116 results on '"Denis Testemale"'
Search Results
2. From soil to cacao bean: Unravelling the pathways of cadmium translocation in a high Cd accumulating cultivar of Theobroma cacao L
- Author
-
Hester Blommaert, Anne-Marie Aucour, Matthias Wiggenhauser, Claudia Moens, Philippe Telouk, Sylvain Campillo, Jacques Beauchêne, Gautier Landrot, Denis Testemale, Serge Pin, Caleb Lewis, Pathmanathan Umaharan, Erik Smolders, and Géraldine Sarret
- Subjects
cadmium ,cacao ,translocation ,stable isotope fractionation ,imaging ,speciation ,Plant culture ,SB1-1110 - Abstract
The research on strategies to reduce cadmium (Cd) accumulation in cacao beans is currently limited by a lack of understanding of the Cd transfer pathways within the cacao tree. Here, we elucidated the transfer of Cd from soil to the nib (seed) in a high Cd accumulating cacao cultivar. Here, we elucidated the transfer of Cd from soil to the nib (seed) in a high Cd accumulating cacao cultivar through Cd stable isotope fractionation, speciation (X-Ray Absorption Spectroscopy), and localization (Laser Ablation Inductively Coupled Plasma Mass Spectrometry). The plant Cd concentrations were 10-28 higher than the topsoil Cd concentrations and increased as placenta< nib< testa< pod husk< root< leaf< branch. The retention of Cd in the roots was low. Light Cd isotopes were retained in the roots whilst heavier Cd isotopes were transported to the shoots (Δ 114/110 Cd shoot-root = 0.27 ± 0.02 ‰ (weighted average ± standard deviation)). Leaf Cd isotopes were heavier than Cd in the branches (Δ 114/110 Cd IF3 leaves-branch = 0.18 ± 0.01 ‰), confirming typical trends observed in annual crops. Nibs and branches were statistically not distinguishable (Δ 114/110 Cd nib-branch = −0.08‰ ± 0.06 ‰), contrary to the leaves and nibs (Δ 114/110 Cd nib-IF3 leaves = -0.25‰ ± 0.05 ‰). These isotope fractionation patterns alluded to a more direct transfer from branches to nibs rather than from leaves to nibs. The largest fraction (57%) of total plant Cd was present in the branches where it was primarily bound to carboxyl-ligands (60-100%) and mainly localized in the phloem rays and phelloderm of the bark. Cadmium in the nibs was mainly bound to oxygen ligands (60-90%), with phytate as the most plausible ligand. The weight of evidence suggested that Cd was transferred like other nutrients from root to shoot and accumulated in the phloem rays and phelloderm of the branches to reduce the transfer to foliage. Finally, the data indicated that the main contribution of nib Cd was from the phloem tissues of the branch rather than from leaf remobilization. This study extended the limited knowledge on Cd accumulation in perennial, woody crops and revealed that the Cd pathways in cacao are markedly different than in annual crops.
- Published
- 2022
- Full Text
- View/download PDF
3. Drastic Ce3+ Insertion Enhancement in YAG Garnet Nanocrystals Through a Solvothermal Route
- Author
-
Alexandra Cantarano, Denis Testemale, Estelle Homeyer, Hanako Okuno, Audrey Potdevin, Christophe Dujardin, Alain Ibanez, and Geraldine Dantelle
- Subjects
YAG ,cerium ,nanocrystals ,solvothermal ,photoluminescence ,brightness ,Technology - Abstract
Y3Al5O12 (YAG) nanocrystals have been synthesized by a modified solvothermal method (300°C) allowing the incorporation of cerium ions in much larger proportion (up to 30 mol.% with respect to yttrium ions) than ever published. The reasons are the nanometric size of the produced nanocrystals, allowing to accommodate Ce3+ ions in the rigid YAG structure thanks to the presence of local distortions, and also the soft synthesis route, at low temperatures and far from the thermodynamic equilibrium, which favors the cerium insertion. As a consequence, Ce3+ photoluminescence spectrum can be tuned with the doping concentration, from 541 nm for low Ce3+ concentration to 580 nm for a cerium concentration of 30 mol.%. The internal quantum yield reaches 40 ± 5% before decreasing due to concentration quenching. The nanocrystal brightness, which combines the internal quantum yield and the cerium concentration, has been found optimal for a doping of 2 mol.% Ce3+.
- Published
- 2021
- Full Text
- View/download PDF
4. Speciation and thermodynamic properties of La(III)-Cl complexes in hydrothermal fluids: A combined molecular dynamics and in situ X-ray absorption spectroscopy study
- Author
-
Qiushi Guan, Yuan Mei, Barbara Etschmann, Marion Louvel, Denis Testemale, Riccardo Spezia, and Joël Brugger
- Subjects
Geochemistry and Petrology - Published
- 2022
- Full Text
- View/download PDF
5. Yttrium speciation in sulfate-rich hydrothermal ore-forming fluids
- Author
-
Qiushi Guan, Yuan Mei, Barbara Etschmann, Marion Louvel, Denis Testemale, Evgeniy Bastrakov, and Joël Brugger
- Subjects
Geochemistry and Petrology - Abstract
Background/Objectives Considering the potential greater cardiocirculatory effects of high intensity interval training (HIIT), we hypothesized that a 2-month supervised high volume short interval HIIT would induce greater improvements in CRF and cardiometabolic risk and increase long-term maintenance to physical activity compared to isocaloric moderate intensity continuous training (MICT) in overweight/obesity. Methods Sixty (19 females) subjects with overweight/obesity were randomized to three training programs (3 times/week for 2 months): MICT (45 min, 50% peak power output-PPO), HIIT (22 × 1-min cycling at 100% PPO/1-min passive recovery) and HIIT-RM (RM: recovery modulation, i.e. subjects adjusted passive recovery duration between 30s and 2 min). After the intervention, participants no longer benefited from supervised physical activity and were instructed to maintain the same exercise modalities on their own. We assessed anthropometrics, body composition, CRF, fat oxidation, lipid profile, glycemic balance, low-grade inflammation, vascular function, spontaneous physical activity and motivation for eating at three time points: baseline (T0), 4 days after the end of the 2-month supervised training program (T2) and 4 months after the end of the training program (T6). Results HIIT/HIIT-RM induced greater improvement in VO2peak (between +14% and +17%), power output at ventilatory thresholds and at maximal fat oxidation rate (+25%) and waist circumference (−1.53 cm) compared to MICT and tended to decrease insulin resistance. During the four-month follow-up period during which exercise in autonomy was prescribed, HIIT induced a greater preservation of CRF, decreases in total and abdominal fat masses and total cholesterol/HDL. Conclusion We have shown greater short-term benefits induced by a high volume short interval (1 min) HIIT on cardiorespiratory fitness and cardiometabolic risk over an isocaloric moderate intensity continuous exercise in persons with overweight/obesity. We also showed greater long-term effects (i.e. after 4 months) of this exercise modality on the maintenance of CRF, decreases in total and abdominal fat masses and total cholesterol/HDL.
- Published
- 2022
- Full Text
- View/download PDF
6. An arsenic-driven pump for invisible gold in hydrothermal systems
- Author
-
F. de Parseval, R. Pöttgen, Denis Testemale, Kalin Kouzmanov, D. Béziat, Marie-Christine Boiron, Maria A. Kokh, P. de Parseval, Gleb S. Pokrovski, M. Rovezzi, Olivier Proux, Thierry Aigouy, Marc Blanchard, Sophie Gouy, Stefano Salvi, Jean-Louis Hazemann, T. Doert, C. Escoda, T. Bartsch, L. Menjot, Géosciences Environnement Toulouse (GET), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Matériaux, Rayonnements, Structure (NEEL - MRS), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), University of Potsdam = Universität Potsdam, Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU), Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Université de Genève = University of Geneva (UNIGE), Westfälische Wilhelms-Universität Münster = University of Münster (WWU), Technische Universität Dresden = Dresden University of Technology (TU Dresden), Institut des Sciences de l'Univers of the Centre National de la Recherche ScientifiqueINSU-CNRS (CESSUR-OrPy-AsOrPy)Institut Carnot ISIFoR (OrPet)West African Exploration InitiativeWAXI-P934AFrench Grand Emprunt EquipExEcoX ANR-10-EQPX-27-01HPC resources from CALMIP2020-P1037French National Research Agency (ANR)ANR-2011-BlancSIMI-5-6-009CEA-CNRS CRG consortiumCentre National de la Recherche Scientifique (CNRS), ANR-16-CE31-0017,RADICALS,Les radicaux de soufre et leurs applications pour les ressources minérales, l'évolution des magmas et la géochimie isotopique(2016), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Matériaux, Rayonnements, Structure (MRS), Universität Potsdam, Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Université de Genève (UNIGE), and Westfälische Wilhelms-Universität Münster (WWU)
- Subjects
010504 meteorology & atmospheric sciences ,chemistry.chemical_element ,Geology ,010502 geochemistry & geophysics ,01 natural sciences ,Hydrothermal circulation ,chemistry ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,Geochemistry and Petrology ,Environmental chemistry ,Environmental Chemistry ,Arsenic ,[SDU.STU.MI]Sciences of the Universe [physics]/Earth Sciences/Mineralogy ,0105 earth and related environmental sciences - Abstract
International audience; Pyrite (FeS 2), arsenopyrite (FeAsS) and löllingite (FeAs 2) are exceptional gold concentrators on Earth; yet the exact redox and structural state of this "invisible" gold and the forces driving its intake and release by these minerals remain highly controversial. Here we applied high resolution X-ray absorption spectroscopy to Au-bearing pyrite and iron sulfarsenides from hydrothermal deposits and their synthetic analogues. We show that Au preferentially enters octahedral Fe structural sites [Au(As,S) 6 ] enriched in As, by forming respectively [AuAs 1-3 S 5-3 ], [AuAs 3 S 3 ⋯AuAs 6 ] and [AuAs 6 ] atomic units in arsenian pyrite (>0.1-1.0 wt. % As), arsenopyrite and löllingite, implying a formal oxidation state of Au II in the minerals. In contrast, in As-poor pyrite, Au is dominantly chemisorbed as [Au I S 2 ] moieties in much lower concentrations. Combined with experimental data on Au mineral-fluid partitioning, our findings imply a universal control exerted by arsenic on gold incorporation in iron sulfides and sulfarsenides via coupled Au-As redox reactions. These reactions account for the observed variations in invisible gold contents in the minerals from different hydrothermal deposit types and enable quantitative prediction of iron sulfarsenide ability in controlling gold concentration and distribution in hydrothermal systems.
- Published
- 2021
- Full Text
- View/download PDF
7. Nature and coordination geometry of geologically relevant aqueous Uranium(VI) complexes up to 400 ºC: A review and new data
- Author
-
Alexander Kalintsev, Qiushi Guan, Joël Brugger, Artas Migdisov, Barbara Etschmann, Rahul Ram, Weihua Liu, Yuan Mei, Denis Testemale, and Hongwu Xu
- Subjects
Environmental Engineering ,Health, Toxicology and Mutagenesis ,Environmental Chemistry ,Pollution ,Waste Management and Disposal - Published
- 2023
- Full Text
- View/download PDF
8. Stabilization of Tetragonal Zirconia Nanocrystallites Using an Original Supercritical-Based Synthesis Route
- Author
-
Matthew R. Suchomel, Gilles Philippot, Aimery Auxéméry, Cyril Aymonier, Denis Testemale, Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Matériaux, Rayonnements, Structure (MRS), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), and The authors acknowledge the support of the Innovation Fund Denmark (GCAM), the Centre National de la Recherche Scientifique (CNRS), and the Région Nouvelle Aquitaine. The authors also acknowledge the European Synchrotron Radiation Facility for provision of synchrotron radiation beamtime and facilities, the FAME team for assistance in using their beamline, and the Diamond Light Source for mail-in PDF measurement access at Beamline I15-1 under Proposal CY22774.
- Subjects
Granular materials ,Materials science ,Ethanol ,Physical and chemical processes ,Precipitation (chemistry) ,General Chemical Engineering ,Precursors ,Nanoparticle ,[CHIM.MATE]Chemical Sciences/Material chemistry ,General Chemistry ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,Granular material ,Supercritical fluid ,Tetragonal crystal system ,Nanocrystal ,Chemical engineering ,Metastability ,Materials Chemistry ,Nanoparticles ,Particle size - Abstract
International audience; To understand the importance of the particle size on the stabilization of metastable tetragonal ZrO2, ultrafine ZrO2 nanocrystals were synthesized via (i) the precipitation method in supercritical water using nitrate precursors, (ii) the sol–gel method in a supercritical ethanol–water mixture, and (iii) the borderline nonhydrolytic sol–gel route in supercritical ethanol using propoxide precursors. The obtained nanocrystals displayed a variation of the monoclinic versus tetragonal molar fractions from 100 wt % down to ≈10 wt % of monoclinic phase. This variation was concomitant with an overall size decrease of the nanocrystals, ranging from 7 to 2 nm depending on the synthesis procedures. Phase contents were quantified by refinement analysis of X-ray scattering data sets and crosschecked with Raman spectroscopy. Our results suggest that an upper limit of ≈90 wt % of the tetragonal ZrO2 phase is possible, even for ultrafine nanoparticles (2 nm). These findings thus question the existence of any critical size limit below which stabilization of pure t-ZrO2 is attainable at low temperatures.
- Published
- 2020
- Full Text
- View/download PDF
9. Gold speciation in hydrothermal fluids revealed by in situ high energy resolution X-ray absorption spectroscopy
- Author
-
Gleb S. Pokrovski, Elsa Desmaele, Clément Laskar, Elena F. Bazarkina, Denis Testemale, Jean-Louis Hazemann, Rodolphe Vuilleumier, Ari Paavo Seitsonen, Guillaume Ferlat, Antonino Marco Saitta, Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France, Processus d'Activation Sélective par Transfert d'Energie Uni-électronique ou Radiatif (UMR 8640) (PASTEUR), Département de Chimie - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), CNRS, Institut Néel, F-38042, Grenoble, France, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Géosciences Environnement Toulouse (GET), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Matériaux, Rayonnements, Structure (NEEL - MRS), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), and Sorbonne Université (SU)
- Subjects
[PHYS]Physics [physics] ,Geophysics ,Geochemistry and Petrology ,[SDU]Sciences of the Universe [physics] ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,[CHIM.COOR]Chemical Sciences/Coordination chemistry - Abstract
Gold mobilization, transfer, and concentration in the Earth’s crust are controlled by hydrothermal sulfur- and chloride-bearing fluids. Yet the exact chemical identity, structure, and stability of Au-bearing species and, in particular, the respective contributions of the sulfide (HS−) and trisulfur ion (S3⋅−) ligands to Au transport lack direct in situ evidence. Here we employed high energy resolution fluorescence detection X-ray absorption spectroscopy (HERFD-XAS) on aqueous sulfate/sulfide/S3⋅−-bearing solutions at typical hydrothermal temperatures and pressures (T = 350 °C, P = 600 bar) to reveal differences in dissolved Au spectral signatures indicative of contrasting fluid-phase Au speciation as a function of acidity and redox conditions. Combined with in situ Au solubility measurements and quantum-chemical and thermodynamic modeling, our spectroscopic data provide direct evidence for the Au(HS)S3− and Au(HS)2− complexes predominant at acidic-to-neutral and alkaline conditions, respectively. Our findings thus directly confirm a recent speciation scheme for Au in aqueous S-bearing fluids established using less direct methods, and highlight an important role of the trisulfur ion in gold mobilization and concentration in hydrothermal-magmatic deposits associated with subduction zones. More generally, our results show that HERFD-XAS enables the identification of structural and coordination features in metal complexes virtually unresolvable using classical XAS techniques. By avoiding limitations of less direct techniques, our integrated high-resolution spectroscopic approach opens perspectives for studies of the speciation and solubility of gold and other metals in high T-P fluids, and potentially silicate melts, inaccessible to direct observation in nature.
- Published
- 2022
- Full Text
- View/download PDF
10. Tin transport in ore fluids - in-situ insight from cassiterite dissolution experiments
- Author
-
Manuela Borchert, Pilar Valsera Moreno, Max Wilke, Stephan Klemme, Maria Kokh, Christian Schmidt, Wolfgang Morgenroth, and Denis Testemale
- Published
- 2022
- Full Text
- View/download PDF
11. The trisulfur radical ion S
- Author
-
Gleb S, Pokrovski, Maria A, Kokh, Elsa, Desmaele, Clément, Laskar, Elena F, Bazarkina, Anastassia Y, Borisova, Denis, Testemale, Jean-Louis, Hazemann, Rodolphe, Vuilleumier, Guillaume, Ferlat, and Antonino Marco, Saitta
- Subjects
Physical Sciences - Abstract
Platinum group elements (PGE) are considered to be very poorly soluble in aqueous fluids in most natural hydrothermal–magmatic contexts and industrial processes. Here, we combined in situ X-ray absorption spectroscopy and solubility experiments with atomistic and thermodynamic simulations to demonstrate that the trisulfur radical ion S(3)(•−) forms very stable and soluble complexes with both Pt(II) and Pt(IV) in sulfur-bearing aqueous solution at elevated temperatures (∼300 °C). These Pt-bearing species enable (re)mobilization, transfer, and focused precipitation of platinum up to 10,000 times more efficiently than any other common inorganic ligand, such as hydroxide, chloride, sulfate, or sulfide. Our results imply a far more important contribution of sulfur-bearing hydrothermal fluids to PGE transfer and accumulation in the Earth’s crust than believed previously. This discovery challenges traditional models of PGE economic concentration from silicate and sulfide melts and provides new possibilities for resource prospecting in hydrothermal shallow crust settings. The exceptionally high capacity of the S(3)(•−) ion to bind platinum may also offer new routes for PGE selective extraction from ore and hydrothermal synthesis of noble metal nanomaterials.
- Published
- 2021
12. The trisulfur radical ion S 3 •− controls platinum transport by hydrothermal fluids
- Author
-
Elsa Desmaele, Maria A. Kokh, Denis Testemale, Jean-Louis Hazemann, Elena F. Bazarkina, Antonino Marco Saitta, Anastassia Y. Borisova, Clément Laskar, Gleb S. Pokrovski, G. Ferlat, Rodolphe Vuilleumier, Géosciences Environnement Toulouse (GET), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Institut für Geowissenschaften [Potsdam], Universität Potsdam, Département de Chimie - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Matériaux, Rayonnements, Structure (MRS), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Geological Department, Moscow State University, Lomonosov Moscow State University (MSU), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Geology Department, Moscow State University, Moscow 119992, Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), University of Potsdam = Universität Potsdam, École normale supérieure - Paris (ENS-PSL), Matériaux, Rayonnements, Structure (NEEL - MRS), Processus d'Activation Sélective par Transfert d'Energie Uni-électronique ou Radiatif (UMR 8640) (PASTEUR), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and ANR-16-CE31-0017,RADICALS,Les radicaux de soufre et leurs applications pour les ressources minérales, l'évolution des magmas et la géochimie isotopique(2016)
- Subjects
010504 meteorology & atmospheric sciences ,Sulfide ,Inorganic chemistry ,hydrothermal fluid ,chemistry.chemical_element ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,engineering.material ,010502 geochemistry & geophysics ,01 natural sciences ,Hydrothermal circulation ,chemistry.chemical_compound ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,Trisulfur ,platinum group elements ,Hydrothermal synthesis ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,platinum ,0105 earth and related environmental sciences ,trisulfur ion ,chemistry.chemical_classification ,Multidisciplinary ,Aqueous solution ,chemistry ,[SDU]Sciences of the Universe [physics] ,13. Climate action ,sulfur ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,engineering ,Hydroxide ,Noble metal ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,Platinum ,[SDU.STU.MI]Sciences of the Universe [physics]/Earth Sciences/Mineralogy - Abstract
International audience; Platinum group elements (PGE) are considered to be very poorly soluble in aqueous fluids in most natural hydrothermal–magmatic contexts and industrial processes. Here, we combined in situ X-ray absorption spectroscopy and solubility experiments with atomistic and thermodynamic simulations to demonstrate that the trisulfur radical ion S 3 •− forms very stable and soluble complexes with both Pt II and Pt IV in sulfur-bearing aqueous solution at elevated temperatures (∼300 °C). These Pt-bearing species enable (re)mobilization, transfer, and focused precipitation of platinum up to 10,000 times more efficiently than any other common inorganic ligand, such as hydroxide, chloride, sulfate, or sulfide. Our results imply a far more important contribution of sulfur-bearing hydrothermal fluids to PGE transfer and accumulation in the Earth’s crust than believed previously. This discovery challenges traditional models of PGE economic concentration from silicate and sulfide melts and provides new possibilities for resource prospecting in hydrothermal shallow crust settings. The exceptionally high capacity of the S 3 •− ion to bind platinum may also offer new routes for PGE selective extraction from ore and hydrothermal synthesis of noble metal nanomaterials.
- Published
- 2021
- Full Text
- View/download PDF
13. Crude oils as ore fluids: An experimental in-situ XAS study of gold partitioning between brine and organic fluid from 25 to 250 °C
- Author
-
Katy Evans, Lars S. Crede, Denis Testemale, Kirsten U. Rempel, Joël Brugger, Weihua Liu, Matériaux, Rayonnements, Structure (MRS), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), and European Synchrotron Radiation Facility (ESRF)
- Subjects
chemistry.chemical_classification ,X-ray absorption spectroscopy ,Aqueous solution ,010504 meteorology & atmospheric sciences ,Inorganic chemistry ,Aqueous two-phase system ,chemistry.chemical_element ,Glassy carbon ,010502 geochemistry & geophysics ,01 natural sciences ,Sulfur ,Chloride ,Metal ,chemistry ,[SDU]Sciences of the Universe [physics] ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,Geochemistry and Petrology ,visual_art ,visual_art.visual_art_medium ,medicine ,Organic matter ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,medicine.drug - Abstract
Organic matter can be associated with mineralization in hydrothermal ore deposits. One hypothesis is that this organic matter represents remnants of organic fluids (crude oils) that were competing with aqueous fluids for metal transport and contributed to metal endowment. We investigated the transport of gold (Au) in model oil compounds (S-free n-dodecane, CH3(CH2)10CH3, DD; and S-bearing 1-dodecanethiol, CH3(CH2)10CH2SH; DDT) from 25 °C to 250 °C using in-situ synchrotron X-ray absorption spectroscopy (XAS) experiments to determine the speciation and the structural properties of gold complexes in the aqueous- and oil-based fluids. For most experiments, DD or DDT were in contact with Au-bearing acidified water, or acidified water plus 10 wt% NaCl (pH25°C = 1.85 in both cases). Gold rapidly partitioned from the aqueous phase into DD and DDT. Below 125 °C, Au(III)Cl is dominant in the DD and the adjacent water with a refined coordination number (CN) of chloride of 4.0(3) and an Au Cl bond length of 2.28 A, consistent with the tetrachloroaurate complex (AuCl4−) being stable in both the aqueous and organic phases. In contrast, Au(III) is rapidly reduced in the presence of DDT and an Au(I) complex dominates in both water and adjacent DDT with a CN of sulfur ∼2.0, suggesting a [RS-Au-SR]− (RS = DDT with deprotonated thiol group) complex with Au S bond lengths ranging from 2.29(1) A to 2.31(3) A. In an open system of DDT in contact with water, of which the water and DDT were analyzed separately, AuCl4− was dominant in the water phase, and Au(RS)2− dominant in DDT, possibly due to different equilibration kinetics in the beaker and glassy carbon tube. Since sulfur and organothiol compounds are ubiquitous and abundant components in natural oils, this study demonstrates the potential of natural oils to scavenge and enrich gold from co-existing gold-bearing brines. In particular, Au(I) organothiol complexes may contribute to transport in low-temperature (
- Published
- 2019
- Full Text
- View/download PDF
14. Utility of macrophages in an antitumor strategy based on the vectorization of iron oxide nanoparticles
- Author
-
Catherine Aude-Garcia, Solveig Reymond, Bastien Dalzon, Véronique Collin-Faure, Josiane Arnaud, Julien Vollaire, Thierry Rabilloud, Olivier Proux, Daphna Fenel, Mélanie Guidetti, Isabelle Testard, Marie Carrière, Denis Testemale, Guy Schoehn, Véronique Josserand, Protéomique, Métaux et Différenciation (ProMD ), Laboratoire de Chimie et Biologie des Métaux (LCBM - UMR 5249), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institute for Advanced Biosciences / Institut pour l'Avancée des Biosciences (Grenoble) (IAB), Centre Hospitalier Universitaire [Grenoble] (CHU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Etablissement français du sang - Auvergne-Rhône-Alpes (EFS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Matériaux, Rayonnements, Structure (NEEL - MRS), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut de biologie structurale (IBS - UMR 5075 ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Institut de Biologie et de Pathologie [CHU Grenoble] (IBP), Chimie Interface Biologie pour l’Environnement, la Santé et la Toxicologie (CIBEST ), Rabilloud, Thierry, Protéomique, Métaux et Différenciation (ProMD), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Institute for Advanced Biosciences (IAB), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), MRS - Matériaux, Rayonnements, Structure, Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Rayonnement Synchrotron et Recherche Medicale (RSRM), Université Joseph Fourier - Grenoble 1 (UJF)-European Synchrotron Radiation Facility (ESRF)-Institut National de la Santé et de la Recherche Médicale (INSERM), équipe FAME, Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut de biologie structurale (IBS - UMR 5075), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS), Institut de Biologie et de Pathologie - IBP [CHU Grenoble], Chimie Interface Biologie pour l’Environnement, la Santé et la Toxicologie (CIBEST), Institut d'oncologie/développement Albert Bonniot de Grenoble (INSERM U823), Université Joseph Fourier - Grenoble 1 (UJF)-CHU Grenoble-EFS-Institut National de la Santé et de la Recherche Médicale (INSERM), Platefome de Microscopie électronique IBS/ISBG, ANR-10-INSB-05-01,FRISBI,French Infrastructure for Integrated Structural Biology, ANR-10- LABX-49-01,Labex GRAL,Labex GRAL, Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Matériaux, Rayonnements, Structure (MRS), Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Centre Hospitalier Universitaire [Grenoble] (CHU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Etablissement français du sang - Auvergne-Rhône-Alpes (EFS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Laboratoire Lésions des Acides Nucléiques (LAN), Service de Chimie Inorganique et Biologique (SCIB - UMR E3), Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut Nanosciences et Cryogénie (INAC), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
medicine.medical_treatment ,Population ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,chemistry.chemical_compound ,[SDV.CAN] Life Sciences [q-bio]/Cancer ,Cancer stem cell ,medicine ,General Materials Science ,education ,Intravascular injection ,education.field_of_study ,Cancer ,[SDV.IMM.IMM]Life Sciences [q-bio]/Immunology/Immunotherapy ,021001 nanoscience & nanotechnology ,medicine.disease ,0104 chemical sciences ,Radiation therapy ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biomolecules [q-bio.BM] ,chemistry ,Physical Barrier ,Cancer cell ,Cancer research ,[SDV.IMM.IMM] Life Sciences [q-bio]/Immunology/Immunotherapy ,0210 nano-technology ,Iron oxide nanoparticles - Abstract
International audience; Utility of macrophages in an antitumor strategy based on the vectorization of iron oxide nanoparticles This Trojan horse strategy aims at specifi cally killing tumor cells. To achieve this goal, High-Z-element nanoparticles brought by macrophages are stimulated using low doses of X-ray radiation. The nanoparticles (namely FERINJECT®) liberate toxic photoelectrons in situ without damaging the surrounding healthy tissues. With its specifi c targeting of cancer cells, this promising anticancer strategy could greatly improve the effi ciency of current radiotherapy. Many solid tumors and their metastases are still resistant to current cancer treatments such as chemo-and radiotherapy. The presence of a small population of Cancer Stem Cells in tumors is held responsible for relapses. Moreover, the various physical barriers of the organism (e.g. blood-brain barrier) prevent many drugs from reaching the target cells. In order to alleviate this constraint, we suggest a Trojan horse strategy consisting of intravascular injection of macrophages loaded with therapeutic nanoparticles (an iron nanoparticle-based solution marketed under the name of FERINJECT®) to bring a high quantity of the latter to the tumor. The aim of this article is to assess the response of primary macrophages to FERINJECT® via functional assays in order to ensure that the macrophages loaded with these nano-particles are still relevant for our strategy. Following this first step, we demonstrate that the loaded macro-phages injected into the bloodstream are able to migrate to the tumor site using small-animal imaging. Finally, using synchrotron radiation, we validate an improvement of the radiotherapeutic effect when FERINJECT®-laden macrophages are deposited at the vicinity of cancer cells and irradiated.
- Published
- 2019
- Full Text
- View/download PDF
15. Nd3+doped Gd3Sc2Al3O12nanoparticles: towards efficient nanoprobes for temperature sensing
- Author
-
Alexandra Cantarano, Alain Ibanez, Denis Testemale, Géraldine Dantelle, Marija Matulionyte, Fiorenzo Vetrone, Optique et Matériaux (OPTIMA ), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Énergie Matériaux Télécommunications - INRS (EMT-INRS), Institut National de la Recherche Scientifique [Québec] (INRS)-Université du Québec à Montréal = University of Québec in Montréal (UQAM), and Matériaux, Rayonnements, Structure (MRS)
- Subjects
Materials science ,business.industry ,Doping ,General Physics and Astronomy ,Nanoparticle ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,Atmospheric temperature range ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Crystal ,Crystallinity ,Optoelectronics ,Emission spectrum ,Physical and Theoretical Chemistry ,0210 nano-technology ,Luminescence ,business ,Excitation - Abstract
International audience; Development of contactless temperature-probing nanoplatforms based on thermosensitive near-infrared (NIR) light-emitting nanoparticles opens up new horizons for biomedical theranostics at a deep tissue level. Here, we report on the crystallinity and relative thermal sensitivity of NIR emitting Nd3+ doped Gd3Sc2Al3O12 (GSAG:Nd3+) nanoparticles synthesized by a solvothermal method. The obtained nanoparticles are well-crystallized, with sizes less than 100 nm, and can be dispersed in water without any additional functionalization. Upon excitation at 806 nm, the nanoparticles exhibit emission in the first and second biological optical transparency windows. The temperature sensing properties were evaluated from the luminescence intensity ratio of the thermally coupled emission lines corresponding to the R1, R2 Z5 transitions between the Stark sublevels of the 4F3/2 and 4I9/2 electronic states of Nd3+ in the physiological temperature range of 20-50 °C. GSAG:Nd3+ nanoparticles exhibit a maximal relative thermal sensitivity of 0.20% °C-1, higher than that of YAG:Nd3+ nanoparticles used as a control, due to the difference in the crystal field of the host matrices. A higher synthesis temperature in the range of 300-400 °C was also provided to improve the crystallinity of the GSAG:Nd3+ nanoparticles which results in a higher relative thermal sensitivity. Our results demonstrate the potential of GSAG:Nd3+ nanoparticles as luminescence nanothermometers and emphasize the interest of the GSAG matrix itself, which with the presence of Gd, could lead to multimodal diagnostic applications in nanothermometry and magnetic resonance imaging (MRI).
- Published
- 2019
- Full Text
- View/download PDF
16. Carbonate complexation enhances hydrothermal transport of rare earth elements in alkaline fluids
- Author
-
Marion, Louvel, Barbara, Etschmann, Qiushi, Guan, Denis, Testemale, and Joël, Brugger
- Abstract
Rare earth elements (REE), essential metals for the transition to a zero-emission economy, are mostly extracted from REE-fluorcarbonate minerals in deposits associated with carbonatitic and/or peralkaline magmatism. While the role of high-temperature fluids (100 T 500 °C) in the development of economic concentrations of REE is well-established, the mechanisms of element transport, ore precipitation, and light (L)REE/heavy (H)REE fractionation remain a matter of debate. Here, we provide direct evidence from in-situ X-ray Absorption Spectroscopy (XAS) that the formation of hydroxyl-carbonate complexes in alkaline fluids enhances hydrothermal mobilization of LREE at T ≥ 400 °C and HREE at T ≤ 200 °C, even in the presence of fluorine. These results not only reveal that the modes of REE transport in alkaline fluids differ fundamentally from those in acidic fluids, but further underline that alkaline fluids may be key to the mineralization of hydrothermal REE-fluorcarbonates by promoting the simultaneous transport of (L)REE, fluoride and carbonate, especially in carbonatitic systems.
- Published
- 2021
17. Redox controls on the solubility of SnO2 cassiterite and the speciation of tin in crustal fluids
- Author
-
Carmen Sanchez-Valle, Marion Louvel, Denis Testemale, Christina Springklee, Jean-Louis Hazemann, and Christian Pluckthun
- Subjects
Chemistry ,Inorganic chemistry ,Cassiterite ,Genetic algorithm ,engineering ,chemistry.chemical_element ,Solubility ,engineering.material ,Tin ,Redox - Published
- 2021
- Full Text
- View/download PDF
18. 'Critical' trace elements in major minerals: old questions, new approaches and geochemical applications
- Author
-
Gleb S. Pokrovski, Marc Blanchard, Denis Testemale, Jean-Louis Hazemann, Géosciences Environnement Toulouse (GET), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Matériaux, Rayonnements, Structure (MRS), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)
- Subjects
Trace (semiology) ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,Geochemistry ,Environmental science ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2021
- Full Text
- View/download PDF
19. A synchrotron XAS study of molybdenum speciation in sulfur-bearing hydrothermal fluids
- Author
-
Yuan Mei, Qiushi Guan, Weihua Liu, Barbara Etschmann, Denis Testemale, and Joël Brugger
- Subjects
X-ray absorption spectroscopy ,Bearing (mechanical) ,chemistry ,law ,Molybdenum ,Genetic algorithm ,Inorganic chemistry ,chemistry.chemical_element ,Sulfur ,Synchrotron ,Hydrothermal circulation ,law.invention - Published
- 2021
- Full Text
- View/download PDF
20. The role of sulfur in molybdenum transport in hydrothermal fluids: Insight from in situ synchrotron XAS experiments and molecular dynamics simulations
- Author
-
Weihua Liu, Denis Testemale, Yuan Mei, Qiushi Guan, Barbara Etschmann, Joël Brugger, CSIRO Mineral Resources, Monash University [Clayton], Matériaux, Rayonnements, Structure (MRS), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)
- Subjects
chemistry.chemical_classification ,X-ray absorption spectroscopy ,010504 meteorology & atmospheric sciences ,Extended X-ray absorption fine structure ,Sulfide ,Analytical chemistry ,chemistry.chemical_element ,Molybdate ,010502 geochemistry & geophysics ,01 natural sciences ,Sulfur ,Hydrothermal circulation ,XANES ,chemistry.chemical_compound ,chemistry ,13. Climate action ,Geochemistry and Petrology ,Molybdenum ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
Knowledge of the identity and thermodynamic properties of aqueous molybdenum (Mo) species at elevated temperatures and pressures is important for understanding the extraction of Mo from source rocks and the formation of hydrothermal deposits. Chlorine and sulfur are two major components in crustal fluids. Several studies have investigated Mo speciation and solubility in chloride-bearing hydrothermal fluids, but little is known about the behaviour of Mo in sulfur-bearing systems. We used in-situ synchrotron X-ray absorption spectroscopy (XAS) measurements and molecular dynamics (MD) simulations to investigate the predominant Mo species in S-bearing (0.04–2 m NaHS) solutions at 30–394 °C (XAS) and 77–300 °C (MD) and 800 bar. The XAS data show that, similar to previous room temperature studies, the S2− ion progressively replaces O2− in molybdate (MoO42−) to form thiomolybdates (MoO4-xSx2−, x = 1, 2, 3, 4) with increasing NaHS concentrations at temperature up to 394 °C. The MD simulations confirm the identity and structure of the thiomolybdate species determined from the XAS experimental data. The speciation calculations based on the formation constants for the thiomolybdate species extrapolated from the room temperature data agree well with the experimental results. This study indicates that thiomolybdate species are likely to be important in transporting Mo in sulfur-bearing hydrothermal fluids with wide pH ranges (e.g., pH 5–9 at 300 °C) under reduced (sulfide stable) conditions in the Earth crust. Current models of Mo transport in hydrothermal ore fluids need to be re-evaluated to take into account the thiomolybdate species.
- Published
- 2020
- Full Text
- View/download PDF
21. Yttrium complexation and hydration in chloride-rich hydrothermal fluids: A combined ab initio molecular dynamics and in situ X-ray absorption spectroscopy study
- Author
-
Marion Louvel, Qiushi Guan, Yuan Mei, Denis Testemale, Barbara Etschmann, Joël Brugger, School of Earth, Atmosphere and Environment [Melbourne], Monash University [Melbourne], CSIRO Mineral Ressources Kensington, Matériaux, Rayonnements, Structure (MRS), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), and Institute for Mineralogy, Muenster
- Subjects
X-ray absorption spectroscopy ,Ionic radius ,Absorption spectroscopy ,Ab initio ,Analytical chemistry ,chemistry.chemical_element ,02 engineering and technology ,Yttrium ,010502 geochemistry & geophysics ,021001 nanoscience & nanotechnology ,01 natural sciences ,YttriumAb initio molecular dynamicsXASYttrium chloride aqueous speciationThermodynamicsRare earth elements ,Square antiprism ,chemistry ,13. Climate action ,Geochemistry and Petrology ,Stability constants of complexes ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,Lanthanum ,0210 nano-technology ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,0105 earth and related environmental sciences - Abstract
Accurate knowledge of rare earth elements (REE) speciation in high pressure – high temperature fluids is required to model REE transport and precipitation in subduction zones and magmatic-hydrothermal environments, and the formation of rare metal deposits. Recent experiments (lanthanum, ytterbium, erbium) have demonstrated that REE chloride complexes are the main REE form in many hydrothermal fluids (Migdisov et al., 2016). However, the speciation of yttrium (Y(III)), a cation with an ionic radius similar to that of Ho(III), remains poorly constrained in chloride-rich hydrothermal solutions. We used ab initio molecular dynamics (MD) simulations to calculate the nature of Y(III)-Cl complexes and the thermodynamic properties of these species at temperatures up to 500 °C and pressures of 800 bar and 1000 bar. The MD results were complemented by in situ X-ray absorption spectroscopy (XAS) measurements. Our results indicate that at temperatures below 200 °C, chloro-complexes do not form readily, even in highly concentrated brines. At ambient condition, the Y(III) aqua ion binds to eight water molecules in a square antiprism geometry, which is consistent with previous ab initio studies (Ikeda et al., 2005a). The thermodynamic integration method was employed to calculate the formation constants (log K Θ ) of Y(III)-Cl− complexes in two simulation boxes containing different Y:Cl ratios; we obtained very consistent results of the standard log K Θ of the individual complexes from the two independent calculations, which confirms that the thermodynamic integration method is reliable and not significantly affected by technical limitations in box size, box composition, or simulation time. Based on the derived formation constants, we fit modified Ryzhenko–Bryzgalin (MRB) equation of state parameters, which enable extrapolation of the formation constants at elevated temperature and pressure. The results are consistent with the XAS data, and show that the stability of Y(III)-Cl complexes increases with increasing temperature, Y(III) forming high order Cl− complexes (up to YCl4−) in high salinity solutions at high temperature and pH = 3. We also compare the extrapolated log K Θ with the available data for other REE at 150 °C, 200 °C and 250 °C. At 200 °C, yttrium behaves more like a heavy REE, but from 200 °C to 250 °C, the formation constants of Y(III)-Cl complexes increase dramatically and behave more like the light REE. The difference of Cl− dominant species between Ho(III) (HoCl2+) and Y(III) (YCl2+) may account for the formation of anomalous Y/Ho ratios in some hydrothermal environments.
- Published
- 2020
- Full Text
- View/download PDF
22. In situ Characterization of Fluids and Melts to Shallow Supecritical and Magmatic Conditions
- Author
-
Denis Testemale, Marion Louvel, Celine Goujon, Murielle Legendre, Eric Lahera, and Jean-Louis Hazemann
- Published
- 2020
- Full Text
- View/download PDF
23. Twofold advantage of gas bubbling for the advanced solvothermal preparation of efficient YAG:Ce nanophosphors
- Author
-
Géraldine Dantelle, Denis Testemale, Audrey Potdevin, Jean-Louis Hazemann, Alexandra Cantarano, Alain Ibanez, Aude Barbara, Sonia De Sousa Nobre, Rémy Bruyère, Optique et Matériaux (NEEL - OPTIMA), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Matériaux, Rayonnements, Structure (NEEL - MRS), CEA/LITEN/DTNM/LT, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut Pascal (IP), SIGMA Clermont (SIGMA Clermont)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), X'Press : diffraction et hautes pressions (NEEL - X'Press), ANR-17-CE09-0035,NanophosforLED,Nanoluminophores de type grenat pour l'éclairage blanc(2017), Optique et Matériaux (OPTIMA), Matériaux, Rayonnements, Structure (MRS), and X'Press (X'Press)
- Subjects
Materials science ,Absorption spectroscopy ,Solvothermal synthesis ,Nucleation ,chemistry.chemical_element ,02 engineering and technology ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Cerium ,Crystallinity ,Chemical engineering ,chemistry ,Nanocrystal ,Oxidation state ,Transmission electron microscopy ,Materials Chemistry ,0210 nano-technology - Abstract
International audience; With the goal of controlling the oxidation state of cerium ions in Ce-doped Y3Al5O12 nanocrystals (YAG:Ce), different gases (Ar/H2, O2, Ar) were bubbled inside the solution of precursors and solvent prior to the solvothermal synthesis. As assessed by X-ray absorption spectroscopy, this protocol modifies the Ce3+ : Ce4+ ratio in YAG:Ce nanocrystals, although it does not allow complete prevention of the Ce3+ → Ce4+ oxidation. In addition, gas bubbling strongly influences the size and crystal quality of YAG:Ce nanocrystals, as evidenced by X-ray diffraction and transmission electron microscopy. Indeed, the presence of bubbles in the precursor solution induces heterogeneous nucleation, leading to an earlier nucleation step. This favors the growth and the high crystallinity of YAG:Ce nanocrystals leading to record iQY at around 52% for 60 nm sized nanocrystals and 66% for those of 200 nm.
- Published
- 2020
- Full Text
- View/download PDF
24. The role of Pb(II) complexes in hydrothermal mass transfer: An X-ray absorption spectroscopic study
- Author
-
Harald Müller, Barbara Etschmann, Joël Brugger, Weihua Liu, Denis Testemale, Yuan Mei, Dave Sherman, Peter Kappen, Nicholas A. Rae, Matériaux, Rayonnements, Structure (MRS), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), and European Synchrotron Radiation Facility (ESRF)
- Subjects
Bisulfide ,chemistry.chemical_classification ,Inorganic chemistry ,Halide ,Geology ,010501 environmental sciences ,010502 geochemistry & geophysics ,01 natural sciences ,Chloride ,Coordination complex ,chemistry.chemical_compound ,chemistry ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,Geochemistry and Petrology ,Bromide ,medicine ,Solubility ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,Lone pair ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,medicine.drug ,Coordination geometry - Abstract
We studied the nature and geometry of Pb(II) complexes in chloride-, bromide-, and bisulfide-bearing solutions in situ at pressures of 600 and 800 bar and temperatures up to 489 °C using in situ XAS spectroscopy combined with ab initio molecular dynamics (MD) simulations. In halide-free acidic solutions, Pb(II) complexes to approximately seven water ligands (predominantly [Pb(H2O)7]2+) at 30 °C; this hydration number reduces to approximately six ligands at 191 °C. Due to the influence of a stereochemically active electron lone pair, Pb(II) halide complexes are characterised by a broad bond distance distribution, highly flexible structures, and a distinct gap for excess electron density. Residual maps (based on R-factor) of parameter space confirmed that many possible parameter combinations resulted in equally satisfactory fits of the EXAFS data. Thus, EXAFS interpretation was constrained using MD simulations and results of experimental speciation and solubility studies available in the literature. The results indicate that in chloride-bearing solutions, at T > 200 °C, Pb(II) has a maximum coordination of four to five ligands, and the Pb-complex is always coordinated to a combination of water and chloride; even at 400 ≤ T ≤ 500 °C in an acidified solution containing ~10 m Cl−, the predominant Pb(II) complex is [Pb(H2O)1-2Cl3]−. The highest order bromide complex similarly contains three halide ligands ([Pb(H2O)0.5Br3]− in a ~4 m Br− acidified solution above 400 °C), but the hydration number is lower than in the case of chloride. With regard to bisulfide complexing, the solubility of galena in the presence of bisulfide was lower than expected from extrapolations using available low temperature solubility data, but the formation of Pb(II) bisulfide complexes was confirmed by the increase in solubility with increase in bisulfide concentration. The new data show that in terms of coordination geometry, Pb(II) behaves like semi-metals such as Sb(III), As(III), Bi(III), or Te(IV), which are affected by a stereochemically active lone pair, rather than like divalent first row transition metals such as Zn. Pb(II)-chloride complexes with a maximum of three chloride ligands are the dominant complexes responsible for Pb transport. In contrast, Zn(II) forms tetrahedral chloride complexes, and ZnCl42− is stable in brines up to temperatures ≥300 °C. These differences in coordination chemistry, combined with the differences in solubilities of Zn and Pb minerals, account for Zn/Pb fractionation in hydrothermal fluids.
- Published
- 2018
- Full Text
- View/download PDF
25. Mutations of Histidine 13 to Arginine and Arginine 5 to Glycine Are Responsible for Different Coordination Sites of Zinc(II) to Human and Murine Peptides
- Author
-
Peter Faller, Sabrina Noël, Denis Testemale, Valentina Borghesani, Emmanuel Guillon, Bruno Alies, Christelle Hureau, Stéphanie Sayen, ChemBioPharm, Université de Bordeaux (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie Moléculaire de Reims - UMR 7312 (ICMR), SFR Condorcet, Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-SFR CAP Santé (Champagne-Ardenne Picardie Santé), Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Université de Reims Champagne-Ardenne (URCA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Matériaux, Rayonnements, Structure (MRS), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), European Synchrotron Radiation Facility (ESRF), Institut de Chimie de Strasbourg, Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), European Project: 638712,H2020,ERC-2014-STG,aLzINK(2015), Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Université de Reims Champagne-Ardenne (URCA)-Institut de Chimie du CNRS (INC)-SFR CAP Santé (Champagne-Ardenne Picardie Santé), Université de Reims Champagne-Ardenne (URCA)-Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS)-SFR Condorcet, Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS)-Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS), Matériaux, Rayonnements, Structure (NEEL - MRS), and Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Arginine ,Glycine ,Mutagenesis (molecular biology technique) ,chemistry.chemical_element ,Peptide ,Zinc ,010402 general chemistry ,01 natural sciences ,Catalysis ,Mice ,Alzheimer Disease ,Coordination Complexes ,[CHIM]Chemical Sciences ,Animals ,Humans ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,Histidine ,Binding site ,Nuclear Magnetic Resonance, Biomolecular ,chemistry.chemical_classification ,Amyloid beta-Peptides ,Binding Sites ,010405 organic chemistry ,Organic Chemistry ,Bioinorganic chemistry ,General Chemistry ,Hydrogen-Ion Concentration ,0104 chemical sciences ,X-Ray Absorption Spectroscopy ,chemistry ,Biochemistry ,Mutagenesis, Site-Directed ,Copper - Abstract
International audience; Because mice and rats do not naturally develop Alzheimer's disease, genetically modified animals are required to study this pathology. This striking difference in terms of disease onset could be due to three alterations in the murine sequence (R5G, Y10F and H13R) of the amyloid‐β peptide with respect to the human counterpart. Whether the metal‐ion binding properties of the murine peptide are at the origin of such different amyloidogenicity of the two peptides is still an open question. Herein, the main zinc binding site to the murine amyloid‐β at physiological pH has been determined through the combination of several spectroscopic and analytical methods applied to a series of six peptides with one or two of the key mutations. These results have been compared with the zinc binding site encountered in the human peptide. A coordination mechanism that demonstrates the importance of the H13R and R5G mutations in the different zinc environments present in the murine and human peptides is proposed. The nature of the minor zinc species present at physiological pH is also suggested for both peptides. Finally, the biological relevance and fallouts of the differences determined in zinc binding to human versus murine amyloid‐β are also discussed.
- Published
- 2018
- Full Text
- View/download PDF
26. Growth and properties of CoO/Fe perpendicular exchange coupled ultra-thin films
- Author
-
E. Mossang, Matthieu Jamet, M. De Santis, Stéphane Grenier, Márcio M. Soares, Hélio C. N. Tolentino, Aude Bailly, A. D. Lamirand, Aline Y. Ramos, Denis Testemale, Olivier Proux, Nicolas Jaouen, Jean-Marc Tonnerre, Surfaces, Interfaces et Nanostructures (NEEL - SIN), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Matériaux, Rayonnements, Structure (NEEL - MRS), X'Press : diffraction et hautes pressions (NEEL - X'Press), Laboratório Nacional de Luz Sìncrotron (LNLS), Centro Nacional de Pesquisa em Energia e Materiais = Brazilian Center for Research in Energy and Materials (CNPEM), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Surfaces, Interfaces et Nanostructures (SIN ), Matériaux, Rayonnements, Structure (MRS), X'Press (X'Press), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), SIN - Surfaces, Interfaces et Nanostructures, Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), MRS - Matériaux, Rayonnements, Structure, X'Press - X'Press, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), and Université Grenoble Alpes (UGA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
Materials science ,Condensed matter physics ,Scattering ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Inductive coupling ,Electronic, Optical and Magnetic Materials ,Condensed Matter::Materials Science ,Magnetization ,Magnetic anisotropy ,Lattice constant ,Ferromagnetism ,0103 physical sciences ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Antiferromagnetism ,Thin film ,010306 general physics ,0210 nano-technology - Abstract
We investigated the molecular beam epitaxy growth, the structure and the magnetic properties of the exchange coupled CoO/Fe bilayers on Ag(0 0 1). In situ X-ray scattering shows that Fe grows in registry with Ag(0 0 1) with an out-of-plane lattice parameter that varies with the Fe layer total thickness. The growth of CoO to build an exchange coupled CoO/Fe system impacts the Fe layer even at room temperature. Two different bilayers grown under close conditions are studied. They differ by the ratio of the oxidized Fe layers over the 7 initial Fe monolayers (30% and 40% respectively). Low temperature exchange magnetic coupling with a blocking temperature T B of about 180 K–150 K and similar thermal behavior are observed for the two samples. We studied one sample with synchrotron X-ray resonant magnetic scattering confirming that the magnetization was perpendicular to the surface below T B . Noteworthy, we found that the magnetic easy axis was lying in-plane at room temperature, above T B . These results point to another example of perpendicular ferromagnetism in an ultra-thin film due to an exchange mechanism with an antiferromagnetic layer that rotates the magnetic easy axis from in-plane to perpendicular below T B .
- Published
- 2017
- Full Text
- View/download PDF
27. Effect of S on the aqueous and gaseous transport of Cu in porphyry and epithermal systems: Constraints from in situ XAS measurements up to 600 °C and 300 bars
- Author
-
Marion Louvel, Amélie Bordage, John Mavrogenes, Jean-Louis Hazemann, Denis Testemale, B. Tripoli, University of Bristol [Bristol], Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Department of Earth and Planetary Science [UC Berkeley] (EPS), University of California [Berkeley], University of California-University of California, Matériaux, Rayonnements, Structure (MRS), Institut Néel (NEEL), and Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
chemistry.chemical_classification ,X-ray absorption spectroscopy ,Aqueous solution ,010504 meteorology & atmospheric sciences ,Sulfide ,Precipitation (chemistry) ,Metallurgy ,Analytical chemistry ,chemistry.chemical_element ,Geology ,010502 geochemistry & geophysics ,01 natural sciences ,Copper ,6. Clean water ,chemistry.chemical_compound ,chemistry ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,13. Climate action ,Geochemistry and Petrology ,Oxidation state ,Solubility ,Sulfate ,0105 earth and related environmental sciences - Abstract
International audience; The effect of S on the solubility of Cu in high-temperature fluids at conditions relative to porphyry and epithermal ore deposit formation has been investigated conducting in situ X-ray absorption (XAS) and Raman spectroscopy from 325 to 600 °C at 300 bars. The experimental results identify the Cl or S-complexes responsible for Cu transport in high-temperature fluids and provide information on transport in porphyry/epithermal systems and the effect of fluid composition on the transfer of Cu from the porphyry to the epithermal environment.In S-free HCl solutions, Cu solubility is about 10 times higher in high-density (ρ > 0.6 g·cm− 3) versus low-density (ρ < 0.3 g·cm− 3) fluids. During the transition from high- to low-density, Cu speciation evolves from CuCl2− complexes to CuCl(H2O) or CuCl(HCl), depending on HCl concentrations. In sulfur-only solutions Cu solubility is extremely low. The addition of S to Cl-bearing fluids results in a drop of Cu solubility in high- and low-density fluids. Solubilities drop from weight percent levels (in Cl-only solutions) to hundreds of ppm in high-density fluids (containing sulfur). In low-density fluids, Cu concentrations similarly drop, from hundreds of ppm to below detection. The low Cu concentrations in the presence of sulfur preclude the characterization of Cu complexes, except in high-density Cl + S fluids, where CuCl2− is found to remain the dominant specie even for Cl concentrations < 1 wt%.Overall, these results suggest that the presence of S of mixed oxidation state (sulfide S2 −, sulfite S4 + and sulfate S6 +) limits transport of Cu in porphyry and epithermal systems and may even trigger Cu precipitation. Furthermore, these experiments provide evidence that the presence of the S3− ion does not increase Cu solubility in fluids. Thus, if present in such environments, S3− ion could fractionate Cu from Au in porphyry-epithermal environments.
- Published
- 2017
- Full Text
- View/download PDF
28. Rare earth element partitioning between sulphides and melt: Evidence for Yb2+ and Sm2+ in EH chondrites
- Author
-
Ivan Vlastélic, Maud Boyet, Denis Testemale, Olivier Mathon, Mohamed Ali Bouhifd, Jean-Luc Devidal, Bertrand Moine, Olivier Proux, Tahar Hammouda, M. Gaborieau, N.J. Ingrao, Jean-Louis Hazemann, Laboratoire Magmas et Volcans (LMV), Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Institut de Recherche pour le Développement et la société-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), European Synchrotron Radiation Facility (ESRF), Matériaux, Rayonnements, Structure (NEEL - MRS), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut des Sciences de la Terre (ISTerre), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), ANR-10-LABX-0006,CLERVOLC,Clermont-Ferrand centre for research on volcanism(2010), ANR-16-IDEX-0001,CAP 20-25,CAP 20-25(2016), Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut de Recherche pour le Développement et la société-Université Clermont Auvergne (UCA)-Centre National de la Recherche Scientifique (CNRS)-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne (UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), MRS - Matériaux, Rayonnements, Structure, Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Laboratoire de Géophysique Interne et Tectonophysique (LGIT), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Laboratoire Central des Ponts et Chaussées (LCPC)-Institut des Sciences de la Terre (ISTerre), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut national des sciences de l'Univers (INSU - CNRS)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR), ANR-10-LABX-0006/10-LABX-0006,CLERVOLC,Clermont-Ferrand centre for research on volcanism(2010), ANR: 16-IDEX-0001,CAP 20-25,CAP 20-25 (I-Site)(2017), Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut de Recherche pour le Développement et la société-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Institut national des sciences de l'Univers (INSU - CNRS), and Matériaux, Rayonnements, Structure (MRS)
- Subjects
Materials science ,Rare-Earth-Elements ,010504 meteorology & atmospheric sciences ,Rare-earth element ,Oldhamite ,Analytical chemistry ,Enstatite chondrite ,[SDU.STU.PE]Sciences of the Universe [physics]/Earth Sciences/Petrography ,engineering.material ,010502 geochemistry & geophysics ,01 natural sciences ,Silicate ,chemistry.chemical_compound ,chemistry ,Meteorite ,Geochemistry and Petrology ,Chondrite ,Mineral redox buffer ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,Enstatite ,engineering ,Achondrite ,0105 earth and related environmental sciences ,Oxygen fugacity - Abstract
We present the first complete dataset of partition coefficients of Rare Earth Elements (REE) between oldhamites or molten FeS and silicate melts. Values have been determined at 1300 and 1400 °C from experiments on mixtures of a natural enstatite chondrite and sulphides powders (FeS or CaS) performed in evacuated silica tubes for different f O 2 conditions (from IW-6.9 to IW-4.1). Obtained REE partitioning values are between 0.5 and 5 for oldhamites and between 0.001 and 1 for FeS. In both sulphides, Eu and Yb are preferentially incorporated compared to neighbouring REE. X-ray Absorption Near Edge Structure measurements on Yb and Sm demonstrate the partial reduction to 2+ valence state for both elements, Yb reduction being more pronounced. Therefore, the Yb anomaly in the sulphides is interpreted to be an effect of the presence of Yb2+ in the system and the amplitude of the anomaly increases with decreasing oxygen fugacity. The obtained oldhamite/silicate melt partition coefficients patterns are unlike any of the observed data in natural oldhamites from enstatite chondrites and achondrites. In particular, the low values do not explain the observed enrichments in oldhamite crystals. However, positive Eu and Yb anomalies are observed in some oldhamites from EH chondrites and aubrites. We attribute these anomalies found in meteorites to the sole oldhamite control on REE budget. We conclude that the presence of positive Eu and Yb anomalies in oldhamites is a good indicator of their primordial character and that these oldhamites carry a condensation signature from a highly reduced nebular gas.
- Published
- 2019
- Full Text
- View/download PDF
29. The nature and partitioning of invisible gold in the pyrite-fluid system
- Author
-
Céline Escoda, Thierry Aigouy, Gleb S. Pokrovski, Denis Testemale, Michel Thibaut, Philippe de Parseval, Elena F. Bazarkina, Jean-Louis Hazemann, Marie-Christine Boiron, Sophie Gouy, Maria A. Kokh, Marc Blanchard, Olivier Proux, Géosciences Environnement Toulouse (GET), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Matériaux, Rayonnements, Structure (NEEL - MRS), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM), Institute of Geology of Ore Deposits, Russian Academy of Sciences, Ecole Nationale Supérieure de Géologie (ENSG), Université de Lorraine (UL), GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), INSU-CNRS, grant OrPy-CESSURINSU-CNRS, grant AsOrPy-CESSUR)Institut Carnot ISIFoR, grant OrPetCALMIP, grant 2018-P1037, ANR-16-CE31-0017,RADICALS,Les radicaux de soufre et leurs applications pour les ressources minérales, l'évolution des magmas et la géochimie isotopique(2016), ANR-11-BS56-0009,SOUMET,Rôle du soufre dans le devenir des métaux d'intérêt économique dans les fluides géologiques(2011), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), MRS - Matériaux, Rayonnements, Structure, Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), ANR-16-CE31-0017,RADICALS,Les radicaux de soufre et leurs applications pour les ressources minérales, l’évolution des magmas et la géochimie isotopique(2016), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Matériaux, Rayonnements, Structure (MRS), and Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Institut national des sciences de l'Univers (INSU - CNRS)
- Subjects
Sulfide ,020209 energy ,Analytical chemistry ,Geochemistry ,chemistry.chemical_element ,Iron sulfide ,02 engineering and technology ,Electron microprobe ,engineering.material ,010502 geochemistry & geophysics ,01 natural sciences ,Hydrothermal circulation ,Metal ,chemistry.chemical_compound ,Geochemistry and Petrology ,0202 electrical engineering, electronic engineering, information engineering ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,0105 earth and related environmental sciences ,chemistry.chemical_classification ,Geology ,Sulfur ,chemistry ,13. Climate action ,visual_art ,engineering ,visual_art.visual_art_medium ,Economic Geology ,Pyrite ,Inductively coupled plasma - Abstract
International audience; The most characteristic feature of hydrothermal deposits of gold is its intimate association with pyrite. Microscopically visible gold occurs in pyrite ore as metal particles of >0.1 µm in size, together with so called “invisible” gold, undetectable by conventional microscopic methods. The chemical, redox and structural state of this invisible gold and the mechanisms of its incorporation into pyrite remain both inconsistent and controversial since the dawn of economic geology. To clarify these issues, we performed laboratory experiments to simulate interactions of gold-bearing sulfur-rich hydrothermal fluids with arsenic-free pyrite at temperatures from 350 to 450 °C and pressures from 400 to 700 bar, typical of the formation conditions of many types of gold deposits. Gold solubility was measured in these fluids as a function of sulfur speciation and acidity. Gold redox and structural state in pyrite was characterized by high-energy resolution fluorescence-detected x-ray absorption spectroscopy (HERFD-XAS), together with more traditional analytical techniques such as scanning electron microscopy (SEM), x-ray diffraction (XRD), electron probe micro analysis (EPMA), laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), and inductively coupled plasma atomic emission spectrometry (ICP-AES). Results show that dissolved Au in sulfide-sulfate solutions forms complexes with hydrogen sulfide, and tri- and di-sulfur radical ions whose amounts depend mostly on the fluid pH and total sulfur concentration. Invisible gold in pyrite occurs as Au metal submicron- to nano-sized particles and chemically bound Au(I) in the form of (poly)sulfide clusters composed on S-Au-S linear units, similar to those in aqueous complexes. Our findings contest the common belief that Au(I) substitutes for Fe and/or S in the structure of As-poor pyrite. The partition coefficient of Au(I) between pyrite and the fluid, Dpy/fl, is determined to be 0.15 ± 0.07 at 450 °C in a wide range of Au fluid phase concentrations (10–1000 ppm), but much higher Dpy/fl values, between 10 and 50, are found at 350 °C. These Au partitioning trends coupled with the new data on Au molecular environment in pyrite suggest a control of Au(I) incorporation in the mineral by a chemisorption step. Extrapolated to Au contents of hydrothermal fluids of the Earth’s crust which are typically below 1 ppm, our Dpy/fl values reproduce fairly well the natural Au tenors in As-poor pyrites (∼0.1–1 ppm Au), which are 100–1000 times lower than those typically observed in arsenian pyrites and arsenopyrites (10–1000 ppm Au at As tenors of 0.01–10 wt%). Our results thus indirectly highlight a key role played by arsenic in gold enrichment in As-bearing iron sulfide ore, a role that yet remains to be fully understood and quantified.
- Published
- 2019
- Full Text
- View/download PDF
30. Nd
- Author
-
Geraldine, Dantelle, Marija, Matulionyte, Denis, Testemale, Alexandra, Cantarano, Alain, Ibanez, and Fiorenzo, Vetrone
- Abstract
Development of contactless temperature-probing nanoplatforms based on thermosensitive near-infrared (NIR) light-emitting nanoparticles opens up new horizons for biomedical theranostics at a deep tissue level. Here, we report on the crystallinity and relative thermal sensitivity of NIR emitting Nd
- Published
- 2019
31. The role of fluorine in hydrothermal mobilization and transportation of Fe, U and REE and the formation of IOCG deposits
- Author
-
Barbara Etschmann, Joël Brugger, Andrew Tomkins, Denis Testemale, Weihua Liu, Yanlu Xing, Yuri Shvarov, Yuan Mei, Matériaux, Rayonnements, Structure (MRS), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), and European Synchrotron Radiation Facility (ESRF)
- Subjects
010504 meteorology & atmospheric sciences ,Inorganic chemistry ,chemistry.chemical_element ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,010502 geochemistry & geophysics ,01 natural sciences ,Fluorite ,Metal ,chemistry.chemical_compound ,Geochemistry and Petrology ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,Solubility ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,Dissolution ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Aqueous solution ,Geology ,chemistry ,[SDU]Sciences of the Universe [physics] ,visual_art ,visual_art.visual_art_medium ,Fluorine ,Leaching (metallurgy) ,Fluoride - Abstract
The fluorine(F)-rich nature in iron oxide-copper-gold (IOCG) deposits has received much attention since it was recognized that the giant Olympic Dam (OD) deposit contains >2 wt% fluorite. Yet, the significance of the F-U-REE-Fe association remains poorly understood, with four existing hypotheses regarding the role of F: (i) fluoride increases the solubility of metals by forming stable aqueous complexes; (ii) fluoride acts as a precipitating rather than a transporting agent, due to the low solubility of some fluoride minerals; (iii) high F contents may simply reflect the source of the ore fluids; and (iv) the presence of HF(aq) in acidic aqueous solutions may improve leaching of metals and create fluid pathways. In this study, we investigated these hypotheses using thermodynamic modelling, and performed complementary experiments to evaluate the nature and stability of Fe(II/III)-F complexes at elevated temperature. Our in-situ X-ray absorption spectroscopy (XAS) data show that at room temperature, the Fe(II/III) fluoride complexes are more stable than corresponding Fe(II/III) chloride complexes, and the Fe(III) fluoride complexes are important in F-only solutions at low temperature (≤100 °C). Increasing temperature causes precipitation of Fe from F-only solutions, so that above 200 °C there was little detectable Fe left in the solution. In mixed F-Cl solutions, the experimental data and the thermodynamic calculations show that Fe(III)-F complexes are important at low temperature (~≤150 °C) while Fe(II)-Cl complexes predominate at temperatures higher than 200 °C, causing an increase in Fe solubility. We further investigated the potential of granitic rocks as a source for F and metals (Fe, REE and U) using thermodynamic calculations (hypotheses (i), (ii) and (iii)). Our results show that U and La solubilities are mainly controlled by temperature: U solubility is relatively high at T 250 °C. Fluoride significantly enhances the solubility of U and La compared to F-free system by affecting fluid chemistry or forming stable complexes (La). Our simulations also show that Si solubility is enhanced in F-bearing solutions (hypothesis (iv)), mainly attributed to the increased solubility of H3SiO4− and NaHSiO3(aq). Moreover, the solubility of Si-F increases dramatically. These indicate that F may help breaking the Si O bond in silicates and releasing Si into fluids. Therefore, fluorine may play a key role in enhancing the porosity of the wall rock and breccia, and in mineral replacement reactions. Collectively, these would enhance fluid-rock reaction, and thus may help to drive metal precipitation. Overall, the thermodynamic considerations suggest that the common F + Fe + REE ± U association in IOCGs may not only reflect the source of the metals, but also that F contributes to the metal endowment of some IOCG deposits via a combination of processes, including increasing the metal (U and REE, but not Fe) carrying capacity of the fluids; and dissolving silicates and enhancing the porosity of the breccia and the wall rocks, thus contributing to increased fluid pathways and ore-forming reactions.
- Published
- 2019
- Full Text
- View/download PDF
32. A hydrothermal apparatus for x-ray absorption spectroscopy of hydrothermal fluids at DESY
- Author
-
Maria A. Kokh, Marion Louvel, Arno Rohrbach, P. Weitkamp, Denis Testemale, E. Welter, Max Wilke, Anselm Loges, Stephan Klemme, M. Borchert, V. Potapkin, C. Schmidt, M. Feldhaus, Westfälische Wilhelms-Universität Münster (WWU), Universität Potsdam, Freie Universität Berlin, Deutsches Elektronen-Synchrotron [Hamburg] (DESY), GeoForschungsZentrum - Helmholtz-Zentrum Potsdam (GFZ), Matériaux, Rayonnements, Structure (MRS), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)
- Subjects
X-ray absorption spectroscopy ,Materials science ,010504 meteorology & atmospheric sciences ,Absorption spectroscopy ,010502 geochemistry & geophysics ,01 natural sciences ,Synchrotron ,Hydrothermal circulation ,law.invention ,Autoclave ,chemistry.chemical_compound ,symbols.namesake ,chemistry ,Chemical engineering ,law ,Scheelite ,symbols ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,Raman spectroscopy ,Instrumentation ,Dissolution ,0105 earth and related environmental sciences - Abstract
We present a new autoclave that enables in situ characterization of hydrothermal fluids at high pressures and high temperatures at synchrotron x-ray radiation sources. The autoclave has been specifically designed to enable x-ray absorption spectroscopy in fluids with applications to mineral solubility and element speciation analysis in hydrothermal fluids in complex compositions. However, other applications, such as Raman spectroscopy, in high-pressure fluids are also possible with the autoclave. First experiments were run at pressures between 100 and 600 bars and at temperatures between 25 °C and 550 °C, and preliminary results on scheelite dissolution in fluids of different compositions show that the autoclave is well suited to study the behavior of ore-forming metals at P-T conditions relevant to the Earth's crust.
- Published
- 2021
- Full Text
- View/download PDF
33. The role of Te(IV) and Bi(III) chloride complexes in hydrothermal mass transfer: An X-ray absorption spectroscopic study
- Author
-
Barbara Etschmann, Blake Tooth, Joël Brugger, Denis Testemale, Allan Pring, Stacey J. Borg, Pascal V. Grundler, Dale Brewe, Weihua Liu, School of Earth Sciences [Melbourne], Faculty of Science [Melbourne], University of Melbourne-University of Melbourne, Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), Division of Mineralogy, South Australian Museum, South Australian Museum-South Australian Museum, Matériaux, Rayonnements, Structure (MRS), Institut Néel (NEEL), and Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
X-ray absorption spectroscopy ,010504 meteorology & atmospheric sciences ,Inorganic chemistry ,chemistry.chemical_element ,Geology ,010502 geochemistry & geophysics ,01 natural sciences ,Chloride ,Hydrothermal circulation ,Bismuth ,Metal ,chemistry ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,Geochemistry and Petrology ,visual_art ,visual_art.visual_art_medium ,medicine ,Moiety ,Absorption (chemistry) ,Tellurium ,ComputingMilieux_MISCELLANEOUS ,[SDU.STU.MI]Sciences of the Universe [physics]/Earth Sciences/Mineralogy ,0105 earth and related environmental sciences ,medicine.drug - Abstract
Tellurium (Te) and bismuth (Bi) are two metal(loid)s often enriched together with gold (Au) in hydrothermal deposits; however the speciation and transport properties for these two metals in hydrothermal systems are poorly understood. We investigated the effect of chloride on the speciation of Te(IV) and Bi(III) in hydrothermal solutions using in-situ XAS spectroscopy. At ambient temperature, oxy-hydroxide complexes containing the [TeO 3 ] moiety (e.g., H 3 TeO 3 + under highly acidic conditions) predominate in salty solutions over a wide range in pH and salt concentrations. Te(IV)–Cl complexes only appear at pH 25 °C ≤ 2 and high Cl − activity (≥ 10). The highest order Te(IV) chloride complex detected is TeCl 4(aq) , and contains the [TeCl 4 ] moiety. Upon heating to 199 °C, the Te(IV)–Cl complexes become more stable; however they still required highly acidic conditions which are likely to exist only in very limited environments in nature. At ambient temperature, Bi(III) is coordinated to 5.5(5) Cl atoms in high salinity, acidic (HCl ≥ 0.5 m) chloride solutions. This, combined with large EXAFS-derived structural disorder parameters, suggests that the Bi(III) complex is most likely present as both BiCl 5 2 − and BiCl 6 3 − . The number of Cl atoms coordinated to Bi(III) decreases with increasing temperature; at around 200 °C and above, Bi(III) is coordinated to three Cl atoms. Overall the data show that Te(IV) chloride complexes can be ignored in predicting Te mobility under oxidizing conditions in most geological environments, but that Bi(III) chloride complexes are expected to account for Bi mobility in acidic brines. New thermodynamic properties for Bi(III) chloride complexes are provided to improve reactive transport modeling of Bi up to 500 °C. Although higher order complexes such as BiCl 5 2 − and BiCl 6 3 − exist at ambient temperature, the BiCl 3 (aq) complex becomes the predominant chloride complex in saline solutions at T ≥ 200 °C.
