1. A conserved fertilization complex bridges sperm and egg in vertebrates.
- Author
-
Deneke VE, Blaha A, Lu Y, Suwita JP, Draper JM, Phan CS, Panser K, Schleiffer A, Jacob L, Humer T, Stejskal K, Krssakova G, Roitinger E, Handler D, Kamoshita M, Vance TDR, Wang X, Surm JM, Moran Y, Lee JE, Ikawa M, and Pauli A
- Subjects
- Animals, Male, Mice, Humans, Female, Immunoglobulins metabolism, Ovum metabolism, Zebrafish metabolism, Spermatozoa metabolism, Membrane Proteins metabolism, Fertilization, Sperm-Ovum Interactions, Zebrafish Proteins metabolism
- Abstract
Fertilization, the basis for sexual reproduction, culminates in the binding and fusion of sperm and egg. Although several proteins are known to be crucial for this process in vertebrates, the molecular mechanisms remain poorly understood. Using an AlphaFold-Multimer screen, we identified the protein Tmem81 as part of a conserved trimeric sperm complex with the essential fertilization factors Izumo1 and Spaca6. We demonstrate that Tmem81 is essential for male fertility in zebrafish and mice. In line with trimer formation, we show that Izumo1, Spaca6, and Tmem81 interact in zebrafish sperm and that the human orthologs interact in vitro. Notably, complex formation creates the binding site for the egg fertilization factor Bouncer in zebrafish. Together, our work presents a comprehensive model for fertilization across vertebrates, where a conserved sperm complex binds to divergent egg proteins-Bouncer in fish and JUNO in mammals-to mediate sperm-egg interaction., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF