110 results on '"Dechant G"'
Search Results
2. Cell-specific frataxin deficiency in peripheral sensory neurons in a Friedreich ataxia model based on human induced pluripotent stem cells: 25
- Author
-
Eigentler, A., Boesch, S., Dechant, G., and Nat, R.
- Published
- 2014
3. S02. TUMOUR RISKS AND GENOTYPE-PHENOTYPE ANALYSIS IN AN IRISH COHORT OF PATIENTS WITH GERMLINE MUTATIONS IN THE SUCCINATE DEHYDROGENASE SUBUNIT GENES SDHB, SDHC AND SDHD
- Author
-
Hynds, P, Coghlan, D, Purcell, C, Green, A, Ward, A, Lynch, SA, Hough, O, Duff, M, Cody, N, Carroll, C, Bradley, L, Green, Andrew, Lynch, Sally-Ann, Crushell, E, Byrne, N, Gorman, K, King, M, Irvine, A, Monavari, A, Knerr, I, Cotter, M, McConnell, V, Browne, F, Lambert, D, Turner, J, Casey, J, Doyle, S, Nesbitt, IM, Fitzgibbon, M, Pastores, G, Kirk, R, Treacy, EP, Benson, KA, Kennedy, C, Yachnin, K, Cavalleri, G L, Conlon, P, McVeigh, Úna M, McVeigh, Terri P, Miller, Nicola, Morris, Derek W, Kerin, Michael J, Irwin, R., Caffrey, A., McLaughlin, M., McNulty, H., Cassidy, T., Pentieva, K., Walsh, C., Minguzzi, S, MacCooey, A, Brosnan, J, Brosnan, M, Henry, M, Meleady, P, Parle-McDermott, A, Gilbert, EH, O’Reilly, S, Merrigan, M, McGettigan, D, Molloy, AM, Brody, LC, Bodmer, W, Hutnik, K, Ennis, S, Lawson, DJ, Wilson, JF, Cavalleri, GL, Flynn, M, Whitton, L, Gill, M, Corvin, A, Donohoe, G, Morrison, C, Morris, D, Stapleton, CP., Birdwell, KA., Mark, PB., Sanders, ML., Phelan, PJ., Maxwell, AP., McKnight, AJ., Kennedy, C., Jardine, A., Traynor, J.P, Chapman, F., Keating, B., Conlon, PJ., Cavalleri, GL., Gunne, EA, Lambert, DM, Martin, R, Donnelly, DE, Callaghan, MB, Morrison, PJ, McConville, DO, Archbold, GP, Lewis, A, Morrison, P J, Das, S., Kelly, D., Moran, B., Harold, E., Han, K., Mulligan, N., Barrett, C., Buckley, P.G., Mc Mahon, P., McCaffrey, J, Van Essen, H. F., Connor, K., Ylstra, B., Lambrechts, D., Gallagher, W.M., O’Connor, D.P., Kelly, C.M., O’Neill, T, Power, C, de Franco, E, Ellard, S, Antao, B, O’Connell, SM, Dabir, T, Heggarty, S, Dockery, A, Carrigan, M, Wynne, N, Keegan, D, Stevenson, K, Silvestri, G, McCourt, J, Humphries, P, Kenna, PF., Farrar, GJ, Agbahovbe, R, Cohen, ASA, Gibson, WT, Cole, AM, Bohlender, R., Hu, H, Heinrich, E, Ramirez, C, Yu, Y, Powell, F, Gaio, E, Villafuerte, F., Taylor, C, Huff, C, Simonson, T., Cavalleri, G., Scullion, C, Irwin, R, Thakur, A, Walsh, C, Shortall, C, Palfi, A, Chadderton, N, Kenna, PF, Boomkamp, S, Shen, S, Hardcastle, AJ, Maloney, DM, Millington-Ward, S, Mackin, S-J, Irwin, R E., O’Neill, KM., Pollin, G, Apostolova, G, Dechant, G, Mackin, SJ, O’Neill, K, Walsh, CP, Sohedein, MNA, Morris, DW, Chaudhry, M, Segurado, R, Shields, D, Wilson, AG, Watkin, R.L., Piskareva, O., Madden, S., Stallings, R., Kerrigan, S.W., O’Neill, K M., Thursby, SJ, Bertens, C, Masala, L, Loughery, J, McArt, D, Amenyah, S. D., McMahon, A., Deane, J., Ward, M., Strain, J.J., Horigan, G., Purvis, J., Lees-Murdock, D., Lynch, SM., Ward, M, McNulty, H, Horigan, G, Purvis, J, Tackett, M, McKenna, DJ., Angel, Z, and Walsh, CP.
- Subjects
Abstracts ,Poster Presentations ,Oral Presentations ,Article - Abstract
Neurofibromatosis (NF1) affects 1/2500 people throughout the world. Children with NF1 require a multidisciplinary service ideally, delivered on a single site. NF1 is a very variable condition with children requiring the expertise of genetics, paediatricians, ophthalmologists, dermatologists, neurologists and other specialities as required. Building such a service concentrates expertise, facilitates coordination of care and fosters ideal opportunities for research. Aims: 1) To develop a service ensuring children had access to a multidisciplinary clinic on an annual basis. 2) Hold monthly clinics offering ophthalmology, medical, developmental and dermatology follow up. 3) To create a registry of patients which captures the incidence and prevalence of NF1 in Ireland. To offer best possible care for the children attending the service by following international consensus guidelines. 4) To liaise with NF1 Association, families and research authorities. Methods: 1) Appointment of a CNS/CNM2 in Neurofibromatosis as funded by the NCH Foundation. 2) Visit to the complex NF1 Clinic in Manchester’s Children’s Hospital and learn from their service, MDT and guidelines. 3) Establish links with genetics, oncology, radiology and orthopaedic depts. in OLCHC. 4) Create a referral pathway for HCPs to ensure children with NF1 are referred to most appropriate service in a timely fashion. 5) To register the service on Orphanet and gain entry into an ERN as a multi-site service in conjunction with OLCHC. Results/Conclusion: To date, the service has been running for 9 months. The CNM2 provides telephone service and coordinates clinics. The Clinic has been registered in Orphanet and the process has begun to create a patient registry and enter the service in the ERN., Germline mutations in the succinate dehydrogenase subunit genes SDHB, SDHC and SDHD are the most frequent causes of inherited phaeochromocytomas and paragangliomas. Patients presenting with these tumours are usually offered genetic testing for these and other genes as part of standard clinical investigations. However, the information regarding penetrance and phenotype genotype correlations associated with SDHB/C/D mutations is variable, making it difficult to determine an optimum management strategy for this group. In order to address this issue we undertook a retrospective cohort study of patients who underwent genetic testing for SDHB, SDHC or SDHD. 195 patients were identified through the Irish Genetics laboratory electronic database as having had a genetic test for SDHB, SDHC or SDHD and referral source, referral reason and genetic test outcome were analysed. Analysis of penetrance and phenotype presentation was determined through a Clinical Genetics chart review of 147 patients from 40 separate families. Analysis of age-related tumour risks according to relevant gene and mutation type (for SDHB and SDHD) provided estimates of penetrance and genotype-phenotype correlations. Increased knowledge of the molecular basis of phenotypic variability commonly observed in individuals with germline SDHB/C/D mutations will facilitate the development of age-appropriate management protocols based on gene specific tumour risks., Irish Travellers are an endogamous, ethnically Irish population of ~40,000. Consanguinity is common. Knowledge of Traveller disorders exists but mainly in specialised Irish centres. Most Traveller disorders are published but ethnicity is not explicit, hampering diagnoses, particularly if the patient is overseas where knowledge about this population is poor. Aims: To catalogue inherited Irish Traveller disorders through identifying the disorders, detailing mutations, use of coding, (OMIM, Orphacodes & ICD10), publications, and help develop a database to facilitate diagnoses. Methods: A literature review was undertaken. Key national and international Clinician/scientists were contacted to identify relevant disorders and publications. Laboratory and clinical databases were searched to retrieve disorders & mutations. Annotations were updated. An Excel database was established listing each disorder, its appropriate code, associated mutation and relevant publication. Results: 86 distinct rare genetic disorders resulting in 75 phenotypes were identified; 78/86 were autosomal recessive; 4 of these were dominant disorders presenting only in the recessive state. Seven dominant disorders with no recessive phenotype were included as > one affected individual existed. One common 17q12 duplication was included, presenting in two unrelated families. Homozygous mutations were found in all recessive disorders bar one. The genetic basis of 78/86 was established. A further 2/76 have common haplotypes; the genetic basis of six disorders remains unclear. Linkage disequilibrium was observed in 4 families with co-existing McArdles disease and microcephaly & 11 individuals have co-existing Friedreich’s ataxia & galactosemia. Conclusion: Our work is the first step towards cataloguing inherited Irish Traveller disorders. Future challenges include development of an online mutation database., Primary Trimethylaminuria (TMA)(OMIM 136132), is an autosomal recessive rare disorder which results in diminished capacity to oxidise the dietary derived amine trimethylaminuria to its odourless metabolite Trimethylamine-n-oxide (TMA-n-Oxide). Severe primary TMA has been defined as the percentage of unmetabolised free TMA in urine being >40% and mild/moderate TMA range is 10-39%. More than 30 variants of the Flavin monooxygenase 3 (FMO3) have been reported to cause primary TMA. Diagnosis of primary TMA has implications for management of the patient in relation to treatment and genetic counselling. We sequenced the entire FMO3 gene coding region in 10 patients who had a biochemical diagnosis of TMA made in the past 5 years. Three of the patients had severe TMAU (% TMA range 39.4 to 45), (Group A) and 7 had mild to moderate TMAU (%TMA range 10-30), (Group B). We identified causative (loss of function) in 5/10 individuals. Homozygosity for loss of function mutations was detected for 2/3 cases with severe TMAuria (Group A). 3/7 of the patients with mild to moderate TMAuria biochemically had a genetic diagnosis. Two were homozygous for Glu158Lys/ Glu308Gly and the other was compound heterozygous for P153L and A232T. Primary TMAU is rare in Ireland and mutational analysis should not replace biochemical diagnosis.The rate of detection of pathogenic mutations was low using the recommended biochemical cut-offs. The E305X mutation the first FMO3 mutation described in OMIM (136132.0001) in an Irish Australian family may be an Irish Mutation. Two new apparent FMO3 mutations are described in this Irish population. A cut- off of free TMA levels higher than that suggested on the Gene Utility card may be more beneficial in directing genotyping., Background: As part of the Irish Kidney Gene project, 2000 people with renal disease were surveyed and >30% of participants reported a family history for their condition. This strongly suggests an underlying genetic component for the development of kidney disease. Blood and urine tests as well as kidney biopsies are frequently used to inform on aetiology of the disease. However, in around 10% of cases, aetiology is simply unknown, making it difficult for physicians to provide a clear diagnosis or prognosis to these patients. Aim: This project aims to utilise genomic sequencing to stratify patients with hereditary renal disease (HRD). In doing so we seek to aid clinical diagnosis, provide insight into pathogenesis and in some cases point to specific therapies. Methods: We developed a custom, targeted NGS panel for inherited kidney diseases which we have applied to 48 HRD patients. The panel includes 11 genes which are established causes of polycystic kidney disease, von Hippel Lindau syndrome, renal cysts and diabetes syndrome and Alport syndrome. The NimbleGen Heat-Seq kit was used for library preparation and samples were sequenced using an Illumina MiSeq platform at Beaumont Hospital. Data was analysed using a custom bioinformatics pipeline and variants were classified according to the ACMG guidelines. Results/Conclusions: To date, this panel has identified candidate pathogenic variation in a third of samples studied. Future work in this project will include the development of a larger targeted panel including >100 known renal disease genes., Breast cancer is the most common female malignancy worldwide. Up to 10% of cases are the result of an inherited monogenic mutation, while a further 25% appear in familial clusters. Only 30% of hereditary breast cancers are attributed to mutations in BRCA1 and BRCA2, identified as high-risk genes through linkage analysis. While BRCA mutational status is highly informative, and allows clinicians to modify surveillance, prevention and therapeutic strategies, the risk conferred by mutations in other genes is more difficult to define in light of variable penetrance. Next-generation sequencing has been rapidly evolving to advance testing sensitivity and throughput in a cost-effective manner. This progression has made multi-gene testing a practical option when looking to identify inherited mutation(s) in a clinical setting. However, current clinically available multi-gene panels generate many variants of unknown significance in genes that are presently not considered clinically useful. The aim of our study was to design a multi-gene panel to enable the detection of rare, probably pathogenic variants contributing to the susceptibility of breast cancer in an Irish population. An extensive literature review was conducted in order to generate a list of 282 genes with potential association to breast cancer. Targeted DNA enrichment and multiplexed next-generation sequencing was performed on a cohort of 167 samples from the west of Ireland. 90 breast cancer patients and 77 geographically-matched controls were included in this study. Bioinformatic analysis was performed following GATK best practices workflow. Variant data for our 282 selected genes will be presented and discussed., Increasingly accurate surveys of human health throughout the life course has led experts to propose that stresses on the developing child whilst in the mother’s womb can affect the individual’s health later in life. Such long-term effects on health are thought to be mediated by a semi-permanent trace on the genes called an epigenetic mark, mediated by processes such as DNA methylation. DNA methylation patterns may be altered by the mother’s diet, particularly folate – a key component in the DNA methylation cycle. Currently, mothers are recommended to supplement their diet with 400μg folic acid/day as a preventative measure against neural tube defects prior to/during the first trimester. However, there remains no clinical recommendation as to whether mothers should continue supplementation during the latter two trimesters and the potentially heritable effects. Thus, we analysed cord blood samples (n=93) from the Folic Acid Supplementation in the Second and Third Trimesters (FASSTT) randomised control trial for genome-wide DNA methylation. Offspring exposed to folic acid in later pregnancy had fewer highly methylated genomic regions and more intermediately methylated sites. Upon further interrogation, gene ontology analysis revealed these sites are enriched for genes associated with cognition and neurological system processes, and tissue analysis revealed enrichment of affected genes associated with the brain. Cognitive and psychosocial testing of the children at age 7 years, using standardised tests (WPPSI, TEIQue-CSF, RASP), showed that the children supplemented during pregnancy scored significantly higher for emotional intelligence, resilience and verbal IQ. Thus, this study offers a potential biological mechanism linking maternal folate levels with childhood cognition., Introduction: We previously identified the mitochondrial 10-formyltetrahydrofolate synthase enzyme, MTHFD1L, as a risk factor for human Neural Tube Defects (NTD). This association was further supported by a mouse model of mutant mthfd1l, that exhibited an NTD and was rescued with maternal formate supplementation. The abundance of MTHFD1L is also increased in a range of cancers. MTHFD1L performs the last step in mitochondrial one carbon metabolism to produce formate for transport into the cytoplasm. Aim: Given the pivotal role of MTHFD1L in human disease, we sought to decipher the cellular response to the expression level of MTHFD1L in HEK293 cells. Methods: Human MTHFD1L was overexpressed in a stably transfected line using a pcDNA3.2 vector and knocked down using two inducible shRNA constructs that were clonally selected. Cells were grown and sampled over a five-day period. Expression level was confirmed by RT-qPCR. Intracellular and media formate levels were measured using GC-MS. Proteomics analysis was performed on whole cell lysates using LC-MS/MS on an Ultimate 3000 nano LC system coupled to a LTQ Orbitrap XL. Results: Intracellular and media formate levels directly correlated with expression level of MTHFD1L compared to controls within an approximately 1.5 to 3 fold range. Our proteomics analysis showed that MTHFD1L expression level had an effect on proteins involved in DNA synthesis, replication and repair. Discussion: We have demonstrated that MTHFD1L expression level has a direct impact on both intra- and extra-cellular levels of formate and may act as a signal for uncontrolled cell proliferation., Ireland has remained relatively isolated from mainland Europe, notwithstanding historical migrations including the Norse-Vikings, Anglo-Normans, and the British Plantations. Although previous studies have shown the Irish to have elevated levels of homozygosity compared to mainland Europe, the extent of genetic structure within Ireland, and the genomic impact of historical migrations, is largely unknown. Here we illustrate fine-scale genetic structure across Ireland that follows sociological boundaries and present evidence of admixture events into Ireland. Utilising the ‘Irish DNA Atlas’, a DNA cohort (n = 194) of genealogically described Irish individuals with four generations of ancestry linked to specific regions in Ireland, we analysed in combination with 2,039 individuals of regional British ancestry (the PoBI dataset) and show that the Irish population subdivides into 10 distinct geographically-stratified genetic clusters; three of shared British/Irish ancestry, and seven of predominantly ‘Gaelic’ Irish ancestry. This structure is remarkably homogenous, and is associated with very little gene flow barriers within Ireland. Additionally, using a reference of 6,760 European individuals and two ancient Irish genomes, we quantified the ancestry of these Irish clusters within the context of Europe as well as ancient Ireland. We show high levels of north-west French-like and Norwegian-like