- Published
- 2016
- Full Text
- View/download PDF
34. Modern and past volcanic degassing of iodine
- Author
-
Anne-Line Auzende, Denis Testemale, Hélène Bureau, Guillaume Fiquet, S. Kubsky, M. Marocchi, P. Munsch, M. Carriere, Caroline Raepsaet, Mohamed Mezouar, A. Ricolleau, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etudes des Eléments Légers (LEEL - UMR 3685), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (ex SIS2M) (NIMBE UMR 3685), Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Matériaux, Rayonnements, Structure (MRS), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), European Synchrotron Radiation Facility (ESRF), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Laboratoire Lésions des Acides Nucléiques (LAN), Service de Chimie Inorganique et Biologique (SCIB - UMR E3), Institut Nanosciences et Cryogénie (INAC), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut Nanosciences et Cryogénie (INAC), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Muséum national d'Histoire naturelle (MNHN)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Matériaux, Rayonnements, Structure (NEEL - MRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)
- Subjects
Ozone ,010504 meteorology & atmospheric sciences ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Mineralogy ,chemistry.chemical_element ,010502 geochemistry & geophysics ,Early Earth ,01 natural sciences ,Silicate ,chemistry.chemical_compound ,chemistry ,13. Climate action ,Geochemistry and Petrology ,Halogen ,Magma ,Fluorine ,Water vapor ,Earth (classical element) ,Geology ,0105 earth and related environmental sciences - Abstract
International audience; We have monitored iodine degassing from a melt to a water vapor during decompression (i.e. magma ascent). Experimentshave been performed by combining diamond anvil cells experiments with synchrotron X-rays fluorescence analysis. Partitioncoefficients DIfluid/melt measured for a pressure and temperature range of 0.1–1.8 GPa and 500–900 C, range from 41 to 1.92,values for room conditions DIfluid/glass (quenched samples) are equal to or higher than 350. We show that iodine degassing withwater is earlier and much more efficient than for lighter halogen elements, Cl and Br. Iodine is totally degassed from the silicatemelt at room conditions. By applying these results to modern volcanology, we calculate an annual iodine flux for subductionrelated volcanism of 0.16–2.4 kt yr1. We suggest that the natural iodine degassing may be underestimated, havingpossible consequences on the Earth’s ozone destruction cycle. By applying this results to the Early Earth, we propose a processthat may explain the contrasted signature of I, Br and Cl, strongly depleted in the bulk silicate Earth, the most depletedbeing iodine, whereas fluorine is almost enriched. The Earth may have lost heavy halogen elements during an early waterdegassing process from the magma ocean.
- Published
- 2016
- Full Text
- View/download PDF
35. A new solvothermal method for the synthesis of size-controlled YAG:Ce single-nanocrystals
- Author
-
Géraldine, Dantelle, Denis, Testemale, Estelle, Homeyer, Alexandra, Cantarano, Stéphanie, Kodjikian, Christophe, Dujardin, Jean-Louis, Hazemann, and Alain, Ibanez
- Abstract
Ce
- Published
- 2018
36. Influence of the pore diameter in Cu/Co/Cu antidots: A XANES study
- Author
-
Denis Testemale, Olivier Proux, S. Usmani, L. Cagnon, Olivier Mathon, Angelika Dorothea Rosa, H. Garad, F. Fettar, Sakura Pascarelli, Philippe David, D. Mannix, D. Barral, Surfaces, Interfaces et Nanostructures (SIN ), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Epitaxie et couches minces (EpiCM ), Micro et NanoMagnétisme (MNM ), Matériaux, Rayonnements, Structure (MRS), European Synchrotron Radiation Facility (ESRF), Institut des Sciences de la Terre (ISTerre), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), SIN - Surfaces, Interfaces et Nanostructures, Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), EpiCM - Epitaxie et couches minces, MNM - Micro et NanoMagnétisme, MRS - Matériaux, Rayonnements, Structure, Laboratoire de Géophysique Interne et Tectonophysique (LGIT), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Laboratoire Central des Ponts et Chaussées (LCPC)-Institut des Sciences de la Terre (ISTerre), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut national des sciences de l'Univers (INSU - CNRS)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR), Surfaces, Interfaces et Nanostructures (NEEL - SIN), Epitaxie et couches minces (NEEL- EpiCM), Micro et NanoMagnétisme (NEEL - MNM), and Matériaux, Rayonnements, Structure (NEEL - MRS)
- Subjects
010302 applied physics ,X-ray absorption spectroscopy ,Nanostructure ,Materials science ,Physics and Astronomy (miscellaneous) ,Absorption spectroscopy ,02 engineering and technology ,Coercivity ,021001 nanoscience & nanotechnology ,01 natural sciences ,Molecular physics ,XANES ,Chemical species ,Nanopore ,Atomic layer deposition ,0103 physical sciences ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,General Materials Science ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
Antidot materials, i.e., two-dimensional nanostructures with a periodic array of nanopores, are of great scientific interest due to their unique nanomagnetic properties and their potential application in storage devices. It is well known that physical properties of antidots are directly linked to the diameter of nanopores and their spacing, as well as to the morphology and the localizations of chemical species. However, due to their nanoscale size, their characterization remains challenging. Here, we present a detailed investigation of the morphology and presence of oxide species in antidots as a function of the pore diameter using polarized x-ray absorption spectroscopy. For this study we synthesized and characterized Cu(10 nm)/Co(12 nm)/Cu(10 nm) sputtered antidots, fabricated by the double-anodization technique assisted by atomic layer deposition. The pore size ranged from 20 to 80 nm, with a fixed interpore distance (105 nm). An unholed multilayer deposited on Si/${\mathrm{SiO}}_{2}$ was also investigated for comparison. We observed a clear correlation between the increase of pore diameter and the enhancement of oxide content from three different x-ray absorption near edge structure analysis methods. Polarized XAS allowed us to localize the CoO nanorings inside the pores. We propose that the CoO formation is directly related to the crescent shape of the multilayer deposit inside the pores. The coercivity of antidots is enhanced by increasing the magnetic atomic proportion in the periphery of nanopores. The structural observations were also used to develop a simple model in order to estimate the proportion of atoms inside the pores and on the top of the antidots as a function of the interpore distance, the hole diameter, and the penetration length of deposition inside the pores. This model can be easily used in the literature for estimating the atomic species deposited on antidots.
- Published
- 2018
- Full Text
- View/download PDF
37. Nickel and platinum in high-temperature H2O + HCl fluids: Implications for hydrothermal mobilization
- Author
-
Doreen E. Ames, Anke Watenphul, Christian Schmidt, Denis Testemale, Lea Scholten, Oliver Beermann, Matériaux, Rayonnements, Structure (MRS), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), and European Synchrotron Radiation Facility (ESRF)
- Subjects
Sperrylite ,Molality ,010504 meteorology & atmospheric sciences ,Inorganic chemistry ,Arsenate ,chemistry.chemical_element ,engineering.material ,010502 geochemistry & geophysics ,01 natural sciences ,Metal ,chemistry.chemical_compound ,Nickel ,chemistry ,Geochemistry and Petrology ,[SDU]Sciences of the Universe [physics] ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,visual_art ,engineering ,visual_art.visual_art_medium ,Solubility ,Platinum ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,Dissolution ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
The dissolution of NiS and NiAs (nickeline) in 0.1 and 1 molal HCl at 400 °C, 80 MPa, and of PtAs2 (sperrylite) and Pt metal in 1 and 6.86 molal HCl at 500 °C, 80 MPa was studied in-situ using synchrotron radiation X-ray fluorescence and absorption spectroscopy. The Pt concentration in the fluid averaged 8 · 10−5 molal (12.8 ppm) during dissolution of Pt metal in 6.86 molal HCl, and was below the minimum detection limit (mdl; 2.6 · 10−5 molal) in all other experiments. Dissolution of NiS was congruent or nearly congruent. Equilibrium was attained rapidly in about 250 min at an initial HCl concentration of 1 molal HCl, and in about 500 min at 0.1 molal HCl. Addition of HCl resulted in a large increase in the Ni solubility from 7.2 · 10−3 molal Ni (423 ppm) at 0.1 molal HCl to 8.72 · 10−2 molal Ni (4959 ppm) at 1 molal HCl. Dissolution of NiAs in 0.1 and 1 molal HCl was incongruent. A steady state was not reached even at a run duration of more than 16 h, and the maximum recorded Ni concentrations in the fluid were much lower than the Ni solubility in the corresponding experiments with NiS at the same HCl molality. Measured K-edge XANES spectra in comparison with literature data indicated that arsenic in the fluid was present as As(V) and that nickel complexed with Cl and H2O as tetrahedral [NiCl2(H2O)2]0 and [NiCl3(H2O)]− and octahedral [NiCl2(H2O)4]0 species. In addition, Raman spectra of H2O + NiCl2 and H2O + NiCl2 + HCl solutions and of H2O + HCl fluids reacted with NiS crystals were acquired at temperatures (T) up to 600 °C and pressures (P) up to 1.15 GPa. All spectra at T ≥ 300 °C and P The results of this study demonstrate that nickel is readily mobilized by acidic chloridic hydrothermal fluids, but platinum remains practically immobile in such fluids at any HCl concentration that is conceivable to occur in nature. Therefore, the enrichment of Pt relative to Ni in footwall-type deposits in the Sudbury District and the growth of large sperrylite crystals are likely related to magmatic processes. Furthermore, the experiments point to the importance of redox reactions for the mobilization and precipitation of arsenides and suggest that arsenate species are more stable in hydrothermal fluids than previously thought.
- Published
- 2018
- Full Text
- View/download PDF
38. Evidence for Nb2+and Ta3+in silicate melts under highly reducing conditions: A XANES study
- Author
-
Tahar Hammouda, Olivier Mathon, Maud Boyet, Bertrand Moine, Denis Testemale, Camille Cartier, Laboratoire Magmas et Volcans (LMV), Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), European Synchrotron Radiation Facility (ESRF), Matériaux, Rayonnements, Structure (NEEL - MRS), Institut Néel (NEEL), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet [Saint-Étienne] (UJM)-Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Matériaux, Rayonnements, Structure (MRS), and Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)
- Subjects
chemistry.chemical_classification ,Materials science ,Valence (chemistry) ,010504 meteorology & atmospheric sciences ,Metallurgy ,Analytical chemistry ,Tantalum ,Niobium ,chemistry.chemical_element ,010502 geochemistry & geophysics ,Threshold energy ,01 natural sciences ,Silicate ,Spectral line ,XANES ,Divalent ,chemistry.chemical_compound ,Geophysics ,chemistry ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,Geochemistry and Petrology ,ComputingMilieux_MISCELLANEOUS ,[SDU.STU.MI]Sciences of the Universe [physics]/Earth Sciences/Mineralogy ,0105 earth and related environmental sciences - Abstract
Niobium (Nb) K -edge and tantalum (Ta) L III-edge XANES spectra were acquired at the part-per-million concentration level in silicate glasses quenched from chondritic melts equilibrated at 5 GPa and under moderately to highly reducing conditions (IW-1, IW-4.5, IW-7.9). Standard materials have also been analyzed for Nb and Ta, and the data were used to construct the calibration curves of E (threshold energy) vs. valence. Under moderately reducing conditions our results are consistent with niobium and tantalum being mainly pentavalent in the silicate melts as also suggested by previous studies. We do not exclude that at IW-1, a small fraction of Nb and Ta could be reduced, leading to a mean formal valence slightly lower than five. At IW-4.5, Ta is mainly in the form Ta3+, and at IW-7.9, Ta appears to be Ta1+, whereas Nb is divalent (Nb2+). The possibility for Nb and Ta to be present in reduced forms has implications for the behavior of the two elements during the processes of differentiation on planetary bodies formed in the reduced parts of the early Solar System. Element partitioning is a function of size and valence, and our results show that high field strength elements could be reduced, which could change their chemical affinity. This may also be important for the Earth and Moon formation and early differentiation, as exemplified by the “Nb paradox.”
