1. Characterization and modulation of voltage-gated potassium channels in human lymphocytes in schizophrenia.
- Author
-
Iglesias-Martínez-Almeida M, Campos-Ríos A, Freiría-Martínez L, Rivera-Baltanás T, Rodrígues-Amorím D, Diz-Chaves Y, Comis-Tuche M, Fernández-Palleiro P, Rodríguez-Jamardo C, Ramos-García S, Rodríguez-Tébar A, Del Carmen Vallejo-Curto M, Campos-Pérez JA, López-García M, de Las Heras E, García-Caballero A, Olivares JM, Lamas JA, and Spuch C
- Subjects
- Humans, Male, Female, Adult, Middle Aged, Patch-Clamp Techniques, Lymphocytes metabolism, Membrane Potentials physiology, Membrane Potentials drug effects, Proteomics, Schizophrenia metabolism, Schizophrenia immunology, Schizophrenia physiopathology, Potassium Channels, Voltage-Gated metabolism
- Abstract
Background: It is known that the immune system is dysregulated in schizophrenia, having a state similar to chronic neuroinflammation. The origin of this process is unknown, but it is known that T and B lymphocytes, which are components of the adaptive immune system, play an important role in the pathogenic mechanisms of schizophrenia., Methods: We analysed the membrane of PBMCs from patients diagnosed with schizophrenia through proteomic analysis (n = 5 schizophrenia and n = 5 control). We found the presence of the Kv1.3 voltage-gated potassium channel and its auxiliary subunit β1 (KCNAB1) and β2 (KCNAB2). From a sample of 90 participants, we carried out a study on lymphocytes with whole-cell patch-clamp experiments (n = 7 schizophrenia and n = 5 control), western blot (n = 40 schizophrenia and n = 40 control) and confocal microscopy to evaluate the presence and function of different channels. Kv in both cells., Results: We demonstrated the overexpression of Kv1.1, Kv1.2, Kv1.3, Kv1.6, Kv4.2, Kv4.3 and Kv7.2 channels in PBMCs from patients with schizophrenia. This study represents a groundbreaking exploration, as it involves an electrophysiological analysis performed on T and B lymphocytes from patients diagnosed of schizophrenia compared to healthy participants. We observed that B lymphocytes exhibited an increase in output current along with greater peak current amplitude and voltage conductance curves among patients with schizophrenia compared with healthy controls., Conclusions: This study showed the importance of the B lymphocyte in schizophrenia. We know that the immune system is altered in schizophrenia, but the physiological mechanisms of this system are not very well known. We suggest that the B lymphocyte may be relevant in the pathophysiology of schizophrenia and that it should be investigated in more depth, opening a new field of knowledge and possibilities for new treatments combining antipsychotics and immunomodulators. The limitation is that all participants received antipsychotic medication, which may have influenced the differences observed between patients and controls. This implies that more studies need to be done where the groups can be separated according to the antipsychotic drug., Competing Interests: Declaration of competing interest The authors declare no conflict of interest., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF