100 results on '"Demarty, Jérôme"'
Search Results
2. Multimodel – multidata simulations for mapping evapotranspiration and its uncertainty of estimation from remote sensing data
- Author
-
Olioso, Albert, primary, Mwangi, Samuel, additional, Desrutins, Hugo, additional, Sobrino, José, additional, Skoković, Drazen, additional, Carrière, Simon, additional, Farhani, Nesrine, additional, Etchanchu, Jordi, additional, Demarty, Jérôme, additional, Hu, Tian, additional, Mallick, Kanishka, additional, Jia, Aolin, additional, Buis, Samuel, additional, Weiss, Marie, additional, Ollivier, Chloé, additional, and Boulet, Gilles, additional
- Published
- 2024
- Full Text
- View/download PDF
3. Modeling Surface Runoff and Water Fluxes over Contrasted Soils in the Pastoral Sahe : Evaluation of the ALMIP2 Land Surface Models over the Gourma Region in Mali
- Author
-
ALMIP2 WORKING GROUP, Grippa, Manuela, Kergoat, Laurent, Boone, Aaron, Peugeot, Christophe, Demarty, Jérôme, Cappelaere, Bernard, Gal, Laetitia, Hiernaux, Pierre, Mougin, Eric, Ducharne, Agnès, Dutra, Emanuel, Anderson, Martha, and Hain, Christopher
- Published
- 2017
4. Spatiotemporal variability in carbon exchange fluxes across the Sahel
- Author
-
Tagesson, Torbern, Fensholt, Rasmus, Cappelaere, Bernard, Mougin, Eric, Horion, Stéphanie, Kergoat, Laurent, Nieto, Héctor, Mbow, Cheikh, Ehammer, Andrea, Demarty, Jérôme, and Ardö, Jonas
- Published
- 2016
- Full Text
- View/download PDF
5. Evapotranspiration mapping from remote sensing data: uncertainties and ensemble estimates based on multimodel – multidata simulations
- Author
-
Olioso, Albert, Allies, Aubin, Desrutins, Hugo, Carrière, Simon, Farhani, Nesrine, Sobrino, José, Skoković, Drazen, Demarty, Jérôme, Etchanchu, Jordi, Boulet, Gilles, Buis, Samuel, Weiss, Marie, Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH), Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Ecologie des Forêts Méditerranéennes (URFM), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), EARTHDAILY AGRO, Earth Daily Agro, Hydrosciences Montpellier (HSM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Milieux Environnementaux, Transferts et Interactions dans les hydrosystèmes et les Sols (METIS), École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Universitat de València (UV), Centre d'études spatiales de la biosphère (CESBIO), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), and ESA (European Space Agency)
- Subjects
[SDE.MCG]Environmental Sciences/Global Changes - Abstract
International audience
- Published
- 2023
6. The contribution of remote sensing data assimilation to simulate daily evapotranspiration of irrigated and non-irrigated crops in semi-arid context
- Author
-
Ollivier, Chloé, primary, Olivera-Guerra, Luis, additional, Laluet, Pierre, additional, Rivalland, Vincent, additional, Simonneaux, Vincent, additional, Demarty, Jérôme, additional, Merlin, Olivier, additional, and Boulet, Gilles, additional
- Published
- 2023
- Full Text
- View/download PDF
7. Spatial assessment of surface-atmosphere fluxes in the Mediterranean region: synergy between satellite estimates and local observations
- Author
-
Prévot, Laurent, primary, Mateo-Herrera, Blanca, additional, Jacob, Frédéric, additional, Demarty, Jérôme, additional, Limousin, Jean-Marc, additional, Ourcival, Jean-Marc, additional, Champollion, Cédric, additional, and Olioso, Albert, additional
- Published
- 2022
- Full Text
- View/download PDF
8. Interactions between energy, water and carbon cycles: A new agro-eco-hydrological model to study impacts of global changes in the agropastoral Sahel
- Author
-
Demarty, Jérôme, primary, Issoufou, Hassane Bil-Assanou, additional, Etchanchu, Jordi, additional, Dezetter, Alain, additional, Mainassara, Ibrahim, additional, Oï, Monique, additional, Adamou, Bassirou, additional, Allies, Aubin, additional, Barral, Hélène, additional, Chazarin, Jean-Philippe, additional, and Cappelaere, Bernard, additional
- Published
- 2022
- Full Text
- View/download PDF
9. A three-source SVAT modeling of evaporation: Application to the seasonal dynamics of a grassed vineyard
- Author
-
Montes, Carlo, Lhomme, Jean-Paul, Demarty, Jérôme, Prévot, Laurent, and Jacob, Frédéric
- Published
- 2014
- Full Text
- View/download PDF
10. Spatio-temporal surface soil heat flux estimates from satellite data; results for the AMMA experiment at the Fakara (Niger) supersite
- Author
-
Verhoef, Anne, Ottlé, Catherine, Cappelaere, Bernard, Murray, Ty, Saux-Picart, Stephane, Zribi, Mehrez, Maignan, Fabienne, Boulain, Nicolas, Demarty, Jerome, and Ramier, David
- Published
- 2012
- Full Text
- View/download PDF
11. Modélisation des échanges d'énergie et d'eau sur le bassin agricole de l'Orgeval
- Author
-
Flinck, Axel, Demarty, Jérôme, Etchanchu, Jordi, Chahinian, Nanée, Braud, Isabelle, Cappelaere, Bernard, Cohard, Jean-Martial, Prevot, Laurent, Dezetter, A., Rousseau, Marine, and BRAUD, Isabelle
- Subjects
[SDE] Environmental Sciences - Published
- 2022
12. Contribution of Thermal Infrared Remote Sensing Data in Multiobjective Calibration of a Dual-Source SVAT Model
- Author
-
Coudert, Benoit, Ottlé, Catherine, Boudevillain, Brice, Demarty, Jérôme, and Guillevic, Pierre
- Published
- 2006
13. Long-term increase in diffuse groundwater recharge following expansion of rainfed cultivation in the Sahel, West Africa
- Author
-
Ibrahim, Maïmouna, Favreau, Guillaume, Scanlon, Bridget R., Seidel, Jean Luc, Le Coz, Mathieu, Demarty, Jérôme, and Cappelaere, Bernard
- Published
- 2014
- Full Text
- View/download PDF
14. Change in water loss regulation after canopy clearcut of a dominant shrub in Sahelian agrosystems, Guiera senegalensis J. F. Gmel
- Author
-
Issoufou, Hassane Bil-Assanou, Delzon, Sylvain, Laurent, Jean-Paul, Saâdou, Mahamane, Mahamane, Ali, Cappelaere, Bernard, Demarty, Jérôme, Oï, Monique, Rambal, Serge, and Seghieri, Josiane
- Published
- 2013
- Full Text
- View/download PDF
15. Modeling gas exchange and biomass production in West African Sahelian and Sudanian ecological zones
- Author
-
Rahimi, Jaber, primary, Ago, Expedit Evariste, additional, Ayantunde, Augustine, additional, Berger, Sina, additional, Bogaert, Jan, additional, Butterbach-Bahl, Klaus, additional, Cappelaere, Bernard, additional, Cohard, Jean-Martial, additional, Demarty, Jérôme, additional, Diouf, Abdoul Aziz, additional, Falk, Ulrike, additional, Haas, Edwin, additional, Hiernaux, Pierre, additional, Kraus, David, additional, Roupsard, Olivier, additional, Scheer, Clemens, additional, Srivastava, Amit Kumar, additional, Tagesson, Torbern, additional, and Grote, Rüdiger, additional
- Published
- 2021
- Full Text
- View/download PDF
16. Modeling gas exchange and biomass production in West African Sahelian and Sudanian ecological zones
- Author
-
Rahimi, Jaber, Ago, Expedit Evariste, Ayantunde, Augustine, Berger, Sina, Bogaert, Jan, Butterbach-Bahl, Klaus, Cappelaere, Bernard, Cohard, Jean-Martial, Demarty, Jérôme, Diouf, Abdoul Aziz, Falk, Ulrike, Haas, Edwin, Hiernaux, Pierre, Kraus, David, Roupsard, Olivier, Scheer, Clemens, Srivastava, Amit Kumar, Tagesson, Torbern, Grote, Rüdiger, Institut für Meteorologie und Klimaforschung - Atmosphärische Umweltforschung (IMK-IFU), Karlsruher Institut für Technologie (KIT), Université d’Abomey-Calavi = University of Abomey Calavi (UAC), Gembloux Agro-Bio Tech [Gembloux], Université de Liège, International Livestock Research Institute [CGIAR, Nairobi] (ILRI), International Livestock Research Institute [CGIAR, Ethiopie] (ILRI), Consultative Group on International Agricultural Research [CGIAR] (CGIAR)-Consultative Group on International Agricultural Research [CGIAR] (CGIAR), University of Augsburg (UNIA), Hydrosciences Montpellier (HSM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Centre de Suivi Ecologique [Dakar] (CSE), Deutscher Wetterdienst [Offenbach] (DWD), Géosciences Environnement Toulouse (GET), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Pastoralisme Conseil (PastoC), Ecologie fonctionnelle et biogéochimie des sols et des agro-écosystèmes (UMR Eco&Sols), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Universität Bonn = University of Bonn, University of Copenhagen = Københavns Universitet (UCPH), Lund University [Lund], UP-SCALERS project (grant no. AURG II-1-074-2016), which is part of the African Union Research Grant program financed through the agreement between the European Commission and the African Union Commission (grant no. DCI-PANAF/2015/307-078)., Université d’Abomey-Calavi (UAC), University of Augsburg [Augsburg], Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Recherche pour le Développement (IRD)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), University of Bonn, and University of Copenhagen = Københavns Universitet (KU)
- Subjects
[SDV.EE]Life Sciences [q-bio]/Ecology, environment ,Earth sciences ,Sahel ,West Africa ,ddc:550 ,modeling ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,agroforestry ,ddc:910 - Abstract
West African Sahelian and Sudanian ecosystems provide essential services to people and also play a significant role within the global carbon cycle. However, climate and land use are dynamically changing, and uncertainty remains with respect to how these changes will affect the potential of these regions to provide food and fodder resources or how they will affect the biosphere–atmosphere exchange of CO2. In this study, we investigate the capacity of a process-based biogeochemical model, LandscapeDNDC, to simulate net ecosystem exchange (NEE) and aboveground biomass of typical managed and natural Sahelian and Sudanian savanna ecosystems. In order to improve the simulation of phenology, we introduced soil-water availability as a common driver of foliage development and productivity for all of these systems. The new approach was tested by using a sample of sites (calibration sites) that provided NEE from flux tower observations as well as leaf area index data from satellite images (MODIS, MODerate resolution Imaging Spectroradiometer). For assessing the simulation accuracy, we applied the calibrated model to 42 additional sites (validation sites) across West Africa for which measured aboveground biomass data were available. The model showed good performance regarding biomass of crops, grass, or trees, yielding correlation coefficients of 0.82, 0.94, and 0.77 and root-mean-square errors of 0.15, 0.22, and 0.12 kg m−2, respectively. The simulations indicate aboveground carbon stocks of up to 0.17, 0.33, and 0.54 kg C ha−1 m−2 for agricultural, savanna grasslands, and savanna mixed tree–grassland sites, respectively. Carbon stocks and exchange rates were particularly correlated with the abundance of trees, and grass biomass and crop yields were higher under more humid climatic conditions. Our study shows the capability of LandscapeDNDC to accurately simulate carbon balances in natural and agricultural ecosystems in semiarid West Africa under a wide range of conditions; thus, the model could be used to assess the impact of land-use and climate change on the regional biomass productivity.
- Published
- 2021
17. Evaluation of Multiple Methods for the Production of Continuous Evapotranspiration Estimates from TIR Remote Sensing
- Author
-
Delogu, Emilie, primary, Olioso, Albert, additional, Alliès, Aubin, additional, Demarty, Jérôme, additional, and Boulet, Gilles, additional
- Published
- 2021
- Full Text
- View/download PDF
18. ECOSTRESS: NASA's next generation mission to measure evapotranspiration from the International Space Station
- Author
-
Fisher, Joshua B., Lee, Brian, Purdy, Adam J., Halverson, Gregory H., Dohlen, Matthew B., Cawse‐Nicholson, Kerry, Wang, Audrey, Anderson, Ray G., Aragon, Bruno, Arain, M. Altaf, Baldocchi, Dennis D., Baker, John M., Barral, Hélène, Bernacchi, Carl J., Christian, Bernhofer, Biraud, Sébastien C., Bohrer, Gil, Brunsell, Nathaniel, Cappelaere, Bernard, Castro‐Contreras, Saulo, Chun, Junghwa, Conrad, Bryan J., Cremonese, Edoardo, Demarty, Jérôme, Desai, Ankur R., De Ligne, Anne, Foltýnová, Lenka, Goulden, Michael L., Griffis, Timothy J., Grünwald, Thomas, Johnson, Mark S., Kang, Minseok, Kelbe, Dave, Kowalska, Natalia, Lim, Jong‐Hwan, Maïnassara, Ibrahim, McCabe, Matthew F., Missik, Justine E.C., Mohanty, Binayak P., Moore, Caitlin E., Morillas, Laura, Morrison, Ross, Munger, J. William, Posse, Gabriela, Richardson, Andrew D., Russell, Eric S., Ryu, Youngryel, Sanchez‐Azofeifa, Arturo, Schmidt, Marius, Schwartz, Efrat, Sharp, Iain, Šigut, Ladislav, Tang, Yao, Hulley, Glynn, Anderson, Martha, Hain, Christopher, French, Andrew, Wood, Eric, Hook, Simon, Fisher, Joshua B., Lee, Brian, Purdy, Adam J., Halverson, Gregory H., Dohlen, Matthew B., Cawse‐Nicholson, Kerry, Wang, Audrey, Anderson, Ray G., Aragon, Bruno, Arain, M. Altaf, Baldocchi, Dennis D., Baker, John M., Barral, Hélène, Bernacchi, Carl J., Christian, Bernhofer, Biraud, Sébastien C., Bohrer, Gil, Brunsell, Nathaniel, Cappelaere, Bernard, Castro‐Contreras, Saulo, Chun, Junghwa, Conrad, Bryan J., Cremonese, Edoardo, Demarty, Jérôme, Desai, Ankur R., De Ligne, Anne, Foltýnová, Lenka, Goulden, Michael L., Griffis, Timothy J., Grünwald, Thomas, Johnson, Mark S., Kang, Minseok, Kelbe, Dave, Kowalska, Natalia, Lim, Jong‐Hwan, Maïnassara, Ibrahim, McCabe, Matthew F., Missik, Justine E.C., Mohanty, Binayak P., Moore, Caitlin E., Morillas, Laura, Morrison, Ross, Munger, J. William, Posse, Gabriela, Richardson, Andrew D., Russell, Eric S., Ryu, Youngryel, Sanchez‐Azofeifa, Arturo, Schmidt, Marius, Schwartz, Efrat, Sharp, Iain, Šigut, Ladislav, Tang, Yao, Hulley, Glynn, Anderson, Martha, Hain, Christopher, French, Andrew, Wood, Eric, and Hook, Simon
- Abstract
The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station ECOSTRESS) was launched to the International Space Station on June 29, 2018. The primary science focus of ECOSTRESS is centered on evapotranspiration (ET), which is produced as level‐3 (L3) latent heat flux (LE) data products. These data are generated from the level‐2 land surface temperature and emissivity product (L2_LSTE), in conjunction with ancillary surface and atmospheric data. Here, we provide the first validation (Stage 1, preliminary) of the global ECOSTRESS clear‐sky ET product (L3_ET_PT‐JPL, version 6.0) against LE measurements at 82 eddy covariance sites around the world. Overall, the ECOSTRESS ET product performs well against the site measurements (clear‐sky instantaneous/time of overpass: r2 = 0.88; overall bias = 8%; normalized RMSE = 6%). ET uncertainty was generally consistent across climate zones, biome types, and times of day (ECOSTRESS samples the diurnal cycle), though temperate sites are over‐represented. The 70 m high spatial resolution of ECOSTRESS improved correlations by 85%, and RMSE by 62%, relative to 1 km pixels. This paper serves as a reference for the ECOSTRESS L3 ET accuracy and Stage 1 validation status for subsequent science that follows using these data.
- Published
- 2020
19. Supplementary material to 'Contrasting responses of woody and herbaceous vegetation to altered rainfall characteristics in the Sahel'
- Author
-
Verbruggen, Wim, Schurgers, Guy, Horion, Stéphanie, Ardö, Jonas, Bernardino, Paulo Negri, Cappelaere, Bernard, Demarty, Jérôme, Fensholt, Rasmus, Kergoat, Laurent, Sibret, Thomas, Tagesson, Torbern, Verbeeck, Hans, Verbruggen, Wim, Schurgers, Guy, Horion, Stéphanie, Ardö, Jonas, Bernardino, Paulo Negri, Cappelaere, Bernard, Demarty, Jérôme, Fensholt, Rasmus, Kergoat, Laurent, Sibret, Thomas, Tagesson, Torbern, and Verbeeck, Hans
- Published
- 2020
20. Contrasting responses of woody and herbaceous vegetation to altered rainfall characteristics in the Sahel
- Author
-
Verbruggen, Wim, primary, Schurgers, Guy, additional, Horion, Stéphanie, additional, Ardö, Jonas, additional, Bernardino, Paulo N., additional, Cappelaere, Bernard, additional, Demarty, Jérôme, additional, Fensholt, Rasmus, additional, Kergoat, Laurent, additional, Sibret, Thomas, additional, Tagesson, Torbern, additional, and Verbeeck, Hans, additional
- Published
- 2021
- Full Text
- View/download PDF
21. Contrasting responses of woody and herbaceous vegetation to altered rainfall characteristics in the Sahel
- Author
-
Verbruggen, Wim, primary, Schurgers, Guy, additional, Horion, Stéphanie, additional, Ardö, Jonas, additional, Negri Bernardino, Paulo, additional, Cappelaere, Bernard, additional, Demarty, Jérôme, additional, Fensholt, Rasmus, additional, Kergoat, Laurent, additional, Sibret, Thomas, additional, Tagesson, Torbern, additional, and Verbeeck, Hans, additional
- Published
- 2020
- Full Text
- View/download PDF
22. Supplementary material to "Contrasting responses of woody and herbaceous vegetation to altered rainfall characteristics in the Sahel"
- Author
-
Verbruggen, Wim, primary, Schurgers, Guy, additional, Horion, Stéphanie, additional, Ardö, Jonas, additional, Negri Bernardino, Paulo, additional, Cappelaere, Bernard, additional, Demarty, Jérôme, additional, Fensholt, Rasmus, additional, Kergoat, Laurent, additional, Sibret, Thomas, additional, Tagesson, Torbern, additional, and Verbeeck, Hans, additional
- Published
- 2020
- Full Text
- View/download PDF
23. Modeling Land Surface Fluxes from Uncertain Rainfall: A Case Study in the Sahel with Field-Driven Stochastic Rainfields
- Author
-
Cappelaere, Bernard, primary, Feurer, Denis, additional, Vischel, Théo, additional, Ottlé, Catherine, additional, Issoufou, Hassane Bil-Assanou, additional, Saux-Picart, Stéphane, additional, Maïnassara, Ibrahim, additional, Oï, Monique, additional, Chazarin, Jean-Philippe, additional, Barral, Hélène, additional, Coudert, Benoit, additional, and Demarty, Jérôme, additional
- Published
- 2020
- Full Text
- View/download PDF
24. ECOSTRESS: NASA's Next Generation Mission to Measure Evapotranspiration From the International Space Station
- Author
-
Fisher, Joshua B., primary, Lee, Brian, additional, Purdy, Adam J., additional, Halverson, Gregory H., additional, Dohlen, Matthew B., additional, Cawse‐Nicholson, Kerry, additional, Wang, Audrey, additional, Anderson, Ray G., additional, Aragon, Bruno, additional, Arain, M. Altaf, additional, Baldocchi, Dennis D., additional, Baker, John M., additional, Barral, Hélène, additional, Bernacchi, Carl J., additional, Bernhofer, Christian, additional, Biraud, Sébastien C., additional, Bohrer, Gil, additional, Brunsell, Nathaniel, additional, Cappelaere, Bernard, additional, Castro‐Contreras, Saulo, additional, Chun, Junghwa, additional, Conrad, Bryan J., additional, Cremonese, Edoardo, additional, Demarty, Jérôme, additional, Desai, Ankur R., additional, De Ligne, Anne, additional, Foltýnová, Lenka, additional, Goulden, Michael L., additional, Griffis, Timothy J., additional, Grünwald, Thomas, additional, Johnson, Mark S., additional, Kang, Minseok, additional, Kelbe, Dave, additional, Kowalska, Natalia, additional, Lim, Jong‐Hwan, additional, Maïnassara, Ibrahim, additional, McCabe, Matthew F., additional, Missik, Justine E.C., additional, Mohanty, Binayak P., additional, Moore, Caitlin E., additional, Morillas, Laura, additional, Morrison, Ross, additional, Munger, J. William, additional, Posse, Gabriela, additional, Richardson, Andrew D., additional, Russell, Eric S., additional, Ryu, Youngryel, additional, Sanchez‐Azofeifa, Arturo, additional, Schmidt, Marius, additional, Schwartz, Efrat, additional, Sharp, Iain, additional, Šigut, Ladislav, additional, Tang, Yao, additional, Hulley, Glynn, additional, Anderson, Martha, additional, Hain, Christopher, additional, French, Andrew, additional, Wood, Eric, additional, and Hook, Simon, additional
- Published
- 2020
- Full Text
- View/download PDF
25. Evapotranspiration Estimation in the Sahel Using a New Ensemble-Contextual Method
- Author
-
Allies, Aubin, primary, Demarty, Jérôme, additional, Olioso, Albert, additional, Bouzou Moussa, Ibrahim, additional, Issoufou, Hassane Bil-Assanou, additional, Velluet, Cécile, additional, Bahir, Malik, additional, Maïnassara, Ibrahim, additional, Oï, Monique, additional, Chazarin, Jean-Philippe, additional, and Cappelaere, Bernard, additional
- Published
- 2020
- Full Text
- View/download PDF
26. Monitoring evapotranspiration from remote sensing data for groundwater resources evaluation
- Author
-
Olioso, Albert, Allies, A., Ollivier, C., Boulet, G., Demarty, Jérôme, Weiss, M., Leblanc, M., Martin-StPaul, N., Marloie, O., Simioni, G., Cappelaere, Bernard, Huard, F., Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH), Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Hydrosciences Montpellier (HSM), Institut de Recherche pour le Développement (IRD)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut Parisien de Chimie Moléculaire (IPCM), Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Centre d'études spatiales de la biosphère (CESBIO), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Institut des Molécules et Matériaux du Mans (IMMM), Le Mans Université (UM)-Centre National de la Recherche Scientifique (CNRS), UE Agroclim (UE AGROCLIM), Institut National de la Recherche Agronomique (INRA), Hibade, Monique, Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie du CNRS (INC)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Le Mans Université (UM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and Agroclim (AGROCLIM)
- Subjects
[SDU.STU.HY] Sciences of the Universe [physics]/Earth Sciences/Hydrology ,[SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2019
27. Agroforesterie et services écosystémiques en zone tropicale
- Author
-
Issoufou, H.B.A, Demarty, Jérôme, Cappelaere, Bernard, Allies, A., Velluet, C., Maïnassara, I., Oï, Monique, Chazarin, Jean-Philippe, Moussa Moumouni, R., Seghieri, Josiane, Seghieri, Josiane (coord.), and Harmand, J.M. (coord.)
- Abstract
Notre objectif est d'évaluer la contribution des arbustes de Guiera senegalensis aux flux d'eau et de carbone dans un parc agroforestier à petit mil (Pennisetum glaucum L.R. Br.) et dans une jachère. Le site expérimental est situé au sud-ouest du Niger, sur un bassin-versant sahélien de 2 km2. À l'échelle de l'arbuste de Guiera senegalensis, le taux de transpiration foliaire a été déduit de la conductance stomatique et du déficit de pression de vapeur. La dynamique de la biomasse aérienne et souterraine des arbustes a été suivie en saison des pluies, en saison sèche froide et en saison sèche chaude. À l'échelle de la parcelle, les bilans d'eau et d'assimilation du carbone ont été estimés par une modélisation de type "transferts surface-végétation-atmosphère". Le modèle est paramétré à partir de mesures automatiques de terrain selon la méthode des corrélations turbulentes. Le taux de transpiration foliaire et la biomasse aérienne de Guiera ont augmenté dans le parc, de la saison des pluies à la saison sèche chaude, alors qu'ils ont diminué dans la jachère. Les résultats du modèle montrent une activité de la jachère centrée sur la saison des pluies, mais décalée vers le début de la saison sèche pour le parc. À l'échelle de la parcelle, le modèle est capable de bien simuler l'évapotranspiration et l'assimilation de carbone au regard de la période de la croissance active des arbustes dans les deux types de couvert, tout en assurant un haut degré de cohérence avec le contenu en eau du sol.
- Published
- 2019
28. Modélisation des cycles couplés de l'eau, de l'énergie et de la végétation sur les surfaces continentales
- Author
-
Demarty, Jérôme, Cappelaere, Bernard, Peugeot, Christophe, Hydrosciences Montpellier (HSM), Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Arnaud, N. (ed.), Jouve, B. (ed.), and Müller, J.P. (ed.)
- Subjects
[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,[SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2018
29. L'Hydrologie à l'IRD
- Author
-
Seyler, F., Albergel, Jean, Bonnet, Marie-Paule, Cohard, J.M., Cretaux, J.F., Demarty, Jérôme, Descroix, Luc, Favreau, Guillaume, Frappart, B., Gosset, Marielle, Jacob, Frédéric, Jarlan, Lionel, Juillot, Farid, Labat, D., Malaterre, P.O., Papa, Fabrice, Stieglitz, Thomas, VALLET-COULOMB, Christine, UMR 228 Espace-Dev, Espace pour le développement, Institut de Recherche pour le Développement (IRD)-Université de Perpignan Via Domitia (UPVD)-Avignon Université (AU)-Université de La Réunion (UR)-Université de Guyane (UG)-Université des Antilles (UA)-Université de Montpellier (UM), Laboratoire d'étude des Interactions Sol - Agrosystème - Hydrosystème (UMR LISAH), Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Hydrosciences Montpellier (HSM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Patrimoines locaux, Environnement et Globalisation (PALOC), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU), Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France, Géosciences Environnement Toulouse (GET), Centre d'études spatiales de la biosphère (CESBIO), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Gestion de l'Eau, Acteurs, Usages (UMR G-EAU), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)-Institut de Recherche pour le Développement (IRD)-AgroParisTech-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), IRD, Université de Guyane (UG)-Université des Antilles (UA)-Institut de Recherche pour le Développement (IRD)-Université de Perpignan Via Domitia (UPVD)-Avignon Université (AU)-Université de La Réunion (UR)-Université de Montpellier (UM), Institut de Recherche pour le Développement (IRD), Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)
- Subjects
COOPERATION SCIENTIFIQUE ,BIBLIOMETRIE ,STRATEGIE DE RECHERCHE ,ZONE TROPICALE ,HYDROLOGIE ,SCIENCE ,PUBLICATION SCIENTIFIQUE ,RECHERCHE SCIENTIFIQUE ,ANALYSE LINGUISTIQUE ,EVOLUTION ,ORGANISME DE RECHERCHE ,ANALYSE ,ENQUETE ,ZONE MEDITERRANEENNE ,BILAN ,[SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology ,CHERCHEUR ,SUJET DE RECHERCHE ,HISTOIRE DES SCIENCES ,PROSPECTIVE ,UNITE DE RECHERCHE - Published
- 2018
30. AMMA-CATCH, a critical zone observatory in west Africa monitoring a region in transition
- Author
-
Galle, S., Grippa, Manuela, Peugeot, C., Bouzou Moussa, Ibrahim, Cappelaere, Bernard, Demarty, Jérôme, Mougin, E., Panthou, A., Adjomayi, P., Ba, A., Boucher, M., Cohard, Jean-Martial, Descloitres, Marc, Descroix, L., Diawara, Moriké, Dossou, M., Favreau, Guillaume, Gangneron, Fabrice, Gosset, Marielle, Hector, B., Hiernaux, Pierre, Issoufou, B.A., Kergoat, Laurent, Lawin, E., Lebel, T., Legchenko, A., Malam Abdou, M., Malam-Issa, Oumarou, Mamadou, O., Nazoumou, Y., Pellarin, Thierry, Quantin, G., Sambou, B., Seghieri, Josiane, Séguis, Lus, Vandervaere, J.P., Vischel, T., Vouillamoz, J.M., Zannou, A., Afouda, S., Alhassane, A., Arjounin, M., Barral, H., Biron, R., Cazenave, F., Chaffard, Véronique, Chazarin, J.P., Guyard, H., Koné, A., Mainassara, I., Mamane, A., Oi, M., Ouani, T., Soumaguel, N., Wubda, M., Ago, E.E., Alle, I.C., Allies, A., Arpin-Pont, F., Awessou, B., Cassé, C., Charvet, G., Dardel, C., Depeyre, A., Diallo, F.B., Do, T., Fatras, C., Frappart, F., Gal, L., Gascon, T., Gibon, François, Guiro, I., Ingatan, A., Kempf, J., Kotchoni, D.O.V., Lawson, F.M.A., Leauthaud, Crystèle, Louvet, S., Mason, E., Nguyen, C.C., Perrimond, B., Pierre, Caroline, Richard, A., Robert, E., Román-Cascón, Carlos, Velluet, C., Wilcox, C., Galle, S., Grippa, Manuela, Peugeot, C., Bouzou Moussa, Ibrahim, Cappelaere, Bernard, Demarty, Jérôme, Mougin, E., Panthou, A., Adjomayi, P., Ba, A., Boucher, M., Cohard, Jean-Martial, Descloitres, Marc, Descroix, L., Diawara, Moriké, Dossou, M., Favreau, Guillaume, Gangneron, Fabrice, Gosset, Marielle, Hector, B., Hiernaux, Pierre, Issoufou, B.A., Kergoat, Laurent, Lawin, E., Lebel, T., Legchenko, A., Malam Abdou, M., Malam-Issa, Oumarou, Mamadou, O., Nazoumou, Y., Pellarin, Thierry, Quantin, G., Sambou, B., Seghieri, Josiane, Séguis, Lus, Vandervaere, J.P., Vischel, T., Vouillamoz, J.M., Zannou, A., Afouda, S., Alhassane, A., Arjounin, M., Barral, H., Biron, R., Cazenave, F., Chaffard, Véronique, Chazarin, J.P., Guyard, H., Koné, A., Mainassara, I., Mamane, A., Oi, M., Ouani, T., Soumaguel, N., Wubda, M., Ago, E.E., Alle, I.C., Allies, A., Arpin-Pont, F., Awessou, B., Cassé, C., Charvet, G., Dardel, C., Depeyre, A., Diallo, F.B., Do, T., Fatras, C., Frappart, F., Gal, L., Gascon, T., Gibon, François, Guiro, I., Ingatan, A., Kempf, J., Kotchoni, D.O.V., Lawson, F.M.A., Leauthaud, Crystèle, Louvet, S., Mason, E., Nguyen, C.C., Perrimond, B., Pierre, Caroline, Richard, A., Robert, E., Román-Cascón, Carlos, Velluet, C., and Wilcox, C.
- Abstract
West Africa is a region in fast transition from climate, demography, and land use perspectives. In this context, the African Monsoon Multidisciplinary Analysis (AMMA)–Couplage de l'Atmosphère Tropicale et du Cycle eco-Hydrologique (CATCH) long-term regional observatory was developed to monitor the impacts of global change on the critical zone of West Africa and to better understand its current and future dynamics. The observatory is organized into three thematic axes, which drive the observation and instrumentation strategy: (i) analyze the long-term evolution of eco-hydrosystems from a regional perspective; (ii) better understand critical zone processes and their variability; and (iii) meet socioeconomic and development needs. To achieve these goals, the observatory has gathered data since 1990 from four densely instrumented mesoscale sites (∼104 km2 each), located at different latitudes (Benin, Niger, Mali, and Senegal) so as to sample the sharp eco-climatic gradient that is characteristic of the region. Simultaneous monitoring of the vegetation cover and of various components of the water balance at these four sites has provided new insights into the seemingly paradoxical eco-hydrological changes observed in the Sahel during the last decades: groundwater recharge and/or runoff intensification despite rainfall deficit and subsequent re-greening with still increasing runoff. Hydrological processes and the role of certain key landscape features are highlighted, as well as the importance of an appropriate description of soil and subsoil characteristics. Applications of these scientific results for sustainable development issues are proposed. Finally, detecting and attributing eco-hydrological changes and identifying possible regime shifts in the hydrologic cycle are the next challenges that need to be faced.
- Published
- 2018
31. Streamflows over a West African Basin from the ALMIP2 Model Ensemble
- Author
-
Getirana, Augusto, Boone, Aaron, Peugeot, Christophe, Ait-Mesbah, S., Polcher, J., Anderson, M., Balsamo, G., Boussetta, S., Dutra, E., Pappenberger, F., Hain, C., Favot, F., Guichard, F., Kaptue, A., Cappelaere, B., Demarty, Jérôme, Seguis, L., Chaffard, V., Cohard, J. M., Gascon, T., Galle, S., Hector, B., Lebel, T., Pellarin, T., Richard, A., Quantin, G., Vischel, T., Chan, E., Verseghy, D., Ducharne, Agnès, Magand, C., Grippa, Manuela, Hiernaux, Pierre, Kergoat, Laurent, Pierre, C., Nasonova, Y. Gusev O., Harris, P., He, X., Yorozu, K., Kotsuki, S., Tanaka, K., Kim, H., Oki, T., Kumar, S., Lo, M.-H., Mahanama, S., Maignan, F., Ottlé, C., Mamadou, O., Shmakin, A., Sokratov, V., Turkov, D., Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Hydrosciences Montpellier (HSM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut de Recherche pour le Développement (IRD), Milieux Environnementaux, Transferts et Interactions dans les hydrosystèmes et les Sols (METIS), École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Modélisation des Surfaces et Interfaces Continentales (MOSAIC), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Groupe d'étude de l'atmosphère météorologique (CNRM-GAME), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), and Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Recherche pour le Développement (IRD)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
Hydrology ,Atmospheric Science ,geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Hydrological modelling ,0208 environmental biotechnology ,Mesoscale meteorology ,Drainage basin ,02 engineering and technology ,Groundwater recharge ,Infiltration (HVAC) ,Monsoon ,01 natural sciences ,6. Clean water ,020801 environmental engineering ,Climatology ,Streamflow ,Environmental science ,[SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology ,Surface runoff ,0105 earth and related environmental sciences - Abstract
Comparing streamflow simulations against observations has become a straightforward way to evaluate a land surface model’s (LSM) ability in simulating water budget within a catchment. Using a mesoscale river routing scheme (RRS), this study evaluates simulated streamflows over the upper Ouémé River basin resulting from 14 LSMs within the framework of phase 2 of the African Monsoon Multidisciplinary Analysis (AMMA) Land Surface Model Intercomparison Project (ALMIP2). The ALMIP2 RRS (ARTS) has been used to route LSM outputs. ARTS is based on the nonlinear Muskingum–Cunge method and a simple deep water infiltration formulation representing water-table recharge as previously observed in that region. Simulations are performed for the 2005–08 period during which ground observations are largely available. Experiments are designed using different ground-based rainfall datasets derived from two interpolation methods: the Thiessen technique and a combined kriging–Lagrangian methodology. LSM-based total runoff (TR) averages vary from 0.07 to 1.97 mm day−1, while optimal TR was estimated as ~0.65 mm day−1. This highly affected the RRS parameterization and streamflow simulations. Optimal Nash–Sutcliffe coefficients for LSM-averaged streamflows varied from 0.66 to 0.92, depending on the gauge station. However, individual LSM performances show a wider range. A more detailed rainfall distribution provided by the kriging–Lagrangian methodology resulted in overall better streamflow simulations. The early runoff generation related to reduced infiltration rates during early rainfall events features as one of the main reasons for poor LSM performances.
- Published
- 2017
32. Modeling Surface Runoff and Water Fluxes over Contrasted Soils in the Pastoral Sahel : Evaluation of the ALMIP2 Land Surface Models over the Gourma Region in Mali
- Author
-
Grippa, Manuela, Gal, Laetitia, Anderson, Martha, Ait-Mesbah, S., Polcher, Jan, Balsamo, G., Boussetta, S., Dutra, Emanuel, Pappenberger, F., Hain, Christopher, Boone, Aaron, Favot, F., Guichard, F., Kaptue, A., Roujean, Jean-Louis, Cappelaere, Bernard, Demarty, Jérôme, Peugeot, Christophe, Séguis, L., Velluet, C., Chaffard, V., Cohard, J. M., Gascon, T., Galle, S., Hector, B., Lebel, T., Pellarin, T., Richard, A., Quantin, G., Vischel, T., Chan, E., Verseghy, D., Ducharne, Agnès, Magand, C., Getirana, A., Hiernaux, Pierre, Kergoat, Laurent, Mougin, Éric, Pierre, Caroline, Gusev, Y., Nasonova, O., Harris, P., He, X., Yorozu, K., Kotsuki, S., Tanaka, K., Kim, H., Oki, T., Kumar, S., Lo, M.-H., Mahanama, S., Maignan, F., Ottlé, C., Mamadou, O., Shmakin, A., Sokratov, V., Turkov, D., Working Group, Almip2, Géosciences Environnement Toulouse (GET), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), United States Department of Agriculture, European Centre for Medium-Range Weather Forecasts (ECMWF), Laboratoire de mesure du carbone 14 (LMC14 - UMS 2572), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Radioprotection et de Sûreté Nucléaire (IRSN)-Ministère de la Culture et de la Communication (MCC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Hydrosciences Montpellier (HSM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Structure et fonctionnement des systèmes hydriques continentaux (SISYPHE), Université Pierre et Marie Curie - Paris 6 (UPMC)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Centre d'études spatiales de la biosphère (CESBIO), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Modélisation des Surfaces et Interfaces Continentales (MOSAIC), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Centre National d'Études Spatiales [Toulouse] (CNES), Groupe d'étude de l'atmosphère météorologique (CNRM-GAME), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-École pratique des hautes études (EPHE)-MINES ParisTech - École nationale supérieure des mines de Paris-Centre National de la Recherche Scientifique (CNRS), NASA Goddard Space Flight Center (GSFC), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Institut de Recherche pour le Développement (IRD)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Météo France-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-MINES ParisTech - École nationale supérieure des mines de Paris, Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Université Fédérale Toulouse Midi-Pyrénées-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Météo France-Centre National de la Recherche Scientifique (CNRS), Earth Systems Science Interdisciplinary Center, University of Maryland [College Park], University of Maryland System-University of Maryland System, and Institut de Recherche pour le Développement (IRD)-Université Montpellier 2 - Sciences et Techniques (UM2)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,0208 environmental biotechnology ,Mesoscale meteorology ,02 engineering and technology ,Monsoon ,01 natural sciences ,Evapotranspiration ,[SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,2. Zero hunger ,Hydrology ,Multidisciplinary analysis ,15. Life on land ,[SDE.ES]Environmental Sciences/Environmental and Society ,6. Clean water ,020801 environmental engineering ,Water resources ,13. Climate action ,Soil water ,[SDE]Environmental Sciences ,Environmental science ,Surface runoff ,Surface water - Abstract
Land surface processes play an important role in the West African monsoon variability. In addition, the evolution of hydrological systems in this region, and particularly the increase of surface water and runoff coefficients observed since the 1950s, has had a strong impact on water resources and on the occurrence of floods events. This study addresses results from phase 2 of the African Monsoon Multidisciplinary Analysis (AMMA) Land Surface Model Intercomparison Project (ALMIP2), carried out to evaluate the capability of different state-of-the-art land surface models to reproduce surface processes at the mesoscale. Evaluation of runoff and water fluxes over the Mali site is carried out through comparison with runoff estimations over endorheic watersheds as well as evapotranspiration (ET) measurements. Three remote-sensing-based ET products [ALEXI, MODIS, and Global Land Evaporation Amsterdam Model (GLEAM)] are also analyzed. It is found that, over deep sandy soils, surface runoff is generally overestimated, but the ALMIP2 multimodel mean reproduces in situ measurements of ET and water stress events rather well. However, ALMIP2 models are generally unable to distinguish among the two contrasted hydrological systems typical of the study area. Employing as input a soil map that explicitly represents shallow soils improves the representation of water fluxes for the models that can account for their representation. Shallow soils are shown to be also quite challenging for remote-sensing-based ET products, even if their effect on evaporative loss was captured by the diagnostic thermal-based ALEXI. A better representation of these soils, in soil databases, model parameterizations, and remote sensing algorithms, is fundamental to improve the estimation of water fluxes in this part of the Sahel.