ancestry within Ireland, and homogenous levels of ancient Irish ancestry in our ‘Gaelic’ Irish clusters. Finally we detect admixture events into Ireland, coinciding with the Plantations of Ulster, as well as Norse-Viking activity within Ireland. Our work informs both on Irish history, as well as the study of Mendelian and complex disease genetics involving populations of Irish ancestry., Schizophrenia affects 1% of adults and is a major global health problem. I am interested in the potential role of the centrosome in schizophrenia. The centrosome, an organelle within cells, plays a crucial role in brain development where it directs cell shape, polarity and motility. The centrosome also seeds the growth of antenna-like signalling structures called primary cilia. Rare mutations in centrosome genes cause disorders that present with severe cognitive deficits and variable neuropsychiatric phenotypes. GWAS data has implicated many genes in schizophrenia. We have shown that seven schizophrenia risk genes encode proteins with centrosomal functions. Of these, SDCCAG8 is also associated with educational attainment in GWAS and the genome-wide significant SNPs for the two phenotypes are in high linkage disequilibrium indicating a pleiotropic effect. We have found that a schizophrenia risk SNP in SDCCAG8 is significantly associated with poorer performance in a social cognition task, in a large Irish dataset of schizophrenia patients and controls (p=0.001). To analyse the molecular function of SDCCAG8 we have used genome editing to knock it out in neuronal and retinal cells. Preliminary data shows that loss of SDCCAG8 impairs cells’ ability to make primary cilia and that their capacity to repair genome damage is reduced. Current work is addressing whether SDCCAG8 affects activities that may contribute to schizophrenia, including cell migration and cell signalling. This could identify molecular mechanisms by which SDCCAG8 mutations contribute to schizophrenia risk and cognition, and help uncover the processes that implicate centrosome genes in neurodevelopmental phenotypes., Multiple genetic loci have been identified for non-melanoma skin cancer (NMSC) in the general population. Polygenic risk score (PRS) was defined as the sum of all alleles associated with a trait weighted by the effect size of that allele as determined by a previous genome-wide association study (GWAS). We tested whether PRS, calculated using a GWAS of NMSC in a non-transplant population, can be used to determine risk of developing and time to NMSC post-transplant. Post-kidney transplant NMSC cases (n=155) and controls (n=442) were collected from Tennessee, Ireland and Scotland. Genetic variants that reached pre-defined levels of significance were chosen from a squamous cell carcinoma (SCC), and basal cell carcinoma (BCC) GWAS, both conducted in non-transplant populations. Using these GWAS results, BCC and SCC PRSs were calculated at each p-value threshold (pT) for each sample. PRSs were tested as a predictor of case:control status using logistic regression and time to NMSC post-transplant in a survival model. SCC PRS calculated at pT 1x10-6 was the most significant predictor of case: control status of NMSC post-transplant (OR per 1 stdev increase in PRS=2.3; corrected P (Pc)=0.04). When NMSC was subdivided into SCC and BCC, SCC PRS pT 1x10-6 significantly predicted case:control SCC (OR=2.5, Pc=0.02) and BCC status (OR=7.6, Pc=0.02). SCC PRS pT 1x10-5 also significantly predicted time to BCC (Pc=0.007, HR=1.8) and SCC (Pc=0.05, HR=1.4). PRS of non-transplant NMSC can be used to predict case:control status of post-transplant NMSC, SCC and BCC as well as time to developing BCC and SCC post-transplant., Introduction: Rare diseases are diseases, which affect a small number of people compared to the general population. In Europe, a disease is considered rare when it affects no more than 5 per 10,000 individuals. A disease can be rare in one region but common in another. The objective of this study was to derive a proxy estimate the number of childhood onset rare diseases through referrals to the country’s only Genetics center, as the Republic of Ireland does not have a centralized rare disease registry. Methods: A retrospective review of referrals to cytogenetics and clinical genetics for the years 2000-2016 for patients born in the year 2000 was undertaken. Anonymized data was catalogued into rare, common, normal, likely rare & unclassifiable by review of records, and assigned Orphacodes based on diagnosis. Census live birth data was used as the denominator. Results: 54,7891 live births were recorded by the census in 2000. 1872 referrals to Genetics (representing 1749 individuals born in 2000) were retrieved for review. 1007 had cytogenetic testing only, of which 51 had rare chromosomal anomalies. Review of 742 referrals to clinical genetics yielded 581 with a rare disease (78%), 7 with a likely rare disease, 56 with a common disorder, 83 who were normal (at risk relative) & 15 unclassified (hadn’t yet been seen). Of the 53/1749 who had died (3%), 51 had a rare disease with congenital malformations (24) the most common cause., Neurofibromatosis type 1 (NF1) is a relatively common autosomal dominant genetic condition, with an incidence of around 1 in 3000. All NF1 patients attend our regional NF1 clinic intermittently and our departmental database records clinical details. Currently, we have 468 living patients affected with NF1 in Northern Ireland. NF1 is caused by mutations, or occasionally deletions, of the neurofibromin tumour suppressor gene, which leads to over-activation of the RAS-MAPK pathway, and tumour formation. These vary from benign lesions, such as neurofibromas, through to malignant peripheral nerve sheath tumours (MPNSTs) and tumours in other sites, particularly the central nervous system, that can be associated with significant morbidity and mortality. MEK inhibitors have recently been shown to be an effective treatment modality in the tumours associated with NF1. We have studied our population to determine the number of patients with plexiform neurofibromas, who are at risk of MPNSTs, and the proportions of patients with tumours elsewhere. This will allow us to identify which patients could benefit from MEK inhibitors in the future., Tuberous Sclerosis complex (TSC) is an autosomal dominant genetic condition which results, in the majority of patients, from a mutation in the TSC1 or TSC2 genes. Many of the patients are affected by angiomyolipomas and sub-ependymal giant cell astrocytomas. There is evidence that mTOR inhibitors, particularly Everolimus, shrink such tumours. In addition, the recent EXIST-3 study showed that Everolimus led to a significant reduction in seizure frequency in TSC patients whose seizures had previously proved resistant to anti-epileptic drug treatment. Consequently, a European licence has been granted to prescribe Everolimus for this indication. In order to determine the potential number of patients who may be eligible for consideration of this treatment, we undertook a complete population survey of epilepsy in our TSC patients. Information was extracted from our database and descriptive statistics were carried out. We were particularly interested in obtaining numbers of those whose seizures were poorly-controlled, defined as requiring 3 or more anti-epileptic drugs to manage their seizures, or requiring neurosurgical intervention. Many of the TSC patients with a diagnosis of epilepsy were also