high-energy emission in the bright GRB 180720B deep in the GRB afterglow-ten hours after the end of the prompt emission phase, when the X-ray flux had already decayed by four orders of magnitude. Two possible explanations exist for the observed radiation: inverse Compton emission and synchrotron emission of ultrarelativistic electrons. Our observations show that the energy fluxes in the X-ray and γ-ray range and their photon indices remain comparable to each other throughout the afterglow. This discovery places distinct constraints on the GRB environment for both emission mechanisms, with the inverse Compton explanation alleviating the particle energy requirements for the emission observed at late times. The late timing of this detection has consequences for the future observations of GRBs at the highest energies.- Published
- 2019
- Full Text
- View/download PDF
43. Enhanced Ferromagnetism in Cylindrically Confined MnAs Nanocrystals Embedded in Wurtzite GaAs Nanowire Shells.
- Author
-
Kaleta A, Kret S, Gas K, Kurowska B, Kryvyi SB, Rutkowski B, Szwacki NG, Sawicki M, and Sadowski J
- Abstract
Nearly a 30% increase in the ferromagnetic phase transition temperature has been achieved in strained MnAs nanocrystals embedded in a wurtzite GaAs matrix. Wurtzite GaAs exerts tensile stress on hexagonal MnAs nanocrystals, preventing a hexagonal to orthorhombic structural phase transition, which in bulk MnAs is combined with the magnetic one. This effect results in a remarkable shift of the magneto-structural phase transition temperature from 313 K in the bulk MnAs to above 400 K in the tensely strained MnAs nanocrystals. This finding is corroborated by the state of the art transmission electron microscopy, sensitive magnetometry, and the first-principles calculations. The effect relies on defining a nanotube geometry of molecular beam epitaxy grown core-multishell wurtzite (Ga,In)As/(Ga,Al)As/(Ga,Mn)As/GaAs nanowires, where the MnAs nanocrystals are formed during the thermal-treatment-induced phase separation of wurtzite (Ga,Mn)As into the GaAs-MnAs granular system. Such a unique combination of two types of hexagonal lattices provides a possibility of attaining quasi-hydrostatic tensile strain in MnAs (impossible otherwise), leading to the substantial ferromagnetic phase transition temperature increase in this compound.
- Published
- 2019
- Full Text
- View/download PDF
44. An Emergency Response System: Construction, Validation, and Experiments for Disaster Management in a Vehicular Environment.
- Author
-
Khaliq KA, Chughtai O, Shahwani A, Qayyum A, and Pannek J
- Subjects
- Disasters, Geographic Information Systems, Disaster Planning, Emergency Medical Services
- Abstract
Natural disasters and catastrophes not only cost the loss of human lives, but adversely affect the progress toward sustainable development of the country. As soon as disaster strikes, the first and foremost challenge for the concerned authorities is to make an expeditious response. Consequently, they need to be highly-organized, properly-trained, and sufficiently-equipped to effectively respond and limit the destructive effects of a disaster. In such circumstances, communication plays a vital role, whereby the consequences of tasks assigned to the workers for rescue and relief services may be streamlined by relaying necessary information among themselves. Moreover, most of the infrastructure is either severely damaged or completely destroyed in post-disaster scenarios; therefore, a Vehicular Ad Hoc Network (VANET) is used to carry out the rescue operation, as it does not require any pre-existing infrastructure. In this context, the current work proposes and validates an effective way to relay the crucial information through the development of an application and the deployment of an experimental TestBed in a vehicular environment. The TestBed may able to provide a way to design and validate the algorithms. It provides a number of vehicles with onboard units embedded with a credit-card-size microcomputer called Raspberry Pi and a Global Positioning System (GPS) module. Additionally, it dispatches one of the pre-defined codes of emergency messages based on the level of urgency through multiple hops to a central control room. Depending on the message code received from a client, the server takes appropriate action. Furthermore, the solution also provides a graphical interface that is easy to interpret and to understand at the control room to visualize the rescue operation on the fly.
- Published
- 2019
- Full Text
- View/download PDF
45. Evidence for the homogeneous ferromagnetic phase in (Ga,Mn)(Bi,As) epitaxial layers from muon spin relaxation spectroscopy.
- Author
-
Levchenko K, Prokscha T, Sadowski J, Radelytskyi I, Jakiela R, Trzyna M, Andrearczyk T, Figielski T, and Wosinski T
- Abstract
Ferromagnetic semiconductor thin layers of the quaternary (Ga,Mn)(Bi,As) and reference, ternary (Ga,Mn)As compounds, epitaxially grown under either compressive or tensile strain, have been characterized from a perspective of structural and magnetization homogeneity. The quality and composition of the layers have been confirmed by secondary-ion mass spectrometry (SIMS). A thorough evaluation of the magnetic properties as a function of temperature and applied magnetic field has been performed by means of SQUID magnetometry and low-energy muon spin relaxation (µSR) spectroscopy, which enables studying local (on the nanometer scale) magnetic properties of the layers. The results testify that the ferromagnetic order builds up almost homogeneously below the Curie temperature in the full volume fraction of both the (Ga,Mn)As and (Ga,Mn)(Bi,As) layers. Incorporation of a small amount of heavy Bi atoms into (Ga,Mn)As, which distinctly enhances the strength of spin-orbit coupling in the quaternary (Ga,Mn)(Bi,As) layers, does not deteriorate noticeably their magnetic properties.
- Published
- 2019
- Full Text
- View/download PDF
46. Optimized breath detection algorithm in electrical impedance tomography.
- Author
-
Khodadad D, Nordebo S, Müller B, Waldmann A, Yerworth R, Becher T, Frerichs I, Sophocleous L, van Kaam A, Miedema M, Seifnaraghi N, and Bayford R
- Subjects
- Adult, Electric Impedance, Humans, Infant, Lung diagnostic imaging, Observational Studies as Topic, Sensitivity and Specificity, Algorithms, Image Interpretation, Computer-Assisted methods, Respiration, Tomography methods
- Abstract
Objective: This paper defines a method for optimizing the breath delineation algorithms used in electrical impedance tomography (EIT). In lung EIT the identification of the breath phases is central for generating tidal impedance variation images, subsequent data analysis and clinical evaluation. The optimisation of these algorithms is particularly important in neonatal care since the existing breath detectors developed for adults may give insufficient reliability in neonates due to their very irregular breathing pattern., Approach: Our approach is generic in the sense that it relies on the definition of a gold standard and the associated definition of detector sensitivity and specificity, an optimisation criterion and a set of detector parameters to be investigated. The gold standard has been defined by 11 clinicians with previous experience with EIT and the performance of our approach is described and validated using a neonatal EIT dataset acquired within the EU-funded CRADL project., Main Results: Three different algorithms are proposed that improve the breath detector performance by adding conditions on (1) maximum tidal breath rate obtained from zero-crossings of the EIT breathing signal, (2) minimum tidal impedance amplitude and (3) minimum tidal breath rate obtained from time-frequency analysis. As a baseline a zero-crossing algorithm has been used with some default parameters based on the Swisstom EIT device., Significance: Based on the gold standard, the most crucial parameters of the proposed algorithms are optimised by using a simple exhaustive search and a weighted metric defined in connection with the receiver operating characterics. This provides a practical way to achieve any desirable trade-off between the sensitivity and the specificity of the detectors.
- Published
- 2018
- Full Text
- View/download PDF
47. Terahertz vibrational signature of bacterial spores arising from nanostructure decorated endospore surface.
- Author
-
Datta D, Stroscio MA, Dutta M, Zhang W, and Brown ER
- Subjects
- Models, Biological, Surface Properties, Bacillus subtilis, Nanostructures, Spores, Bacterial, Vibration
- Abstract
This theoretical effort is the first to explore the possible hypothesis that terahertz optical activity of Bacillus spores arises from normal vibrational modes of spore coat subcomponents in the terahertz frequency range. Bacterial strains like Bacillus and Clostridium form spores with a hardened coating made of peptidoglycan to protect its genetic material in harsh conditions. In recent years, electron microscopy and atomic force microscopy has revealed that bacterial spore surfaces are decorated with nanocylinders and honeycomb nanostructures. In this article, a simple elastic continuum model is used to describe the vibration of these nanocylinders mainly in Bacillus subtilis, which also leads to the conclusion that the terahertz signature of these spores arises from the vibration of these nanostructures. Three vibrating modes: radial/longitudinal, torsional and flexural, have been identified and discussed for the nanocylinders. The effect of bound water, which shifts the vibration frequency, is also discussed. The peptidoglycan molecule consists of polar and charged amino acids; hence, the sporal surface local vibrations interact strongly with the terahertz radiation., (© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)
- Published
- 2018
- Full Text
- View/download PDF
48. Search for γ-Ray Line Signals from Dark Matter Annihilations in the Inner Galactic Halo from 10 Years of Observations with H.E.S.S.
- Author
-
Abdallah H, Abramowski A, Aharonian F, Ait Benkhali F, Angüner EO, Arakawa M, Arrieta M, Aubert P, Backes M, Balzer A, Barnard M, Becherini Y, Becker Tjus J, Berge D, Bernhard S, Bernlöhr K, Blackwell R, Böttcher M, Boisson C, Bolmont J, Bonnefoy S, Bordas P, Bregeon J, Brun F, Brun P, Bryan M, Büchele M, Bulik T, Capasso M, Caroff S, Carosi A, Carr J, Casanova S, Cerruti M, Chakraborty N, Chaves RCG, Chen A, Chevalier J, Colafrancesco S, Condon B, Conrad J, Davids ID, Decock J, Deil C, Devin J, deWilt P, Dirson L, Djannati-Ataï A, Domainko W, Donath A, Drury LO, Dutson K, Dyks J, Edwards T, Egberts K, Eger P, Emery G, Ernenwein JP, Eschbach S, Farnier C, Fegan S, Fernandes MV, Fiasson A, Fontaine G, Förster A, Funk S, Füßling M, Gabici S, Gallant YA, Garrigoux T, Gaté F, Giavitto G, Giebels B, Glawion D, Glicenstein JF, Gottschall D, Grondin MH, Hahn J, Haupt M, Hawkes J, Heinzelmann G, Henri G, Hermann G, Hinton JA, Hofmann W, Hoischen C, Holch TL, Holler M, Horns D, Ivascenko A, Iwasaki H, Jacholkowska A, Jamrozy M, Janiak M, Jankowsky D, Jankowsky F, Jingo M, Jouvin L, Jung-Richardt I, Kastendieck MA, Katarzyński K, Katsuragawa M, Katz U, Kerszberg D, Khangulyan D, Khélifi B, King J, Klepser S, Klochkov D, Kluźniak W, Komin N, Kosack K, Krakau S, Kraus M, Krüger PP, Laffon H, Lamanna G, Lau J, Lees JP, Lefaucheur J, Lemière A, Lemoine-Goumard M, Lenain JP, Leser E, Liu R, Lohse T, Lorentz M, López-Coto R, Lypova I, Malyshev D, Marandon V, Marcowith A, Mariaud C, Marx R, Maurin G, Maxted N, Mayer M, Meintjes PJ, Meyer M, Mitchell AMW, Moderski R, Mohamed M, Mohrmann L, Morå K, Moulin E, Murach T, Nakashima S, de Naurois M, Ndiyavala H, Niederwanger F, Niemiec J, Oakes L, O'Brien P, Odaka H, Ohm S, Ostrowski M, Oya I, Padovani M, Panter M, Parsons RD, Pekeur NW, Pelletier G, Perennes C, Petrucci PO, Peyaud B, Piel Q, Pita S, Poireau V, Poon H, Prokhorov D, Prokoph H, Pühlhofer G, Punch M, Quirrenbach A, Raab S, Rauth R, Reimer A, Reimer O, Renaud M, de Los Reyes R, Rieger F, Rinchiuso L, Romoli C, Rowell G, Rudak B, Rulten CB, Sahakian V, Saito S, Sanchez DA, Santangelo A, Sasaki M, Schandri M, Schlickeiser R, Schüssler F, Schulz A, Schwanke U, Schwemmer S, Seglar-Arroyo M, Settimo M, Seyffert AS, Shafi N, Shilon I, Shiningayamwe K, Simoni R, Sol H, Spanier F, Spir-Jacob M, Stawarz Ł, Steenkamp R, Stegmann C, Steppa C, Sushch I, Takahashi T, Tavernet JP, Tavernier T, Taylor AM, Terrier R, Tibaldo L, Tiziani D, Tluczykont M, Trichard C, Tsirou M, Tsuji N, Tuffs R, Uchiyama Y, van der Walt J, van Eldik C, van Rensburg C, van Soelen B, Vasileiadis G, Veh J, Venter C, Viana A, Vincent P, Vink J, Voisin F, Völk HJ, Vuillaume T, Wadiasingh Z, Wagner SJ, Wagner P, Wagner RM, White R, Wierzcholska A, Willmann P, Wörnlein A, Wouters D, Yang R, Zaborov D, Zacharias M, Zanin R, Zdziarski AA, Zech A, Zefi F, Ziegler A, Zorn J, and Żywucka N
- Abstract
Spectral lines are among the most powerful signatures for dark matter (DM) annihilation searches in very-high-energy γ rays. The central region of the Milky Way halo is one of the most promising targets given its large amount of DM and proximity to Earth. We report on a search for a monoenergetic spectral line from self-annihilations of DM particles in the energy range from 300 GeV to 70 TeV using a two-dimensional maximum likelihood method taking advantage of both the spectral and spatial features of the signal versus background. The analysis makes use of Galactic center observations accumulated over ten years (2004-2014) with the H.E.S.S. array of ground-based Cherenkov telescopes. No significant γ-ray excess above the background is found. We derive upper limits on the annihilation cross section ⟨σv⟩ for monoenergetic DM lines at the level of 4×10^{-28} cm^{3} s^{-1} at 1 TeV, assuming an Einasto DM profile for the Milky Way halo. For a DM mass of 1 TeV, they improve over the previous ones by a factor of 6. The present constraints are the strongest obtained so far for DM particles in the mass range 300 GeV-70 TeV. Ground-based γ-ray observations have reached sufficient sensitivity to explore relevant velocity-averaged cross sections for DM annihilation into two γ-ray photons at the level expected from the thermal relic density for TeV DM particles.
- Published
- 2018
- Full Text
- View/download PDF
49. Vibrations of a molecule in an external force field.
- Author
-
Okabayashi N, Peronio A, Paulsson M, Arai T, and Giessibl FJ
- Abstract
The oscillation frequencies of a molecule on a surface are determined by the mass distribution in the molecule and the restoring forces that occur when the molecule bends. The restoring force originates from the atomic-scale interaction within the molecule and with the surface, which plays an essential role in the dynamics and reactivity of the molecule. In 1998, a combination of scanning tunneling microscopy with inelastic tunneling spectroscopy revealed the vibrational frequencies of single molecules adsorbed on a surface. However, the probe tip itself exerts forces on the molecule, changing its oscillation frequencies. Here, we combine atomic force microscopy with inelastic tunneling spectroscopy and measure the influence of the forces exerted by the tip on the lateral vibrational modes of a carbon monoxide molecule on a copper surface. Comparing the experimental data to a mechanical model of the vibrating molecule shows that the bonds within the molecule and with the surface are weakened by the proximity of the tip. This combination of techniques can be applied to analyze complex molecular vibrations and the mechanics of forming and loosening chemical bonds, as well as to study the mechanics of bond breaking in chemical reactions and atomic manipulation., Competing Interests: The authors declare no conflict of interest.
- Published
- 2018
- Full Text
- View/download PDF
50. LOFAR Lightning Imaging: Mapping Lightning With Nanosecond Precision.
- Author
-
Hare BM, Scholten O, Bonardi A, Buitink S, Corstanje A, Ebert U, Falcke H, Hörandel JR, Leijnse H, Mitra P, Mulrey K, Nelles A, Rachen JP, Rossetto L, Rutjes C, Schellart P, Thoudam S, Trinh TNG, Ter Veen S, and Winchen T
- Abstract
Lightning mapping technology has proven instrumental in understanding lightning. In this work we present a pipeline that can use lightning observed by the LOw-Frequency ARray (LOFAR) radio telescope to construct a 3-D map of the flash. We show that LOFAR has unparalleled precision, on the order of meters, even for lightning flashes that are over 20 km outside the area enclosed by LOFAR antennas (∼3,200 km
2 ), and can potentially locate over 10,000 sources per lightning flash. We also show that LOFAR is the first lightning mapping system that is sensitive to the spatial structure of the electrical current during individual lightning leader steps.- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.