- Published
- 2015
- Full Text
- View/download PDF
39. Dynamics of Zn in an urban wetland soil–plant system: Coupling isotopic and EXAFS approaches
- Author
-
Marine Queyron, Géraldine Sarret, Denis Testemale, Valérie Magnin, Anne Marie Aucour, Jean-Philippe Bedell, Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences de la Terre (ISTerre), Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-PRES Université de Grenoble-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Matériaux, Rayonnements, Structure (MRS), Institut Néel (NEEL), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), European Synchroton Radiation Facility [Grenoble] (ESRF), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut national des sciences de l'Univers (INSU - CNRS)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Université Joseph Fourier - Grenoble 1 (UJF), MRS - Matériaux, Rayonnements, Structure, Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), ESFR, FAME Beamline, Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), and Matériaux, Rayonnements, Structure (NEEL - MRS)
- Subjects
Rhizosphere ,Aqueous solution ,010504 meteorology & atmospheric sciences ,biology ,Ecology ,Stable isotope ratio ,media_common.quotation_subject ,Sorption ,Fractionation ,010501 environmental sciences ,Phalaris arundinacea ,biology.organism_classification ,01 natural sciences ,6. Clean water ,chemistry.chemical_compound ,Speciation ,chemistry ,Geochemistry and Petrology ,Environmental chemistry ,Hydroxide ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,0105 earth and related environmental sciences ,media_common - Abstract
Plants play a key role in the stabilization of metals in contaminated environments. Studies have been performed on Zn uptake and storage mechanisms, mainly for Zn hyperaccumulating plants, though less is known about Zn stabilization in the rhizosphere of non-accumulating plants. This study was focused on the dynamics of Zn in a whole soil–litter–plant system and the processes controlling Zn mobilization and stabilization. The site studied was an infiltration basin receiving urban stormwater, in which Phalaris arundinacea (reed canary grass) developed spontaneously. A combination of chemical extractions (CaCl 2 , DTPA), EXAFS spectroscopy and Zn stable isotope measurements was applied for the water inlet, soil, plant organs and decaying biomass. Zn speciation changed from the water inlet to the soil. In the soil, Zn was present as Zn-layered double hydroxide (Zn-LDH), tetrahedral and octahedral sorbed Zn species. The formation of Zn-LDH participates in Zn stabilization. Tetrahedral Zn species, which were partly DTPA exchangeable, were enriched in heavy isotopes, whereas octahedral Zn (Zn-LDH and sorbed species) were enriched in light isotopes. Based on a linear model between δ 66 Zn and Zn speciation, δ 66 Zn for pure tetrahedral and octahedral end-members were estimated at ca. 0.33‰ and 0.04‰, respectively. In the plant, a mixture of octahedral Zn (attributed to aqueous Zn-organic acid complexes present in the symplasm), and tetrahedral Zn (attributed to apoplasmic Zn-cell wall complexes) was observed in all organs. Large enrichment in light isotopes from the soil to the plant Δ 66 Zn (of ca. −0.6‰) was observed. The stem was enriched in light isotopes versus roots and, to a lesser extent, versus leaves. The results suggest that Zn was taken up via a low-affinity transport system and that Zn was sequestrated in the stem symplasm after transit through leaves. Finally, intense Zn exchanges were observed between the decaying biomass and the soil, with the sorption of heavy Zn from the soil to cell wall remains and release of light Zn to the soil. Overall, this study provides a complete overview of Zn cycling in an urban wetland soil–plant system, and describes several changes in Zn speciation with Zn isotopic fractionation processes in a complex system.
- Published
- 2015
- Full Text
- View/download PDF
40. Characterization of Germanium Speciation in Sphalerite (ZnS) from Central and Eastern Tennessee, USA, by X-ray Absorption Spectroscopy
- Author
-
Bailly, Julien Bonnet, Jean Cauzid, Denis Testemale, Isabelle Kieffer, Olivier Proux, Andreï Lecomte, and Laurent
- Subjects
XANES spectroscopy ,sphalerite ,germanium ,oxidation state - Abstract
X-ray absorption near edge structure (XANES) spectroscopy was used on zoned sphalerites (ZnS) from two world-class Mississippi Valley Type deposits, the Central and Eastern Tennessee Mining district, USA, in order to investigate germanium oxidation states. Due to the low germanium concentrations of these samples, it was necessary to perform the X-ray absorption spectroscopy (XAS) in fluorescence mode. The overlapping of the Zn Kβ and Ge Kα emission lines meant that a high energy-resolution was required. This was achieved using crystal analysers and allowed a bandwidth of 1.3 eV to be obtained. Experimental spectra were compared to XANES calculations and three configurations of germanium incorporation into sphalerite were identified. The first two, the most prevalent, show germanium (II) and (IV) surrounded by sulphur atoms in tetrahedral coordination, suggesting the replacement of Zn by Ge. In the third configuration, germanium (IV) is surrounded by oxygen atoms. This third configuration is unexpected for a zinc sulphide mineral and it resembles that of argutite (GeO2).
- Published
- 2017
- Full Text
- View/download PDF
41. Revisiting the hydrothermal geochemistry of europium(II/III) in light of new in-situ XAS spectroscopy results
- Author
-
Jean-Louis Hazemann, Harald Müller, Hakim Boukhalfa, Weihua Liu, Barbara Etschmann, Artas Migdisov, Denis Testemale, Joël Brugger, Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), University of Adelaide - School of Earth and Environmental Sciences, University of Adelaide, Matériaux, Rayonnements, Structure (MRS), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Department of Physics [Berkeley], University of California [Berkeley], and University of California-University of California
- Subjects
X-ray absorption spectroscopy ,Aqueous solution ,010504 meteorology & atmospheric sciences ,Absorption spectroscopy ,Inorganic chemistry ,chemistry.chemical_element ,Geology ,010502 geochemistry & geophysics ,01 natural sciences ,Chloride ,Hydrothermal circulation ,chemistry.chemical_compound ,chemistry ,13. Climate action ,Geochemistry and Petrology ,Oxidation state ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,medicine ,Hydroxide ,Europium ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,medicine.drug - Abstract
Knowledge of the mobility of Rare Earth Elements (REE) in crustal fluids is important for understanding both the formation of REE deposits and their use as geochemical tracers. This is particularly true for europium (Eu), which exists in both Eu(II) and Eu(III) states in natural fluids, making it a sensitive probe of hydrothermal redox processes. Currently, our understanding of Eu complexation in hydrothermal fluids relies mainly on extrapolations from room-temperature data, as there are no high-temperature experimental data available for Eu(II) species. In this study we conducted in-situ synchrotron X-ray absorption spectroscopy (XAS) experiments to investigate the complexing of Eu(II) and Eu(III) in chloride- and bromide-rich acidic solutions and Eu(III) sulphate complexes, at 35–400 °C, 600 bar. For Eu(III) chloride complexes, the total number of ligands decreased and the ratio of H 2 O:Cl ligands in the first coordination shell decreased with increasing temperature. For the Eu(II) system, our data confirm Sverjensky's (1984, EPSL 67, 70–78) theoretical predictions that Eu(II) species become increasingly stable (relative to Eu(III)) at elevated temperatures. However the new data indicate that complexation between Eu(II) and chloride is much weaker than Haas's (1995, GCA 59, 4329–4350) theoretical estimates. The thermodynamic properties of Eu(II) chloride complexes have been reassessed in light of the new data. Thermodynamic calculations reveal that the identity of the Eu(III) aqueous complexes (e.g., chloride or hydroxide species) have a significant impact on the oxidation state of Eu in hydrothermal fluids at elevated temperatures.
- Published
- 2017
- Full Text
- View/download PDF
42. Solubility and speciation of REE in high temperature fluids: insights from in situ XAS studies
- Author
-
Jean-Louis Hazemann, John Mavrogenes, Marion Louvel, Barbara Etschmann, Denis Testemale, Joël Brugger, Research School of Earth Sciences [Canberra] (RSES), Australian National University (ANU), School of Earth Sciences [Melbourne], Faculty of Science [Melbourne], University of Melbourne-University of Melbourne, Matériaux, Rayonnements, Structure (MRS), Institut Néel (NEEL), and Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
In situ ,X-ray absorption spectroscopy ,010504 meteorology & atmospheric sciences ,Inorganic chemistry ,Rare earth ,010502 geochemistry & geophysics ,Geotechnical Engineering and Engineering Geology ,01 natural sciences ,13. Climate action ,Geochemistry and Petrology ,Genetic algorithm ,Earth and Planetary Sciences (miscellaneous) ,[CHIM]Chemical Sciences ,Solubility ,Geology ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
The increasing demand for rare earth elements (La to Yb, +Sc and Y) from the green and communication industries calls for a better understanding of the processes leading to their concentration in t...
- Published
- 2017
- Full Text
- View/download PDF
43. High-Energy Resolution Fluorescence Detected X-Ray Absorption Spectroscopy: A Powerful New Structural Tool in Environmental Biogeochemistry Sciences
- Author
-
Eric Lahera, Jérôme Rose, Isabelle Kieffer, Elena F. Bazarkina, Denis Testemale, Mohammed Irar, Mélanie Auffan, Jean-Louis Hazemann, William Del Net, Marie Tella, Sara A. Thomas, Antonio Aguilar-Tapia, Alain Prat, Olivier Proux, Mauro Rovezzi, Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), MRS - Matériaux, Rayonnements, Structure, Institut Néel (NEEL), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Department of Civil and Environmental Engineering [Evanston], Northwestern University [Evanston], Laboratoire de Chimie et Biologie des Métaux (LCBM - UMR 5249), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), X'Press - X'Press, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), ANR-07-NANO-027-NanoSurf,ANR-07-NANO-027-NanoSurf, ANR-10-NANO-0006,MESONNET,Utilisation de mésocosmes terrestres et aquatiques en réseau pour l'évaluation du risque associé à la dispersion de nanoparticules manufacturées(2010), ANR-10-LABX-0056/10-LABX-0056,OSUG@2020,Innovative strategies for observing and modelling natural systems(2010), ANR-10-EQPX-0027/10-EQPX-0027,EcoX,Ligne de lumière microfocus et très haute dilution à l’ESRF pour les sciences de l’environnement(2010), Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Matériaux, Rayonnements, Structure (NEEL - MRS), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), X'Press : diffraction et hautes pressions (NEEL - X'Press), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), ANR-07-NANO-0027,NANOSURF,Corrélation entre l'effet de taille nanométrique et l'énergie de surface, Impact sur la structure et la réactivité de la surface.(2007), ANR-10-LABX-0056,OSUG@2020,Innovative strategies for observing and modelling natural systems(2010), ANR-10-EQPX-0027,EcoX,Ligne de lumière microfocus et très haute dilution à l'ESRF pour les sciences de l'environnement(2010), Matériaux, Rayonnements, Structure (MRS), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), X'Press (X'Press), and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)
- Subjects
Environmental Engineering ,Absorption spectroscopy ,Analytical chemistry ,trace elements ,02 engineering and technology ,010501 environmental sciences ,Management, Monitoring, Policy and Law ,01 natural sciences ,HERFD ,high resolution spectroscopy ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Spectroscopy ,Absorption (electromagnetic radiation) ,Waste Management and Disposal ,0105 earth and related environmental sciences ,Water Science and Technology ,X-ray absorption spectroscopy ,Ecology ,Extended X-ray absorption fine structure ,Spectrometer ,Chemistry ,[SDE.IE]Environmental Sciences/Environmental Engineering ,Resolution (electron density) ,021001 nanoscience & nanotechnology ,Pollution ,XANES ,EXAFS ,X-Ray Absorption Spectroscopy ,13. Climate action ,0210 nano-technology ,Environmental Monitoring - Abstract
International audience; The study of the speciation of highly diluted elements by X-ray absorption spectroscopy (XAS) is extremely challenging, especially in environmental biogeochemistry sciences. Here we present an innovative synchrotron spectroscopy technique: high-energy resolution fluorescence detected XAS (HERFD-XAS). With this approach, measurement of the XAS signal in fluorescence mode using a crystal analyzer spectrometer with a ~1-eV energy resolution helps to overcome restrictions on sample concentrations that can be typically measured with a solid-state detector. We briefly describe the method, from both an instrumental and spectroscopic point of view, and emphasize the effects of energy resolution on the XAS measurements. We then illustrate the positive impact of this technique in terms of detection limit with two examples dealing with Ce in ecologically relevant organisms and with Hg species in natural environments. The sharp and well-marked features of the HERFD–X-ray absorption near-edge structure spectra obtained enable us to determine unambiguously and with greater precision the speciation of the probed elements. This is a major technological advance, with strong benefits for the study of highly diluted elements using XAS. It also opens new possibilities to explore the speciation of a target chemical element at natural concentration levels, which is critical in the fields of environmental and biogeochemistry sciences.
- Published
- 2017
- Full Text
- View/download PDF
44. Speciation and thermodynamic properties of manganese(II) chloride complexes in hydrothermal fluids: In situ XAS study
- Author
-
Pascal V. Grundler, Denis Testemale, Yuan Tian, Yung Ngothai, Jean-Louis Hazemann, Barbara Etschmann, Peter Elliott, Joël Brugger, Yuan Mei, Matériaux, Rayonnements, Structure (MRS), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), University of Adelaide - School of Earth and Environmental Sciences, and University of Adelaide
- Subjects
X-ray absorption spectroscopy ,Manganese(II) chloride ,Absorption spectroscopy ,[SDE.MCG]Environmental Sciences/Global Changes ,Inorganic chemistry ,010402 general chemistry ,010502 geochemistry & geophysics ,01 natural sciences ,Chloride ,Hydrothermal circulation ,0104 chemical sciences ,Salinity ,chemistry.chemical_compound ,Octahedron ,chemistry ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,Geochemistry and Petrology ,Bromide ,medicine ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,medicine.drug - Abstract
The speciation of Mn(II) in acidic brines under a wide range of conditions (30–550 °C, 600 bar, 0.100–10.344 m chloride and 0.110–2.125 m bromide) was investigated using in situ X-ray Absorption Spectroscopy (XAS). Increasing temperature and/or salinity results in a structural change of the Mn(II) complexes from octahedral to (distorted) tetrahedral. Octahedral species predominate at room temperature within the whole salinity range and persist up to ∼400 °C in low salinity solutions (mCl 3 m, Cl:Mn ratio > 53) is MnCl3(H2O)−, and that a lower order chlorocomplex, MnCl2(H2O)2(aq), is the predominant species in low salinity solutions (mCl
- Published
- 2014
- Full Text
- View/download PDF
45. Research on Efficient Fast Scintillators: Evidence and X‐Ray Absorption Near Edge Spectroscopy Characterization of Ce 4+ in Ce 3+ , Mg 2+ ‐Co‐Doped Gd 3 Al 2 Ga 3 O 12 Garnet Crystal
- Author
-
Georges Boulon, Shunsuke Kurosawa, Yannick Guyot, Géraldine Dantelle, Malgorzata Guzik, Denis Testemale, Kei Kamada, and Akira Yoshikawa
- Subjects
Materials science ,X-ray ,Analytical chemistry ,02 engineering and technology ,Edge (geometry) ,Scintillator ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,Characterization (materials science) ,Crystal ,0210 nano-technology ,Spectroscopy ,Absorption (electromagnetic radiation) ,Co doped - Published
- 2019
- Full Text
- View/download PDF
46. Speciation of aqueous tellurium(IV) in hydrothermal solutions and vapors, and the role of oxidized tellurium species in Te transport and gold deposition
- Author
-
Yuan Tian, Denis Testemale, Pascal V. Grundler, Barbara Etschmann, Lothar Helm, Joël Brugger, Allan Pring, Weihua Liu, Paul G. Spry, University of Adelaide - School of Earth and Environmental Sciences, University of Adelaide, Laboratoire de Chimie Inorganique et Bioinorganique (LCIB), Ecole Polytechnique Fédérale de Lausanne (EPFL), Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), South Australian Museum, Matériaux, Rayonnements, Structure (MRS), Institut Néel (NEEL), and Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)
- Subjects
Aqueous solution ,010504 meteorology & atmospheric sciences ,[SDE.MCG]Environmental Sciences/Global Changes ,Inorganic chemistry ,Analytical chemistry ,chemistry.chemical_element ,Protonation ,010502 geochemistry & geophysics ,01 natural sciences ,Hydrothermal circulation ,Partition coefficient ,chemistry.chemical_compound ,Deprotonation ,chemistry ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,13. Climate action ,Geochemistry and Petrology ,Telluride ,Solubility ,Tellurium ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
Despite the close association between tellurium (Te) and gold (Au) in many epithermal, orogenic, and intrusion-related hydrothermal ore deposits, the hydrothermal chemistry of Te remains poorly understood. We studied the protonation/ deprotonation and structure of tellurous acid ((H2TeO3)-O-IV) species in aqueous solutions and in water vapor as a function of pH from room-temperature to 505 degrees C using a number of methods: TeO2(s) solubility in solution and steam, potentiometry, NMR spectroscopy, and in situ XAS spectroscopy. The solubility of TeO2(s) increases by up to a factor 80 between ambient temperature and 200 degrees C. As the temperature increases, the pH range over which the neutral species H2TeO3(aq) dominates to the detriment of the ionic species H3TeO3+, HTeO3-and TeO32-expands. The structure of these species is a trigonal pyramid with the Te atom at its apex, indicating a stereochemically active electron pair. The Te-O bond lengths increase with increasing protonation (i.e., decreasing pH). Although hydrated tellurite species such as TeO2(H2O)(g) and TeO2(H2O)(2)(g) exist in significant concentrations in vapors equilibrated with TeO2(s), these species are unlikely to play a significant role in natural systems, because of the high solubility of Te(IV) in the liquid phase under these conditions. Solubility calculations conducted with the new and existing properties confirm the importance of reduced species for the vapor transport of Te, with a partitioning coefficient (Kd = Te concentration in vapor/Te concentration in liquid) up to >10(5) in favor of the vapor, and ppm concentrations of Te in reduced vapors at 300 degrees C. Thermodynamic calculations show that slightly basic, mildly reduced fluids that can transport Au efficiently as Au(HS)(2)(-) can also carry significant Te (e.g., similar to 100 ppb at 300 degrees C). The calculations also suggest that under magmatic hydrothermal conditions, large amounts of Te can be transported as Te(IV) complexes in oxidized fluids (coexisting with SO2(g)). Reduction of Te(IV) caused by processes such as fluid-rock interaction or fluid mixing will lead to a dramatic decrease in the solubilities of both Te and Au, and to the precipitation of telluride minerals. (C) 2013 Elsevier Ltd. All rights reserved.
- Published
- 2013
- Full Text
- View/download PDF
47. Zr complexation in high pressure fluids and silicate melts and implications for the mobilization of HFSE in subduction zones
- Author
-
Wim J. Malfait, Denis Testemale, Jean-Louis Hazemann, Carmen Sanchez-Valle, Marion Louvel, Institute of Mineralogy and Petrology, Matériaux, Rayonnements, Structure (MRS), Institut Néel (NEEL), and Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)
- Subjects
X-ray absorption spectroscopy ,Aqueous solution ,010504 meteorology & atmospheric sciences ,Extended X-ray absorption fine structure ,Mantle wedge ,[SDE.MCG]Environmental Sciences/Global Changes ,Analytical chemistry ,Mineralogy ,010502 geochemistry & geophysics ,01 natural sciences ,Diamond anvil cell ,XANES ,Silicate ,chemistry.chemical_compound ,chemistry ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,13. Climate action ,Geochemistry and Petrology ,ComputingMilieux_MISCELLANEOUS ,Geology ,0105 earth and related environmental sciences ,Vlasovite - Abstract
Field observations and solubility experiments show evidence for the efficient mobilization of nominally insoluble HFSE (i.e., Ti, Zr, Nb and Hf) by high pressure fluids, probably via complexation with polymerized alkali–silica dissolved species and halogens (F and Cl). Here we investigate the complexation of Zr in subduction-related fluids (aqueous fluids and hydrous haplogranite melts) up to 800 °C and 2.4 GPa using X-ray absorption spectroscopy (XANES and EXAFS) in a hydrothermal diamond anvil cell and provide evidence for the formation of Zr–O–Si/Na polymeric species in alkali-(alumino)silicate fluids at high pressure. Zr4+ speciation in dilute fluids (2.5 wt% HCl) is dominated by 8-fold-coordinated [Zr(H2O)8]4+ hydrated complexes at room conditions and no evidence for extensive Zr–Cl complexation in the fluid was found up to 420 °C, as confirmed by ab initio XANES calculations of various ZrO8−xClx clusters. The addition of Na and Si dissolved species (from 35 to 60 wt% dissolved Na2Si2O5, NS2) into the fluid favors the formation of alkali-zirconosilicate clusters Zr–O–Si/Na similar to those found in vlasovite (Na2ZrSi4O11), with Zr4+ in octahedral coordination with oxygen (Zr–O distance = 2.09 ± 0.04 A) and ∼6 Si (Na) second neighbors (Zr–Si/Na distance = 3.66 ± 0.06 A). This coordination environment also dominates Zr speciation in F-free and F-bearing NS2 and haplogranite glasses and high pressure hydrous haplogranite melts (15.5–33 wt% dissolved H2O) in the investigated pressure–temperature range. The XAS analyses, assisted by ab initio XANES calculations, are not conclusive concerning the extent of Zr–F complexation in hydrous granitic melts. Alkali-zirconosilicate Zr–O–Si/Na clusters such as those identified in this study may explain the enhanced solubility of zircon ZrSiO4 (and other HFSE-bearing minerals) in alkali-aluminosilicate-bearing aqueous fluids produced by dehydration and melting of the slab and provide a favorable mechanism for the mobilization of HFSE in subduction zones. Fluid–rock interactions and/or P/T variations as fluids migrate through the mantle wedge could affect the stability of these complexes, triggering the precipitation of HFSE-bearing accessory phases that are eventually recycled into the mantle, contributing to the dispersion of HFSE. These processes provide a possible explanation for the characteristic HFSE depletion recorded in arc magmas.
- Published
- 2013
- Full Text
- View/download PDF
48. Bismuth speciation in hydrothermal fluids: An X-ray absorption spectroscopy and solubility study
- Author
-
Barbara Etschmann, Joël Brugger, Gleb S. Pokrovski, Blake Tooth, Denis Testemale, Pascal V. Grundler, Jean-Louis Hazemann, University of Adelaide - School of Earth and Environmental Sciences, University of Adelaide, Géosciences Environnement Toulouse (GET), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Matériaux, Rayonnements, Structure (MRS), Institut Néel (NEEL), and Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)
- Subjects
X-ray absorption spectroscopy ,Aqueous solution ,Extended X-ray absorption fine structure ,[SDE.MCG]Environmental Sciences/Global Changes ,Inorganic chemistry ,Analytical chemistry ,chemistry.chemical_element ,010402 general chemistry ,010502 geochemistry & geophysics ,Sodium perchlorate ,01 natural sciences ,0104 chemical sciences ,Bismuth ,chemistry.chemical_compound ,chemistry ,Antimony ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,13. Climate action ,Geochemistry and Petrology ,Hydroxide ,Solubility ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
The solubility of bismuth oxide (α-Bi 2 O 3(s) ; bismite) in near-neutral sodium perchlorate solutions at 65 and 80 °C, and pure water from 150 to 600 °C, P Sat to 800 bar was studied using various batch-reactor techniques and in situ XAS spectroscopy. The solubility of Bi 2 O 3(s) follows a similar trend to Sb 2 O 3(s) (senarmontite), which has been interpreted in terms of a neutral Sb(OH) 3(aq) complex. Thus a similar neutral complex, Bi(OH) 3(aq) , is inferred for Bi. XANES spectroscopy confirms that the Bi(OH) 3(aq) complex carries a stereochemically active lone electron pair, and EXAFS data suggest that the geometry of the complex changes little over the temperature range 380–610 °C at 800 bar, with three oxygen neighbors at ∼2.08 A. The solubility data obtained in this study are used in conjunction with thermodynamic properties for α-Bi 2 O 3(s) to obtain thermodynamic parameters for Bi(OH) 3(aq) within the framework of the revised Helgeson–Kirkham–Flowers (HKF) equation of state. Speciation calculations using these new properties indicate that, similarly to arsenic and antimony, bismuth is transported predominantly as a neutral hydroxide complex in a wide range of temperature, pressure, and fluid compositions. In contrast to arsenic and antimony, bismuth is much less soluble in typical hydrothermal fluids in the form of hydroxide complexes, and high temperatures (⩾400 °C) are required for significant Bi transport by aqueous fluids. These results are consistent with the common association between Bi mineralization and magmatism.
- Published
- 2013
- Full Text
- View/download PDF
49. Metal-catalyzed oxidation of Aβ and the resulting reorganization of Cu binding sites promote ROS production
- Author
-
Clémence Cheignon, Peter Faller, Fabrice Collin, Christelle Hureau, Denis Testemale, Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Pharmacochimie et Biologie pour le Développement (PHARMA-DEV), Institut de Recherche pour le Développement (IRD)-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC), Matériaux, Rayonnements, Structure (MRS), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), ANR-13-BSV5-0016,AlzABox,Oxydation du peptide amyloïde bêta et conséquences dans l'étiologie de la maladie d'Alzheimer.(2013), European Project: 638712,H2020,ERC-2014-STG,aLzINK(2015), Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Institut de Chimie de Toulouse (ICT), Université de Toulouse (UT), and Matériaux, Rayonnements, Structure (NEEL - MRS)
- Subjects
[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology ,Biophysics ,chemistry.chemical_element ,Peptide ,Context (language use) ,Ascorbic Acid ,HYDROXYL RADICALS ,010402 general chemistry ,medicine.disease_cause ,01 natural sciences ,Biochemistry ,Article ,Catalysis ,Biomaterials ,Metal ,HYDROGEN-PEROXIDE ,Alzheimer Disease ,PHYSIOLOGICAL PH ,COPPER-BINDING ,medicine ,Humans ,PEPTIDE ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,Amino Acid Sequence ,Binding site ,Peptide sequence ,chemistry.chemical_classification ,COORDINATION ,Amyloid beta-Peptides ,Binding Sites ,010405 organic chemistry ,Chemistry ,Metals and Alloys ,MASS-SPECTROMETRY ,Copper ,0104 chemical sciences ,AMYLOID PRECURSOR PROTEIN ,ALZHEIMERS-DISEASE ,Oxidative Stress ,Chemistry (miscellaneous) ,visual_art ,visual_art.visual_art_medium ,COMPLEXES ,Reactive Oxygen Species ,Oxidation-Reduction ,Oxidative stress - Abstract
International audience; In the context of Alzheimer's disease (AD), the production of HO˙ by copper–amyloid beta (Aβ) in the presence of ascorbate is known to be deleterious for the Aβ peptide itself and also for the surrounding molecules, thus establishing a direct link between AD and oxidative stress. The metal-catalyzed oxidation (MCO) of Aβ primarily targets the residues involved in copper coordination during HO˙ production. In the present work, we demonstrate that the oxidative damage undergone by Aβ during MCO lead to a change in copper coordination, with enhanced catalytic properties that increases the rates of ascorbate consumption and HO˙ production, and the amount of HO˙ released by the system. This phenomenon is observed after the peptide has been sufficiently oxidized.
- Published
- 2016
- Full Text
- View/download PDF
50. Novel high-pressure windows made of glass-like carbon for x-ray analysis
- Author
-
Alain Prat, Denis Testemale, Eric Lahera, Jean-Louis Hazemann, Matériaux, Rayonnements, Structure (MRS), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), X'Press (X'Press), Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), MRS - Matériaux, Rayonnements, Structure, Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), X'Press - X'Press, Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), and Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
- Subjects
X-ray spectroscopy ,X-ray absorption spectroscopy ,Materials science ,010504 meteorology & atmospheric sciences ,Absorption spectroscopy ,business.industry ,chemistry.chemical_element ,Context (language use) ,010502 geochemistry & geophysics ,01 natural sciences ,law.invention ,Pressure measurement ,Optics ,chemistry ,law ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,[SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph] ,Composite material ,Beryllium ,Spectroscopy ,business ,Absorption (electromagnetic radiation) ,Instrumentation ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
Original high-pressure glass-like carbon windows developed for x-ray spectroscopy applications are presented. The scientific and technological background of this new technical development is exposed, in particular the limitations of our existing beryllium windows in the context of x-ray absorption spectroscopy (XAS) measurements of solutions with very low solute concentrations at hydrothermal conditions (0.1-200 MPa, 30-600 °C). The benefits of glass-like carbon are exposed, notably its non-crystalline character, the absence of impurities which has been verified by micro-fluorescence laboratory measurements, and its non-toxicity which makes its machining safer. Finite elements mechanical calculations and experimental pressure tests were conducted to determine the pressure limits of windows with two different geometries: cylindrical (thickness 0.5 mm) and inversed-dome shape (thickness 0.5 mm at the tip of the dome). The former break at 150 MPa and the latter show no sign of rupture at 400 MPa. Recent XAS measurements conducted with the new dome shaped windows are presented to show the advantages of the design that allow for the detection of very low concentrations in the transmission mode (down to 30 ppm) and the acquisition of fluorescence XAS spectra in diluted solutions at high pressure. Eventually the perspectives of this original development are discussed.
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.