- Published
- 2017
33. Monitoring evapotranspiration from remote sensing data for groundwater resources evaluation
- Author
-
Olioso, Albert, Allies, Aubin, Ollivier, Chloé, Velluet, Cécile, Leblanc, Marc, Demarty, Jérôme, Boulet, Gérard, Bahir, Malik, GALLEGO-ELVIRA, Belen, Mira, M., Marloie, Olivier, Martin-StPaul, Nicolas, Tweed, S., Cappelaere, B., Huard, Frederic, Chauvelon, P., Boutron, O., Chalikakis, Konstantinos, Garrigues, Sébastien, Mazzilli, Naomi, Weiss, Marie, Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH), Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Hydrosciences Montpellier (HSM), Institut de Recherche pour le Développement (IRD)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut Parisien de Chimie Moléculaire (IPCM), Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Centre Hospitalier Bretagne Atlantique, Centre d'études spatiales de la biosphère (CESBIO), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Magmas et Volcans (LMV), Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut de Recherche pour le Développement et la société-Université Clermont Auvergne (UCA)-Centre National de la Recherche Scientifique (CNRS)-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne (UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), UE Agroclim (UE AGROCLIM), Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche Dupuy de Lôme (IRDL), Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Université de Brest (UBO)-Université de Bretagne Sud (UBS), Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Centre hospitalier Bretagne Atlantique (Morbihan) (CHBA), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement et la société-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Université Jean Monnet [Saint-Étienne] (UJM), Agroclim (AGROCLIM), Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Université Fédérale Toulouse Midi-Pyrénées-Centre National d'Études Spatiales [Toulouse] (CNES)-Météo France-Centre National de la Recherche Scientifique (CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Météo France, Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut de Recherche pour le Développement et la société-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Ecologie des Forêts Méditerranéennes (URFM), Université Blaise Pascal - Clermont-Ferrand 2 (UBP), Tour du Valat, Research Institute for the conservation of Mediterranean Wetlands, Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), and ProdInra, Migration
- Subjects
[SDV] Life Sciences [q-bio] ,[SDE] Environmental Sciences ,[SDV]Life Sciences [q-bio] ,[SDE]Environmental Sciences ,[SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience; Evapotranspiration (ET) is a fundamental variable of the hydrological cycle which plays a major role on surface water balance and surface energy balance. At local scale ET can be estimated from detailed ground observations (eddy covariance towers), but these measurements are only representative of very limited homogeneous area. When regional information is required, e.g. for monitoring ground water resources, the flux tower measurements cannot be used directly and estimation of ET often relies on estimation from meteorological data through potential evapotranspiration formulas. At regional scale remote sensing provides spatially distributed information for mapping and monitoring ET, but this information is still rarely used for ground water assessment. Indeed, remote sensing estimation of ET suffers several drawbacks. In particular, remote sensing information by itself cannot provide a continuous monitoring of ET because of the presence of clouds and the revisit period of the sensor. Another difficulty originates in the lack of exhaustive evaluation of remote sensed ET since accurate ground measurements are scarce and representative of a limited number of homogeneous areas. This has also for consequence that a large number of methodologies to derive ET were developed with no real possibility of a consistent evaluation. We have developed the EVASPA (EVapotranspiration Assessment from SPAce) tool to monitor ET on a daily basis, together with an evaluation of the associated uncertainties, from remote sensing data in the thermal and the solar domains (Gallego Elvira et al. 2013). This tool combines the estimation of ET from various models and various sources of data, including MODIS sensors, LANDSAT-borne sensors and meteorological information. EVASPA was applied to estimate evapotranspiration over several areas in the products such as MOD16 or analysis of atmospheric-hydrological modeling such as the operational Safran-Isba-Modcou application). The results highlight the potential use of the retrieved ET for calibrating groundwater models (e.g. for estimating aquifer parameters…) or evaluating model inputs (e.g. determination of effective rainfall, identification of irrigated areas…). We also evaluated the impact of the uncertainties in the estimation of ET in the monitoring of ground water. We showed that the main sources of ET uncertainty were related to the uncertainties in incident radiations and surface temperature together with the diversity of ET models. When forced in ground water models, the uncertainties in ET had an impact almost equivalent to the impact of uncertainties in rain inputs. South of France to help in monitoring the water budget of different hydrosystems: superficial aquifer in the Rhône river delta (Camargue), karstic aquifer of the Fontaine de Vaucluse spring system and alluvial aquifer in Limagne with increasing water withdrawing for irrigation. The method was first evaluated against flux tower measurements of evapotranspiration (RMSE between 0.5 and 1 mm/day depending on the ecosystems). When integrated over watershed, ET retrievals were also compared to indirect estimates of evapotranspiration from either water balance and stream flow monitoring or other modelling approaches for time period of more than a decade (these include remote sensing operational
- Published
- 2017
34. Evaluation of the SPARSE Dual-Source Model for Predicting Water Stress and Evapotranspiration from Thermal Infrared Data over Multiple Crops and Climates
- Author
-
Delogu, Emilie, primary, Boulet, Gilles, additional, Olioso, Albert, additional, Garrigues, Sébastien, additional, Brut, Aurore, additional, Tallec, Tiphaine, additional, Demarty, Jérôme, additional, Soudani, Kamel, additional, and Lagouarde, Jean-Pierre, additional
- Published
- 2018
- Full Text
- View/download PDF
35. A 60-year reconstructed high-resolution local meteorological data set in Central Sahel (1950–2009): evaluation, analysis and application to land surface modelling
- Author
-
Leauthaud, Crystèle, Cappelaere, Bernard, Demarty, Jérôme, Guichard, Françoise, Velluet, C., Kergoat, Laurent, Vischel, T., Grippa, Manuela, Mouhaimouni, M., Bouzou Moussa, Ibrahim, Mainassara, I., Sultan, B., Leauthaud, Crystèle, Cappelaere, Bernard, Demarty, Jérôme, Guichard, Françoise, Velluet, C., Kergoat, Laurent, Vischel, T., Grippa, Manuela, Mouhaimouni, M., Bouzou Moussa, Ibrahim, Mainassara, I., and Sultan, B.
- Abstract
The Sahel has experienced strong climate variability in the past decades. Understanding its implications for natural and cultivated ecosystems is pivotal in a context of high population growth and mainly agriculture-based livelihoods. However, efforts to model processes at the land–atmosphere interface are hindered, particularly when the multi-decadal timescale is targeted, as climatic data are scarce, largely incomplete and often unreliable. This study presents the generation of a long-term, high-temporal resolution, multivariate local climatic data set for Niamey, Central Sahel. The continuous series spans the period 1950–2009 at a 30-min timescale and includes ground station-based meteorological variables (precipitation, air temperature, relative and specific humidity, air pressure, wind speed, downwelling long- and short-wave radiation) as well as process-modelled surface fluxes (upwelling long- and short-wave radiation,latent, sensible and soil heat fluxes and surface temperature). A combination of complementary techniques (linear/spline regressions, a multivariate analogue method, artificial neural networks and recursive gap filling) was used to reconstruct missing meteorological data. The complete surface energy budget was then obtained for two dominant land cover types, fallow bush and millet, by applying the meteorological forcing data set to a finely field-calibrated land surface model. Uncertainty in reconstructed data was expressed by means of a stochastic ensemble of plausible historical time series. Climatological statistics were computed at sub-daily to decadal timescales and compared with local, regional and global data sets such as CRU and ERA-Interim. The reconstructed precipitation statistics, _1_C increase in mean annual temperature from 1950 to 2009, and mean diurnal and annual cycles for all variables were in good agreement with previous studies. The new data set, denoted NAD (Niamey Airport-derived set) and publicly available, can be used to i
- Published
- 2017
36. Characterization of the Water and Energy Cycles in the Agro-Pastoral Sahel from 1950 to 2010, in a Context of Climate and Land-Use Changes
- Author
-
Leauthaud, Crystele, Demarty, Jérôme, Cappelaere, Bernard, Grippa, Manuela, Sultan, Benjamin, Kergoat, Laurent, Vischel, Théo, Velluet, Cécile, Unité Climat, Sol et Environnement (CSE), Institut National de la Recherche Agronomique (INRA), Hydrosciences Montpellier (HSM), Institut de Recherche pour le Développement (IRD)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Géosciences Environnement Toulouse (GET), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Mécanismes et Transfert en Géologie (LMTG), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), and Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology - Abstract
International audience; The water cycle and ecosystem productivity in the Sahel are tightly linked. Combined with land-use changes, modifications in the rainfall regime and climate can have important consequences on local livelihoods, as illustrated by the devastating droughts in the 1980s. Primary production, but also atmosphere dynamics and aquifer recharge, strongly depend on surface-atmosphere interactions. Although the processes underpinning the water and energy cycles at the surface-atmosphere level are starting to be understood, little is known about how they could have evolved in the past 60 years. This study analyses changes in the water and energy cycles for two major ecosystems (millet and fallow) found in the agro-pastoral Sahel from 1950 to 2010, in a context of strong climate and land-use change. Estimations were undertaken using a process-based Soil-Vegetation-Atmosphere Transfer (SVAT) model (SiSPAT) capable of representing the main surface-atmosphere interactions taking place in the Sahel. Vegetation characteristics were simulated through coupling with vegetation models (STEP and SARRAH) and in-situ data representative of the various ecosystem types. Changes in the rainfall regime induced modifications of the water cycle, both at annual and seasonal time-scales. Different productivities and water seasonal cycles for the millet and fallow systems were evidenced, in accordance with previous studies. When combined with land-use changes, this induced large variations in the water and energy cycles at the landscape scale. These modifications could have important feedback effects on local climate, which are currently not taken into account in Earth System Models. Future work should also focus on understanding the impact of other drivers of change, such as decreasing soil fertility and increased grazing pressure, on ecosystem productivity and the resulting effects on the water and energy cycles in the Sahel.
- Published
- 2014
37. Spatiotemporal variability in carbon exchange fluxes across the Sahel
- Author
-
Tagesson, Håkan Torbern, Fensholt, Rasmus, Cappelaere, Bernard, Mougin, Eric, Horion, Stéphanie Marie Anne F, Kergoat, Laurent, Nieto Solana, Hector, Mbow, Cheikh, Ehammer, Andrea, Demarty, Jérôme, Ardö, Jonas, Tagesson, Håkan Torbern, Fensholt, Rasmus, Cappelaere, Bernard, Mougin, Eric, Horion, Stéphanie Marie Anne F, Kergoat, Laurent, Nieto Solana, Hector, Mbow, Cheikh, Ehammer, Andrea, Demarty, Jérôme, and Ardö, Jonas
- Abstract
Semi-arid regions play an increasingly important role as a sink within the global carbon (C) cycle and is the main biome driving inter-annual variability in carbon dioxide (CO2) uptake by terrestrial ecosystems. This indicates the need for detailed studies of spatiotemporal variability in C cycling for semi-arid ecosystems. We have synthesized data on the land-atmosphere exchange of CO2 measured with the eddy covariance technique from the six existing sites across the Sahel, one of the largest semi-arid regions in the world. The overall aim of the study is to analyse and quantify the spatiotemporal variability in these fluxes and to analyse to which degree spatiotemporal variation can be explained by hydrological, climatic, edaphic and vegetation variables. All ecosystems were C sinks (average ± total error -162 ± 48 g C m-2 y-1), but were smaller when strongly impacted by anthropogenic influences. Spatial and inter-annual variability in the C flux processes indicated a strong resilience to dry conditions, and were correlated with phenological metrics. Gross primary productivity (GPP) was the most important flux process affecting the sink strength, and diurnal variability in GPP was regulated by incoming radiation, whereas seasonal dynamics was closely coupled with phenology, and soil water content. Diurnal variability in ecosystem respiration was regulated by GPP, whereas seasonal variability was strongly coupled to phenology and GPP. A budget for the entire Sahel indicated a strong C sink mitigating the global anthropogenic C emissions. Global circulation models project an increase in temperature, whereas rainfall is projected to decrease for western Sahel and increase for the eastern part, indicating that the C sink will possibly decrease and increase for the western and eastern Sahel, respectively.
- Published
- 2016
38. Scope model: a tool to simulate the surface temperature directional anisotropy
- Author
-
Duffour, Clément, Lagouarde, Jean-Pierre, Demarty, Jérôme, Olioso, Albert, UMR1391, Institut National de la Recherche Agronomique (INRA), Unité Climat, Sol et Environnement (CSE), Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH), Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Déposants HAL-Avignon, bibliothèque Universitaire, Interactions Sol Plante Atmosphère (UMR ISPA), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro), and Institut de Recherche pour le Développement (IRD)
- Subjects
télédétection ,[SDV]Life Sciences [q-bio] ,remote sensing ,thermal infrared ,surface temperaure ,directional anisotropy ,SCOPE ,[SDU] Sciences of the Universe [physics] ,[SDU]Sciences of the Universe [physics] ,[SDE]Environmental Sciences ,anisotropie directionnelle ,ComputingMilieux_MISCELLANEOUS ,infrarouge thermique - Abstract
National audience; Thermal infrared (TIR) measurements are prone to directional effects. A lot of experimental studies of the TIR anisotropy, which is defined as the difference between oblique and nadir surface temperatures measurements, have been performed since the 60’s and reported in literature. They reveal important hotspot effect and possible significant errors - up to 10°C - on surface temperature measurements. Directional effects have to be characterized to correct or to normalize satellite data, particularly large swath satellites data such as MODIS or AATSR for which scan angles reach ± 55° and ± 47° from nadir, respectively. They also have to be considered for defining the mission specifications of future TIR systems. Finally they can help to improve the estimation of surface fluxes by making possible discriminating the contributions of soil and canopy. In this idea a better characterization of TIR directional anisotropy is expected to improve the assimilation of thermal satellite data in vegetation models. A large range of approaches have been developed to simulate the anisotropy (geometric models, radiative transfer, 3D models, parametric kernels...). Nevertheless, deterministic radiative transfer modelization remains essential to generalize experimental measurements and to assess the sensitivity of surface features (vegetation structure, LAI, water status etc.) and the impact of the Sun-observer geometry impact on directional radiative temperature measurements. Moreover, new methods (such as kernel approaches or neural networks) have to be developed to correct for directional anisotropy, simple enough to be integrated in ground segments for operational satellite data processing. For this purpose another use of a deterministic model of TIR anisotropy could be the simulation of data sets from which derive operational simpler algorithms could be derived. The deterministic SCOPE (Soil Canopy Observation, photochemistry and Energy fluxes) model, developed by Van der Tol et al. (2009) at the ITC (Nederland), is a good candidate to address the problem of the temperature anisotropy. It is a one-dimensional multilayer model coupling a radiative transfer model based on the 4SAIL (Scattering by Arbitrary Inclined Leaves designed by Verhoef et al. 2007) algorithm and an energy balance module. It has been designed to simulate radiance spectra, energy and CO 2 fluxes but it also simulates directional brightness temperatures. After a brief description of the model, we present a validation exercise of SCOPE for fluxes and directional brightness temperatures over two original experimental data sets obtained on wheat and pine stands recorded during different years; they offer a large range of surface conditions (vegetation structure, LAI, water status). Directional radiative temperatures were measured with several radiothermometers positioned in different zenithal and azimuthal viewing configurations (18° towards South, 55° towards North and 27° towards West). During a few months, a GV2M: Global Vegetation Monitoring and Modeling (18° towards South, 55° towards North and 27° towards West). During a few months, a radiothermometer was also mounted on a motorized platform piloted to follow the sun course during the day, so providing the temperature at the hotspot. The sites belonging to different international networks, (CarboEurope, Fluxnet) the energy (sensible and latent heat) and CO 2 fluxes were also continuously monitored. SCOPE was calibrated using several inversion strategies which are described. The biochemical input parameters (maximal carboxylation capacity and the marginal cost of assimilation which strongly govern photosynthesis and transpiration processes) revealed to have most sensitivity on simulations and were retained to calibrate the model. The validation of SCOPE was made on cloudless days and for diurnal conditions only. Satisfactory results have been obtained on fluxes with a root mean square error (RMSE) on convective fluxes estimation of about 40 W.m- 2. The simulation of directional brightness surface temperatures revealed excellent with a 1°C RMSE over both wheat and pine data sets, and for all viewing geometries. The use of SCOPE for generating polar plots of temperature anisotropy is finally illustrated by a qualitative comparison exercise. Simulations revealed directional anisotropy structure quite consistent with measurements available at the laboratory. The applications to evaluate the possible effects of different variables such as vegetation structure (leaf angles, LAI, etc.) and micrometeorological conditions (wind speed for instance) are discussed.
- Published
- 2014
39. Revisiting historical climatic signals to better explore the future: prospects of water cycle changes in Central Sahel
- Author
-
Leauthaud, Crystèle, Demarty, Jérôme, Cappelaere, Bernard, Grippa, Manuela, Kergoat, L., Velluet, C., Guichard, Françoise, Mougin, E., Chelbi, S., Sultan, Benjamin, Leauthaud, Crystèle, Demarty, Jérôme, Cappelaere, Bernard, Grippa, Manuela, Kergoat, L., Velluet, C., Guichard, Françoise, Mougin, E., Chelbi, S., and Sultan, Benjamin
- Abstract
Rainfall and climatic conditions are the main drivers of natural and cultivated vegetation productivity in the semiarid region of Central Sahel. In a context of decreasing cultivable area per capita, understanding and predicting changes in the water cycle are crucial. Yet, it remains challenging to project future climatic conditions in West Africa since there is no consensus on the sign of future precipitation changes in simulations coming from climate models. The Sahel region has experienced severe climatic changes in the past 60 years that can provide a first basis to understand the response of the water cycle to non-stationary conditions in this part of the world. The objective of this study was to better understand the response of the water cycle to highly variable climatic regimes in Central Sahel using historical climate records and the coupling of a land surface energy and water model with a vegetation model that, when combined, simulated the Sahelian water, energy and vegetation cycles. To do so, we relied on a reconstructed long-term climate series in Niamey, Republic of Niger, in which three precipitation regimes can be distinguished with a relative deficit exceeding 25% for the driest period compared to the wettest period. Two temperature scenarios (+2 and +4 °C) consistent with future warming scenarios were superimposed to this climatic signal to generate six virtual future 20-year climate time series. Simulations by the two coupled models forced by these virtual scenarios showed a strong response of the water budget and its components to temperature and precipitation changes, including decreases in transpiration, runoff and drainage for all scenarios but those with highest precipitation. Such climatic changes also strongly impacted soil temperature and moisture. This study illustrates the potential of using the strong climatic variations recorded in the past decades to better understand potential future climate variations.
