1. Protocol for combined N-of-1 trials to assess cerebellar neurostimulation for movement disorders in children and young adults with dyskinetic cerebral palsy.
- Author
-
San Luciano, M, Oehrn, C, Wang, S, Tolmie, J, Wiltshire, A, Graff, R, Zhu, J, and Starr, P
- Subjects
Cerebellum ,Children ,Deep brain stimulation ,Dentate nucleus ,Dyskinetic cerebral palsy ,Electrophysiology ,Young adults ,Humans ,Cerebral Palsy ,Deep Brain Stimulation ,Child ,Adolescent ,Young Adult ,Movement Disorders ,Cerebellum ,Male ,Female ,Adult - Abstract
BACKGROUND: Movement and tone disorders in children and young adults with cerebral palsy are a great source of disability. Deep brain stimulation (DBS) of basal ganglia targets has a major role in the treatment of isolated dystonias, but its efficacy in dyskinetic cerebral palsy (DCP) is lower, due to structural basal ganglia and thalamic damage and lack of improvement of comorbid choreoathetosis and spasticity. The cerebellum is an attractive target for DBS in DCP since it is frequently spared from hypoxic ischemic damage, it has a significant role in dystonia network models, and small studies have shown promise of dentate stimulation in improving CP-related movement and tone disorders. METHODS: Ten children and young adults with DCP and disabling movement disorders with or without spasticity will undergo bilateral DBS in the dorsal dentate nucleus, with the most distal contact ending in the superior cerebellar peduncle. We will implant Medtronic Percept, a bidirectional neurostimulator that can sense and store brain activity and deliver DBS therapy. The efficacy of cerebellar DBS in improving quality of life and motor outcomes will be tested by a series of N-of-1 clinical trials. Each N-of-1 trial will consist of three blocks, each consisting of one month of effective stimulation and one month of sham stimulation in a random order with weekly motor and quality of life scales as primary and secondary outcomes. In addition, we will characterize abnormal patterns of cerebellar oscillatory activity measured by local field potentials from the intracranial electrodes related to clinical assessments and wearable monitors. Pre- and 12-month postoperative volumetric structural and functional MRI and diffusion tensor imaging will be used to identify candidate imaging markers of baseline disease severity and response to DBS. DISCUSSION: Our goal is to test a cerebellar neuromodulation therapy that produces meaningful changes in function and well-being for people with CP, obtain a mechanistic understanding of the underlying brain network disorder, and identify physiological and imaging-based predictors of outcomes useful in planning further studies. TRIAL REGISTRATION: ClinicalTrials.gov NCT06122675, first registered November 7, 2023.
- Published
- 2024