diagnosed with learning difficulties. The possibility of an association between degree of seizure control and severity of learning difficulties was explored. Finally, the annual cost of prescribing Everolimus to Northern Ireland’s TSC patients with poorly-controlled seizures was estimated., Charcot neuroarthropathy is associated with neurological deficit and is often seen in patients with a history of diabetes. Zygodactyly is a common congenital malformation with cutaneous webbing of the second and third toes. To determine the frequency of Zygodactyly in midfoot (tarso-metatarsal) Charcot neuropathy due to diabetes, we analysed a prospective series of twenty-five patients with Charcot neuropathy referred to podiatry clinics from diabetes and vascular departments. Twenty-nine patients with diabetes (but no Charcot neuropathy) were used as controls. Nineteen of the twenty-five patients with type 2 diabetes, peripheral neuropathy, and midfoot Charcot neuroarthropathy, exhibited Zygodactyly as did one of the twenty-nine controls. There was a significant difference between the two groups (Chi squared test p< 0.001). None of the cases or controls had any dysmorphic features or other limb malformations. Zygodactyly occurred in association with midfoot Charcot neuroarthropathy (diabetic neuropathy) in 76% of cases. No association between Zygodactyly, diabetes and Charcot neuropathy has previously been recognised. Genes such as OPG and RANKL affect foot and bone development and MSX1 and PLA2G6 affect spinal and distal nerve development. The possibility of a genetic contribution in patients who develop type 2 diabetes, peripheral neuropathy and Charcot neuroarthropathy must be considered. Zygodactyly may act as a predictive marker for Charcot neuropathy and further identification of regulatory genes may be possible. Until then, recognition of Zygodactyly may allow early intervention and a reduction of complications in patients with Charcot neuropathy., Development of an unusual clinical phenotype across both common and rare cancer types presents a significant challenge from a diagnostic and therapeutic perspective. We describe two distinct cases involving an Ovarian adenocarcinoma and a Medullary Thyroid cancer (MTC) patient and wherein both patients presented with metastases at highly unusual locations, followed by development of an aggressive disease. In first case involving a patient diagnosed with ovarian adenocarcinoma presented with a rare solitary extracranial brain metastases with no other associated metastases after 2 years post-hysterectomy and chemotherapy. Despite surgical removal of the metastatic lesion and stereotactic radiotherapy, the patient showed a further relapse at the initial as well as two additional extracranial regions. Our current analysis of whole-genome sequencing of primary tumour and extracranial lesion, reveal a remarkable difference in the genomic aberration landscape between the primary tumour and the metastases. In addition, we also identify several structural variants including novel gene fusions as well as gross chromosomal abnormalities, which could be potentially utilized as targets for treating this patient further. In the second case, whole-exome sequencing of primary tumour and bone-marrow metastases in the MTC patient identified three germline single nucleotide polymorphisms (SNPs) within the RET proto-oncogene that remained undetected using routine hospital genetic testing procedures. More importantly, we report for the first time in thyroid cancer on the occurrence of a “chromothripsis-like pattern”, which involved shattering of chromosome 4 leading to complete abrogation of normal chromosomal function, along with dramatic widespread copy number aberrations across both primary tumour and bone marrow samples. These results provide a rationale for the application of comprehensive genomic analysis of cancers presenting with unusual and aggressive phenotypes to facilitate more appropriate therapeutic options and diagnoses., Transient Neonatal Diabetes (TNDM) is characterised by diabetes that develops in the first 6 weeks of life and resolves by 18 months. Approximately 70% of cases are classified as TNDM Type-1 (TNDM1), caused by methylation defects on chromosome 6q24. It is associated with some congenital anomalies, however associated hepatobiliary abnormalities are not described. Choledochal cysts are congenital dilations of part or all of the bile duct, occurring in 100,000-150,000 live births. The 5 major types are classified according to the extent of hepatobiliary involvement. Surgical excision of the cyst is indicated to prevent complications such as stone formation, malignancy, cyst rupture and pancreatitis. We describe a case of TNDM1 due to whole chromosome paternal uniparental disomy 6, with co-existence of a type 1a choledochal cyst in a female born following intrauterine growth retardation. Hyperglycaemia soon after birth led to insulin treatment and a diagnosis of TNDM1, with resolution of the diabetes by 4 months of life. Follow up of antenatal findings of a cystic anomaly demonstrated the presence of a type 1a choledochal cyst on ultrasound and magnetic resonance cholangiopancreatography. Sucessful surgical excision of the cyst and a roux-en-Y hepaticojejunostomy was undertaken at 6 months of age. To our knowledge the co-existence of these disorders has not previously been reported. Further genetic analysis by whole exome sequencing is now in progress to determine if a mutation in the PKHD1 gene, unmasked by the paternal UPD of the entire chromosome 6, explains the associated choledochal cyst in this case., Mosaic mutations can go unnoticed, underlie genetic disease or normal human variation, and may be transmitted as constitutional variants to future generations. Marfan syndrome (MFS) is a clinically variable systemic connective tissue disorder involving ocular, skeletal, and cardiovascular systems. The risk to siblings of an identified de novo variant in a proband remains above population risk but less than the 50% risk attributed probands (~75%) who have an affected parent. This is due to somatic and germline mutations reported in rare cases. We describe the phenotypic variability in three siblings with a confirmed heterozygous pathogenic exon 52 fibrillin1 (FBN1) gene variant with clinically unaffected parents Parental leucocyte DNA was tested and did not identify the FBN1 gene variant. Paternity has been unequivocally confirmed and subsequent testing of parental buccal samples failed to detect the variant. One brother had aortic valve replacement and aortic aneurysm repair at 35 while another brother had surgery of aortic dilatation at the sinuses of Valsalva at 32. The brothers had variable joint hypermobility, patellar dislocations and ophthalmic presentations involving subluxed lenses, myopia and ambylopia. Early onset of varicose veins as a teenager in one and thoracolumbar scolosis in another brother were present. Their 42 year old sister has apparently normal aortic and cardiac imaging and ophthalmology but has mild Marfanoid facial features. To our knowledge this is the first reported family in the literature of 3 siblings as a result of parental mosaicism for a FBN1 gene variant and highlights the impact for genetic counselling., The inherited retinal degeneration (IRD) patient cohort used in the study has been obtained via a collaborative network of opthamoloogists whereby if an IRD is suspected given consent, a DNA sample is taken and provided to a central laboratory for genetic analysis. The study seeks to detect previously identified, together with as yet undiscovered, pathological mutations in a panel of known retinal degeneration genes utilizing target capture next generation sequencing (NGS) for 264 IRD genes. The study to date includes over 700 IRD patients from more than 500 pedigrees. While clinical trials are in progress for patients with IRDs, many such trials require patients to have a known causative mutation to participate in these trials. The Target 5000 research project aims to genetically characterise the estimated 5,000 people in Ireland with IRDs. To date, as part of Target 5000, over 10% of the Irish IRD population has been sequenced providing real insights into the genetic architecture of IRDs in Ireland. Target 5000 offers not only a chance to discover new relevant and pathogenic mutations, but is vital to providing patients with information regarding the underlying genetic pathogenesis of their disease. Thus far, during the course of the study, genetic analysis of IRD patients has helped to resolve ambiguous phenotypes and to identify causative mutations in approximately 60% of IRD cases. The growing body of data from NGS studies of IRDs globally should facilitate better correlations between genotype and phenotype and refine methods for diagnoses and prognoses., Overgrowth syndromes are characterized by tall stature, macrocephaly and other congenital features. These disorders typically arise sporadically through de novo dominant mutations in a growing list of genes. Although whole-exome sequencing (WES) allows us to examine all genes at once in a cost effective manner, we are left with a very large number of possible disease-causing variants to sift through. In addition, we must identify at least two patients with mutations in the same novel gene for the finding to be significant. To address this, we utilized detailed phenotyping of patients with undiagnosed overgrowth to group patients with significant phenotypic overlap and to help us interpret and prioritize the variants identified via WES. We performed WES for 12 undiagnosed patients from our overgrowth cohort. For most patients, there were no obvious causative variants in genes that were previously associated with human overgrowth. Therefore we analysed the participants’ clinical records to look for phenotypic traits that may lead us to new candidate genes. After further mining of the WES data, we prioritized possible disease causing variants based on a number of factors including biological function of the gene, predicted effect on protein function and a minor allele frequency, Living the ‘high life’ presents challenging conditions of extreme cold, hypobaric hypoxia and a restrictive diet that forces populations to adapt to survive. The Quechua are an indigenous high altitude population of Peru and Bolivia. They have resided at altitudes greater than 2500 meters above sea level (m.a.s.l) for the past 10,000 years, following their arrival in South America. Previous studies have characterised their adaptive physiology and identified genes under natural selection (ref). However our understanding of their genetic adaptation to hypoxia is incomplete, as previous studies focused on common genetic variation and applied a limited number of selection tests. To shed further light on genetic adaptation in the Quechua, we established a cohort of 43 Quechua individuals from Cerro de Pasco, Peru (4330 m.a.s.l). We performed whole genome sequencing to a mean depth of 34X. We detailed the demographic history of Quechua using principal components analysis, Admixture and Treemix. We performed five tests of selection, (iHS, XP-EHH, ΔiHH, FST and ΔDAF) on real, and simulated Quechua data incorporating details of the demographic history of the population. We performed a composite of multiple signals (CMS), which aggregates information from the five tests of selection, and identified robust signals of positive selection in high altitude Quechua individuals. The Quechua appear as a relatively homogenous population, with 10% European ancestry. We report the top 1% of genes under selection identified by CMS. We identify putative hypoxia associated genes under selection as well as the previously reported well-characterised hypoxia gene EGLN1., DNA methylation is an important epigenetic mechanism of regulating gene expression that is affected in certain human diseases including imprinting disorders and cancer. In mouse, UHRF1 is an essential cofactor of DNMT1, the enzyme responsible for maintaining methylation patterns. To investigate the effects of loss of UHRF1 on methylation patterns in human cells, UHRF1 levels were decreased in immortalized hTERT fibroblast cell lines using short hairpin RNA. Genome-wide effects on methylation were investigated by the Illumina Infinium HumanMethylation450 BeadChip array. Online bioinformatics software tools were used to identify FDR-significant hypomethylated gene classes, which were then verified by pyrosequencing. Transcriptional effects on these gene classes were investigated by the genome-wide Illumina HumanHT-12 v4 Expression BeadChip array, and verified by RT-qPCR. While UHRF1 depletion caused widespread demethylation, the replication-dependent histone gene cluster and the cancer testis antigen genes were identified as most significantly hypomethylated in UHRF1 knockdown cells. Pyrosequencing confirmed hypomethylation in promoter regions of cancer testis antigen genes TSPY2, MAGEC1, MAGEC2 and MAGEA12, and histone gene HIST2H2AA4 in knockdown cell lines. Hypomethylation in these gene classes correlated with an increase in expression in the knockdown cell line. In addition, cells were rescued using UHRF1 cDNA and showed a return to wild type transcription levels in the rescue cell line. We have shown that these genes are regulated by promoter DNA methylation, confirming the sensitivity of cancer-testis genes to demethylation, supporting possible use of methyltransferase inhibitors to boost antigen presentation in cancers, and the crucial role of UHRF1 in cell cycle regulation., X-linked Retinitis Pigmentosa (XLRP) is a severe, early-onset form of inherited retinal degeneration (IRD). It is estimated that approximately 15% of XLRP cases are due to mutations in RP2 (Retinitis Pigmentosa 2). The ubiquitously expressed RP2 protein is involved in ciliary trafficking of lipid-modified proteins – a process vital for photoreceptor function and survival. Most pathogenic RP2 mutations are suggested to result in truncation or complete loss of the protein. The most common stop mutation, R120X, appears to trigger nonsense-mediated decay of the transcript. RP2 is therefore an excellent candidate for gene augmentation therapy. In recent years, personalised cell models have emerged as invaluable tools for the elucidation of disease pathogeneses and have greatly enhanced pre-clinical proof of concept studies. Through the Target 5000 programme, a project focused on genetic characterisation of the 5,000 IRD patients in Ireland, a male patient harbouring the R120X RP2 mutation was identified. A patient-derived dermal fibroblast cell model of the disease was thus generated and characterised. The transduction efficiencies of AAV vectors of various serotypes in fibroblasts were tested and compared, after which it was decided to proceed with an AAV2/2.CAG.RP2 vector to explore RP2 delivery in this patient-derived cell model. In addition, the effects of RP2 overexpression in vivo in murine photoreceptors and retinal pigment epithelium cells were analysed., Mitochondrial dysfunction leads to a lack of energy production and ultimately the death of the cell. Recently a number of disorders have been shown to have mitochondrial dysfunction including but not limited to; Multiple Sclerosis, Parkinson’s and Leber’s Hereditary Optic Neuropathy (LHON). In LHON, Complex I of the Electron Transport Chain (ETC) is affected which leads to a severe shortage of energy in the cell and eventually cell death. In particular retinal ganglion cells (RGCs) are affected, leading to retinal dysfunction and blindness. These observations have prompted interest in exploring innovative therapeutics to modulate mitochondrial disorders involving complex I deficiency. The team has explored candidate gene therapies for complex I deficiency, which could classically be delivered via Adeno Associated Viruses (AAV) such as AAV serotype 2 (AAV2), among other vectors. As such the team has developed novel in vitro methods for the analysis of complex I deficiency and the evaluation of novel candidate therapies, allowing us to monitor the efficacy of these therapeutics. Assays include a suite of methods to enable evaluation of Complex I activity and oxidative phosphorylation efficiency among other mitochondrial biomarkers. Such assays in principle would be of value for future in vitro and or in vivo studies involving therapies directed towards targeting complex I deficiencies., Background: Imprinted loci are paradigms of epigenetic regulation and are associated with a number of genetic disorders in human. A key characteristic of imprints is the presence of a gametic differentially methylated region (gDMR). Previous studies have indicated that DNA methylation lost from gDMRs could not be restored by DNMT1, or the de novo enzymes DNMT3A or 3B in stem cells, indicating that imprinted regions must instead undergo passage through the germline for reprogramming. However new putative gDMR have recently been described, along with an improved delineation of the existing gDMR locations. We therefore aimed to re-examine the dependence of methylation at gDMRs on the activities of the methyltransferases in mouse embryonic stem cells (ESCs). Method: We examined the most complete current set of imprinted gDMRs that could be assessed using quantitative pyrosequencing assays in two types of ESCs: those lacking DNMT1 (1KO) and cells lacking a combination of DNMT3A and DNMT3B (3abKO). Results: Loss of methylation was approximately equivalent in both cell types. 1KO cells rescued with a cDNA-expressing DNMT1 could not restore methylation at the imprinted gDMRs, confirming previous observations. However, nearly all gDMRs were remethylated in 3abKO cells rescued with a DNMT3A2 expression construct (3abKO + 3a2). Transcriptional activity at the H19/ Igf2 locus also tracked with the methylation pattern, confirming functional reprogramming in the latter. Conclusions: DNMT3A/B plays a vital role in methylation maintenance at imprints as the rescue with DNMT3A2 can restore imprints in these cells. This provides a useful system to explore factors influencing imprint reprogramming., SATB2, BCL11B and GATAD2A map to regions containing genomewide significant SNPs for schizophrenia and regulate key stages of neurodevelopment via epigenetic mechanisms. SATB2 mediates the projection of neurons across the cerebral hemispheres by regulating the activity of BCL11B via the NuRD nucleosome remodelling complex, which contains. GATAD2A. We hypothesized that genes within the NuRD complex and genes regulated by SATB2 in the pre- and post-natal brain may contribute to schizophrenia etiology. To test, we developed three gene-sets. 1.)Genes reported in mouse knockout studies of SATB2 during cortical development (SATB2_ Cortical). 2.)Genes mapping to SATB2 ChIP-seq peaks generated from mouse cortices at E15.5 (SATB2_Pre-natal). 3.)Genes mapping to SATB2 ChIP-seq peaks generated from mouse P0 hippocampal neurons (SATB2_Post-natal). We performed competitive gene set analysis (GSA) using MAGMA to test if genes within a gene-set were more strongly associated with schizophrenia than other genes in the genome. We applied GSA to schizophrenia GWAS (n=150,064). We also investigated these gene-sets for a genetic contribution to educational attainment (EA; proxy for cognition) using GWAS (n=405,072). After multiple test correction, we observed significant associations for (1)SATB2_Cortical with schizophrenia (P=8.65x10-05) and EA (P=0.00049), (2)SATB2_Pre-natal with EA (P=0.0068) and (3)SATB2_Post-natal with schizophrenia (P=0.0069) and EA (P=2.03x10-06). Further GSA established that effect sizes are stronger for these gene-sets when analysis is limited to genes that are highly expressed in neurons or at different key timepoints during neurodevelopment of the cortex or hippocampus. These data support a role for the NuRD complex and genes regulated by SATB2 in schizophrenia and EA, Background: Dacogen (5-aza-2’deoxycitidine) is currently used to treat Acute Myeloid Leukaemia (AML) and is in trials for myeloid dysplastic syndrome and some solid cancers. As a hypomethylating agent it is thought to act by inhibiting the enzymes which add methyl groups to DNA, chief among them DNMT1. Improved targeting has been hindered by a lack of understanding with respect to the exact mechanism of action on DNMT1 and of the gene targets affected by altered methylation following treatment. Methods: We performed a comparative treatment of the same normosomic, non-transformed fibroblast cell line hTERT1604 over three days with either pharmacological 5-aza-2’deoxycitidine (Dacogen) or with SMARTpool siRNA directly targeting DNMT1. DNA was collected for analysis of methylation levels using Illumina 450k BeadChip methylation arrays. Data was analysed in R using the tailored RnBeads pipeline and in-house scripts. Results: Both Dacogen and DNMT1 siRNA caused overall hypomethylation in the treated cells, with the latter proving more efficient at demethylation at genes in particular. Amongst the targets experiencing demethylation, some hypomethylated promoters were unique to Dacogen treatment and therefore off-target with respect to the reduction in DNMT1. However an unexpected phenomenon almost exclusively caused by 5-Aza-2’-deoxycytidine treatment was gain in methylation. Therefore we also compared our findings to an independent published 450k dataset of Dacogen treated AML cells (KG1a). Our results suggest Dacogen is also having an important effect on methylation unrelated to the inhibition of DNMT1 thus suggesting further avenues for therapeutic improvements., Disruptive, damaging ultra-rare variants (dURVs) are more abundant in schizophrenia (SZ) patients than controls and are more concentrated in neuronally-expressed genes with synaptic functions. dURVs in highly constrained genes influence educational attainment (EA; a proxy for cognition) in the general population. We used MAGMA to perform gene set analysis of the largest available GWAS datasets to investigate if association signals for SZ and EA similarly mapped to highly constrained genes and to neuronally-expressed genes with synaptic functions. We investigated if SZ and EA associations were enriched in brain regions at different timepoints from early development through to adulthood. Highly constrained genes (probability of being loss-of-function intolerant; pLI>0.9; n=3,230) are strongly enriched for