- Published
- 2015
40. Observed long-term land cover vs climate impacts on the West African hydrological cycle: lessons for the future ? [P-3330-65]
- Author
-
Peugeot, C., Galle, S., Grippa, Manuela, Bouzou Moussa, Ibrahim, Cappelaere, Bernard, Demarty, Jérôme, Mougin, E., Descroix, L., Lebel, T., Dardel, C., Favreau, Guillaume, Hiernaux, Pierre, Kergoat, Laurent, Nazoumou, Y., Vandervaere, J.P., Séguis, Lus, Leroux, Louise, Malam Abdou, M., Orekan, V., Oszwald, Johan, Peugeot, C., Galle, S., Grippa, Manuela, Bouzou Moussa, Ibrahim, Cappelaere, Bernard, Demarty, Jérôme, Mougin, E., Descroix, L., Lebel, T., Dardel, C., Favreau, Guillaume, Hiernaux, Pierre, Kergoat, Laurent, Nazoumou, Y., Vandervaere, J.P., Séguis, Lus, Leroux, Louise, Malam Abdou, M., Orekan, V., and Oszwald, Johan
- Abstract
West Africa has experienced a long lasting, severe drought as from 1970, which seems to be attenuating since 2000. It has induced major changes in living conditions and resources over the region. In the same period, marked changes of land use and land cover have been observed: land clearing for agriculture, driven by high demographic growth rates, and ecosystem evolutions driven by the rainfall deficit. Depending on the region, the combined effects of these climate and environmental changes have induced contrasted impacts on the hydrological cycle. In the Sahel, runoff and river discharges have increased despite the rainfall reduction (“less rain, more water”, the so-called "Sahelian paradox "). Soil crusting and erosion have increased the runoff capacity of the watersheds so that it outperformed the rainfall deficit. Conversely, in the more humid Guinean and Sudanian regions to the South, the opposite (and expected) “less rain, less water” behavior is observed, but the signature of land cover changes can hardly be detected in the hydrological records. These observations over the past 50 years suggest that the hydrological response to climate change can not be analyzed irrespective of other concurrent changes, and primarily ecosystem dynamics and land cover changes. There is no consensus on future rainfall trend over West Africa in IPCC projections, although a higher occurrence of extreme events (rainstorms, dry spells) is expected. An increase in the need for arable land and water resources is expected as well, driven by economic development and demographic growth. Based on past long-term observations on the AMMA-CATCH observatory, we explore in this work various future combinations of climate vs environmental drivers, and we infer the expected resulting trends on water resources, along the west African eco-climatic gradient. (Texte intégral)
- Published
- 2015
41. Développement et application du modèle SiSPAT-RS à l'échelle de la parcelle et dans le cadre de l'expérience alpilles ReSeDA
- Author
-
Demarty, Jérôme, Centre d'étude des environnements terrestre et planétaires (CETP), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Diderot - Paris VII, Frangi Jean Pierre, and Demarty, Jérôme
- Subjects
[PHYS.PHYS]Physics [physics]/Physics [physics] ,télédétection ,SVAT ,[SDU.STU.HY] Sciences of the Universe [physics]/Earth Sciences/Hydrology ,[SDU.STU] Sciences of the Universe [physics]/Earth Sciences ,Modélisation TSVA ,Alpilles ReSeDA ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,[PHYS.PHYS] Physics [physics]/Physics [physics] ,[SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology ,assimilation de données - Abstract
Vegetation canopy functioning can be studied combining both Soil-Vegetation-Atmosphere Transfer (SVAT) models and remote sensing data. These models describe energy and mass transfers in the soil-plant-atmosphere continuum. Remote sensing provides useful information for driving such models. The main objective of this work was to determine the contribution of multispectral remote sensing data in the functioning of a complex SVAT model. The chosen model was SiSPAT (Braud, 1995), considering coupled heat and moisture flows in the soil. It was coupled with two canopy radiative transfer models in order to simulate at field scale main surface processes and remote sensed data (bi-directional reflectance and directional brightness temperature). In the visible and the near infrared, the 2M-SAIL model (Weiss et al., 2001) was chosen for its ability to account for the development of yellow and green vegetation layers throughout the crop cycle. In the thermal infrared, the directional model proposed by François (2001) was used. In the microwaves domain (passive or active), the contribution of remote sensing data was only studied through the surface soil water content. This new developed model was called SiSPAT-RS (Simple Soil Plant Transfer and Remote Sensing) and was applied on two wheat field dataset, acquired during the ReSeDA experiment in 1997 in the South France. First, a sensitivity analysis was performed over 60 parameters and initial state variables, using a stochastic Monte Carlo sampling and a multicriteria methodology based on a Pareto ranking. Results allowed to detect the most influent parameters on the simulation of several state variables, and to reduce significantly their associated uncertainty intervals. The model calibration was performed considering different assumptions, related to the experimental knowledge of soil properties and surface variables available. This step allowed to (1) validate the model on the other wheat field and (2) propose and apply an assimilation method, based on the knowledge of thermal infrared brightness temperature and the surface soil water content. In this last context, it was possible to estimate the main surface processes with a good accuracy and to quantify the model errors associated to the parameter uncertainties., Le fonctionnement de la végétation peut être étudié à l'aide de l'utilisation combinée de modèles numériques et de données de télédétection. Les premiers décrivent les principaux Transferts d'énergie et de masse qui interagissent à l'interface Sol-Végétation-Atmosphère (modèles TSVA). Le télédétection fournit quant à elle certaines caractéristiques des couverts végétaux qui sont utiles au fonctionnement des modèles TSVA. L'objectif de ce travail est de déterminer l'apport de la télédétection multispectrale pour le fonctionnement d'un modèle TSVA. Il est basé sur le couplage du modèle TSVA SiSPAT avec deux modèles de transfert radiatif fonctionnant respectivement dans le visible-infrarouge et l'infrarouge thermique. La nouvelle version développée (SiSPAT-RS) est ainsi capable de simuler les principaux processus de surface et plusieurs variables de télédétection. Elle a été utilisée sur la base données acquises lors de la campagne expérimentale Alpilles-ReSeDA, plus particulièrement sur deux parcelles agricoles de blé. Dans un premier temps, une analyse de sensibilité a été mise en œuvre sur les 60 paramètres et variables d'initialisation du modèle couplé. Elle a reposé sur un échantillonnage de type Monte Carlo et une analyse multicritère par rangement de Pareto. Les résultats ont permis de déterminer les paramètres les plus influents sur la simulation simultanée de plusieurs variables d'état du modèle et les conditions dans lesquelles ils interviennent, et de réduire de manière efficace les gammes d'incertitude des paramètres sensibles. Dans un second temps, l'étalonnage du modèle a été réalisé sous différents contextes d'étude, liés notamment à la connaissance expérimentale des propriétés du sol et de diverses variables de surface. Ceci a finalement permis de valider le modèle et de quantifier, dans un contexte d'assimilation de données de télédétection, l'erreur du modèle liée à l'incertitude des paramètres.
- Published
- 2001
42. Analyses multidisciplinaires de la mousson africaine : programme et livre des résumés
- Author
-
Feurer, Denis, Cappelaere, Bernard, Demarty, Jérôme, Vischel, Théo, Ottle, C., Solignac, P.A., Saux Picart, S., Lebel, Thierry, Ramier, D., Boulain, N., Charvet, G., Mainassara, I., Chazarin, Jean-Philippe, Oï, Monique, Janicot, Serge (ed.), Roussot, O. (ed.), and Guichard, F. (ed.)
- Subjects
MESURE AU SOL ,PRECIPITATION ,ESTIMATION ,DONNEES ,PLUVIOMETRIE ,CYCLE HYDROLOGIQUE ,ZONE SEMIARIDE ,MOUSSON ,MODELISATION ,METHODOLOGIE - Published
- 2012
43. Reconstitution of a Continuous Climatic and Rainfall Series for the Central Sahel (1950-2012): Data, Methodology and Application
- Author
-
Demarty, Jérôme, Leauthaud, Crystèle, Cappelaere, Bernard, Vischel, T., Guichard, Françoise, Kergoat, Laurent, Grippa, Manuela, Hourdin, Frédéric, Sultan, Benjamin, Velluet, C., Demarty, Jérôme, Leauthaud, Crystèle, Cappelaere, Bernard, Vischel, T., Guichard, Françoise, Kergoat, Laurent, Grippa, Manuela, Hourdin, Frédéric, Sultan, Benjamin, and Velluet, C.
- Abstract
The Sahel is one of the regions in the world which has experienced the strongest climatic changes in the past decades. In a context of high population growth and mainly agriculture-based economies and livelihoods, these fluctuations can cause serious societal problems. Understanding past and predicting future climatic changes and their implications on natural and cultivated ecosystems are henceprimordial. Modelling efforts in the fields of hydrology and ecohydrology have already been undertaken, but are hindered by data availability as soon as the multi-decadal time scale is targeted. Indeed, in addition to being scarce, climatic data are often discontinuous in time, limiting the use of many modelling tools. In this study we produced a continuous and consistent data set at Niamey, Niger (13.5° N, 2.1° E) from 1950 to 2012 at different temporal scales (daily, 3-h and 30-min) that can be used as inputs in most LSM-type, vegetation and hydrological models. A stochastic component was introduced to reflect the uncertainty on the determination of missing data. Variables under study were: rainfall, air temperature, specific humidity, air pressure, wind speed, cloud cover, clear-sky longwave and shortwave radiation. Missing data were filled through regression methods, artificial neural networks, or by randomly selecting the missing variables from data classes presenting similar properties. The datasets showed an increase in temperature of over 1°C since the 1950s. They also maintained the diurnal and seasonal cycles for all variables, thus verifying their internal coherence. Uncertainty at the sub-daily scale did not propagate at longer time-scales for the climatic data. Finally, trends in the seasonal and diurnal cycle of main variables were analyzed and were found coherent with published data. As an illustration of a possible use of this dataset, variations in the water and energy budgets for 1950-2012 for a major ecosystem in the region were simulated using a detailed LS
- Published
- 2014
44. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades
- Author
-
Piao, Shilong, Friedlingstein, Pierre, Ciais, Philippe, Viovy, Nicolas, Demarty, Jérôme, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), ICOS-ATC (ICOS-ATC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Modélisation des Surfaces et Interfaces Continentales (MOSAIC), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology - Abstract
International audience; A number of studies have suggested that the growing season duration has significantly lengthened during the past decades, but the connections between phenology variability and the terrestrial carbon (C) cycle are far from clear. In this study, we used the “ORganizing Carbon and Hydrology In Dynamic Ecosystems” (ORCHIDEE) process based ecosystem model together with observed climate data to investigate spatiotemporal changes in phenology and their impacts on carbon fluxes in the Northern Hemisphere (>25°N) during 1980–2002. We found that the growing season length (GSL) has increased by 0.30 days yr−1 (R2 = 0.27, P = 0.010), owing to the combination of an earlier onset in spring (0.16 days yr−1) and a later termination in autumn (0.14 days yr−1). Trends in the GSL are however highly variable across the regions. In Eurasia, there is a significant trend toward earlier vegetation green‐up with an overall advancement rate of 0.28 days yr−1 (R2 = 0.32, P = 0.005), while in North America there is a significantly delayed vegetation senescence by 0.28 days yr−1 (R2 = 0.26, P = 0.013) during the study period. Our results also suggested that the GSL strongly correlates with annual gross primary productivity (GPP) and net primary productivity (NPP), indicating that longer growing seasons may eventually enhance vegetation growth. A 1‐day extension in GSL leads to an increase in annual GPP of 5.8 gC m−2 yr−1 (or 0.6% per day), and an increase in NPP of 2.8 gC m−2 yr−1 per day. However, owing to enhanced soil carbon decomposition accompanying the GPP increase, a change in GSL correlates only poorly with a change in annual net ecosystem productivity (NEP).
