1. Phonon-limited mobility for electrons and holes in highly-strained silicon
- Author
-
Nicolas Roisin, Guillaume Brunin, Gian-Marco Rignanese, Denis Flandre, Jean-Pierre Raskin, and Samuel Poncé
- Subjects
Materials of engineering and construction. Mechanics of materials ,TA401-492 ,Computer software ,QA76.75-76.765 - Abstract
Abstract Strain engineering is a widely used technique for enhancing the mobility of charge carriers in semiconductors, but its effect is not fully understood. In this work, we perform first-principles calculations to explore the variations of the mobility of electrons and holes in silicon upon deformation by uniaxial strain up to 2% in the [100] crystal direction. We compute the π 11 and π 12 electron piezoresistances based on the low-strain change of resistivity with temperature in the range 200 K to 400 K, in excellent agreement with experiment. We also predict them for holes which were only measured at room temperature. Remarkably, for electrons in the transverse direction, we predict a minimum room-temperature mobility about 1200 cm2 V−1 s−1 at 0.3% uniaxial tensile strain while we observe a monotonous increase of the longitudinal transport, reaching a value of 2200 cm2 V−1 s−1 at high strain. We confirm these findings experimentally using four-point bending measurements, establishing the reliability of our first-principles calculations. For holes, we find that the transport is almost unaffected by strain up to 0.3% uniaxial tensile strain and then rises significantly, more than doubling at 2% strain. Our findings open new perspectives to boost the mobility by applying a stress in the [100] direction. This is particularly interesting for holes for which shear strain was thought for a long time to be the only way to enhance the mobility. more...
- Published
- 2024
- Full Text
- View/download PDF