- Published
- 2007
45. Monitoring evapotranspiration by assimilating remote sensing data into a dynamic SVAT model over the Alpilles test site
- Author
-
Olioso, Albert, Rivalland, Vincent, Demarty, Jérôme, Weiss, Marie, Rossello, Philippe, Jacob, Frederic, Inoue, Y., Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH), Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), National Institute of Agro-Environmental Sciences (NIAES), and ProdInra, Migration
- Subjects
[SDV] Life Sciences [q-bio] ,[SDE] Environmental Sciences ,[SDV]Life Sciences [q-bio] ,[SDE]Environmental Sciences ,MODELE ISBO ,RELATION SOL-PLANTE-ATMOSPHERE ,ComputingMilieux_MISCELLANEOUS ,LAI - Abstract
International audience
- Published
- 2005
46. Evapotranspiration monitoring using remote sensing measurements assimilated in a SVAT model
- Author
-
Rivalland, Vincent, Demarty, Jérôme, Olioso, Albert, Weiss, M., Rossello, Philippe, Jacob, Frédéric, Inoue, Y., Baret, Frédéric, Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH), Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), and ProdInra, Migration
- Subjects
[SDV] Life Sciences [q-bio] ,[SDE] Environmental Sciences ,[SDV]Life Sciences [q-bio] ,[SDE]Environmental Sciences ,ComputingMilieux_MISCELLANEOUS ,TENEUR EN EAU DU SOL - Abstract
International audience
- Published
- 2005
47. Comparison of three methods of data assimilation into a crop model, based on remote sensing observations
- Author
-
Houlès, V., Guerif, Martine, Nowakowski, M., Demarty, Jérôme, Makowski, David, Mary, Bruno, Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH), Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Agronomie (Agronomie), Institut National de la Recherche Agronomique (INRA)-Institut National Agronomique Paris-Grignon (INA P-G), Unité d'Agronomie de Laon-Péronne ( LILL LAON AGRO), Institut National de la Recherche Agronomique (INRA), and ProdInra, Migration
- Subjects
[SDV] Life Sciences [q-bio] ,[SDE] Environmental Sciences ,[SDV]Life Sciences [q-bio] ,[SDE]Environmental Sciences ,STICS ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2004
48. Potentialités de la méthode multi-objectifs, multi-critères dans l'assimilation de données de télédétection dans les modèles SVATs
- Author
-
Demarty, Jérôme, Olioso, Albert, Ottle, Catherine, Marloie, Olivier, Wigneron, J.P., Pardé, M., Braud, Isabelle, Noilhan, J., Calvet, J.C., Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH), Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre d'étude des environnements terrestre et planétaires (CETP), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Unité de bioclimatologie, Institut National de la Recherche Agronomique (INRA), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Centre national de recherches météorologiques (CNRM), Météo France-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Hydrologie-Hydraulique (UR HHLY), and Centre national du machinisme agricole, du génie rural, des eaux et forêts (CEMAGREF)
- Subjects
CEMAGREF ,Geography ,ACQUISITION DE DONNEES ,HHLY ,télédétection ,INRA ,SVAT MODEL ,SOIL VEGETATION ATMOSPHERE TRANSFER ,TSVA ,[SHS.GEO]Humanities and Social Sciences/Geography ,HHLYHYD ,CETP ,[SDE]Environmental Sciences ,Géographie ,CNRM ,ComputingMilieux_MISCELLANEOUS - Abstract
The purpose of the paper concerns remote sensing data assimilation in physically based models by the way off a multiobjective calibration procedure. Generally, the calibration of Soil Vegetation Atmosphere Transfer (SVAT) models consists in determining the best parameter set in terms of model performances. Due to model structural uncertainty and to errors on the observations, such a determination of a unique parameter set is generally impossible. This problem of non-uniqueness of the solution can be investigated by a multiobjective approach, in which different objective functions are optimised simultaneously. In this context, we developed a multiobjective approach allowing to combine sensitivity analyses and an iterative optimisation procedure of the model parameters in terms of uncertainty ranges. This paper investigates the potentialities of such a calibration approach in a remote sensing context, in order to drive SVAT models only by the way of remote sensing observations. The consequences of the calibration procedure on the simulated surface processes were analysed for different case studies. Main results showed that physically based SVAT models can be constrained by remote sensing observation without initial a priori information about soil and vegetation properties.; Cette communication concerne l'utilisation d'une méthode de calibration multiobjectifs, pour l'assimilation de données de télédétection dans des modèles à base physique. En général, la calibration des modèles de Transfert Sol Végétation Atmosphère, consiste à déterminer le jeu de paramètres conduisant aux meilleures performances pour le modèle. A cause, d'incertitudes sur la structure du modèle, d'erreurs sur les observations, une telle détermination d'un jeu de paramètres unique est en général impossible. Le problème de non-unicité de la solution peut être étudié à l'aide d'une approche multi-objectifs, dans laquelle différentes fonctions d'optimisation sont utilisées simultanément. Dans ce contexte, nous avons développé une approche multiobjectidfs permettant la combinaison d'analyse de sensibilité et de procédures itératives d'optimisation des paramètres du modèle en terme d'incertitudes. Cet article étudie les potentialités d'une telle calibration dans un contexte de télédétection, afin de forcer les modèles TSVAs uniquement à l'aide de données de télédétection. Les conséquences de la procédure de calibration sur les processus de surface simulés ont été analysés pour différents cas d'étude. Les résultats principaux montrent que les modèles TSVAs à base physiques peuvent être contraints par des données de télédétection sans information initiale a priori sur les propriétés du sol et de la végétation.
- Published
- 2003
49. Assimilation de données de télédétection dans les modèles TSVA et les modèles de culture pour piloter l'évapotranspiration et l'irrigation
- Author
-
Olioso, Albert, Inoue, Y., Ortega-Farias, S., Demarty, Jérôme, Wigneron, J.P., Braud, Isabelle, Jacob, F., Lecharpentier, Patrice, Ottle, Catherine, Calvet, J.C., Brisson, Nadine, Institut National de la Recherche Agronomique (INRA), NIAES TSUKUBA JPN, Partenaires IRSTEA, Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), CITRA UNIVERSIDAD DE TALCA CHL, Hydrologie-Hydraulique (UR HHLY), Centre national du machinisme agricole, du génie rural, des eaux et forêts (CEMAGREF), ESAP TOULOUSE, Centre d'étude des environnements terrestre et planétaires (CETP), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre national de recherches météorologiques (CNRM), and Météo France-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
CEMAGREF ,HHLY ,HHLYHYD ,SVAT ,[SDE]Environmental Sciences ,TSVA - Abstract
Soil-Vegetation-Atmosphere Transfer models (SVAT) and Crop Simulation models describe physical and physiological processes occurring in crop canopies. Remote sensing data may be used through assimilation procedures for constraining or driving SVAT and crop models. We developed the coupling between crop, SVAT and radiative transfer models in order to implement assimilation procedures in various wavelength domains (solar, thermal and microwave). Simple assimilation tests are presented in order to illustrate the main techniques that may be used for monitoring crop processes and evapotranspiration.; Les modèles de Transfert Sol-Végétation-Atmosphère (TSVA) et les modèles de culture décrivent l`ensemble des processus physiques et physiologiques des couverts végétaux. Les données de télédétection peuvent être utilisées pour contraindre ou piloter les modèles TSVA et les modèles de culture au moyen de procédures d`assimilation. Nous avons développé une combinaison de modèles TSVA, de culture et de transfert radiatif dans le but de mettre en place des procédures d`assimilation dans différents domaines de longueurs d`onde (solaire, thermique et microondes). Des exemples simples d`assimilation sont présentés de façon à illustrer les principales méthodes qui peuvent être utilisées pour suivre l`évapotranspiration et le fonctionnement de cultures.
- Published
- 2003
50. Assimilation variationnelle et multispectrale dans un modèle TSVA par étalonnage stochastique
- Author
-
Demarty, Jérôme, Olioso, Albert, Ottle, Catherine, Braud, Isabelle, Wigneron, Jean-Pierre, Pardé, M., Noilhan, J., Calvet, J.C., Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH), Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Unité de bioclimatologie, Institut National de la Recherche Agronomique (INRA), and ProdInra, Migration
- Subjects
[SDV] Life Sciences [q-bio] ,[SDE] Environmental Sciences ,[SDV]Life Sciences [q-bio] ,[SDE]Environmental Sciences ,TSVA ,ComputingMilieux_MISCELLANEOUS - Abstract
National audience
- Published
- 2002
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.