association with SZ(p=3.14E-08) and EA(p=1.27E-09) in comparison to genes under less constraint (0.1, Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease affecting 45,000 people in Ireland. Prolonged joint inflammation results in tissue damage with consequent reduced functional capacity and quality of life. Damage to the joints of hands and feet, assessed by x-ray, is an important outcome measure that has genetic input of around 60%. Recent studies have identified single nucleotide polymorphisms (SNPs) in immune-related genes that are associated with severity of tissue damage in RA. One of our studies identified an association with C5orf30, a previously uncharacterized regulator of tissue damage and inflammation (1, 2). However a more comprehensive genome wide analysis is required to more fully characterize the genetic basis of RA severity. This project will identify genetic variants, and their synergistic combinations, that are associated with severity of RA. We will analyse genomewide SNP data in 1,007 RA patients using state-of-the-art genetic epidemiology and computational techniques, including negative binomial modelling, to identify variants linked with joint damage severity. The study population is uniquely large and detailed clinical and genetic datasets will be used for validation studies using five European early RA cohorts. Simulations for statistical power indicate excellent power will be achieved for moderately frequent alleles, for effect sizes (IRR) over 1.4. The aim is to develop both a genetic prognostic score for RA, and to identify novel mediators of tissue destruction. The earlier identification of RA patients at risk of poorer outcome would facilitate patient stratification and inform therapeutic targeting with more aggressive regimes whilst avoiding such treatment in patients likely to have a better outcome, Bloodstream infection and sepsis are often instigated by the bacterium Staphylococcus aureus. Upon accessing the bloodstream, S. aureus binds to the endothelium triggering vascular leakage, inflammation and oedema. These characteristics are difficult to treat pharmacologically as the nature of signalling guiding this host response remains unclear. microRNAs (miRNAs) regulate ~60% of the human genome through post-transcriptional silencing/ degradation of target genes. Previously, bacteria were shown to profoundly affect miRNA expression via up-regulation of dendritic miR-99b elicited by M. tuberculosis infection. This study investigates contributions of S. aureus induced endothelial miRNA dysregulation to sustained and excessive host responses in sepsis. Sheared (10dynes/cm2) human endothelial cells were treated with plasma and TNFα to mimic sepsis conditions. Infection induced miRNA alterations were uncovered using Taqman cards to generate miRNA profiles of uninfected and infected cells (RQ = 2-ΔΔCt). Potential mRNA targets were established bioinformatically and confirmed by RNAseq, western blots and qPCR. Following infection, 58 endothelial miRNA were significantly downand 35 significantly up-regulated, including miR-330 (p, DNA methylation is a critical mechanism for regulating gene expression and ensuring genomic stability. However, loss of function mutations of methyltransferase enzymes such as DNMT1 in normal differentiated cells result in a lethal phenotype. Consequently, existing investigations have only assessed DNMT1 knockdowns in embryonic stem cells or cancer cell lines. Here, isogenic lines of hypomorphic, normal, immortalised fibroblasts have instead been generated via stable integration with short hairpin RNA. Enrichment analysis of epigenome-wide methylation arrays indicated widespread demethylation within promoter and gene body regions. In addition, four specific gene categories were highlighted as most affected; protocadherins, genes regulating body mass, olfactory receptors and cancer/testis antigens. Comparison of short-term siRNA and long-term shRNA-mediated depletion of DNMT1 indicated that many regions recover methylation as shRNA-containing cell lines adapt to lowered levels of DNMT1. Interestingly, polycomb-regulated genes are refractory to de novo DNA methylation in these cells following recovery, reinforcing the concept of mutually-exclusive domains that are regulated by these two major epigenetic mechanisms., Background: The MTHFR C677T is a common polymorphism of the folate metabolising enzyme methylene tetrahydrofolate reductase (MTHFR) associated with hypertension. Riboflavin is a cofactor to MTHFR in the one-carbon cycle for generating methyl groups important for biological reactions such as DNA methylation. Supplementation with riboflavin has previously been shown to reduce blood pressure specifically in individuals with the homozygous MTHFR 677TT genotype. The mechanisms underlying the blood pressure lowering effect of riboflavin are currently unknown however aberrant DNA methylation has been implicated in the development of hypertension. The aims of this study were to examine global DNA methylation on hypertension in adults stratified by MTHFR genotype and in response to intervention with 1.6mg/ day of riboflavin in individuals with the MTHFR 677TT genotype. Methods: Stored peripheral blood leukocyte samples from participants who had consented and participated in targeted RCTs at Ulster University’s Nutrition Innovation Centre for food and HEalth (NICHE) and previously screened for the MTHFR C677T polymorphism were accessed for this study. Bisulphite conversion and pyrosequencing was used to analyse global and gene-specific DNA methylation. Results: Preliminary results show that methylation at the repeat element, LINE-1, and imprinted gene, IGF2 was not significantly different between the MTHFR C677T genotypes at baseline. However, subsequent supplementation with riboflavin resulted in a decrease in global methylation and an increase in IGF2 methylation in MTHFR 677TT participants. Conclusion: This is the largest study to date examining the interaction between the MTHFR C677T genotypes, riboflavin supplementation and DNA methylation. Riboflavin supplementation influenced repeat element and imprinted gene methylation in MTHFR 677TT genotype individuals. Further work will provide insights into the mechanism of riboflavin action in lowering blood pressure in these genetically at risk adults., Background: microRNAs are small, non-coding RNAs which are potentially valuable markers of cardiovascular disease (CVD) risk, including hypertension. This novel investigation aims to profile circulating serum concentrations of microRNAs in premature CVD patients to identify microRNAs that correlate best with hypertension. Methods: Serum samples from an existing cohort of 75 premature CVD patients were analysed for expression of 68 CVD-related microRNAs. Patients had been screened for the methylenetetrahydrofolate reductase (MTHFR) gene polymorphism C677T, a risk factor for hypertension. Samples had been collected at baseline and following intervention with riboflavin, co-factor for the MTHFR enzyme, as part of a placebo-controlled double-blind, randomized trial. The associations between miRNA expression and blood pressure at baseline and post-intervention were investigated. Comparisons of data between CC and TT MTHFR genotype groups, and in response to intervention, were assessed using ANOVA, Pearson’s correlation and corrected t-test statistical analyses. Results: microRNA expression was successfully detected and quantified in all samples. At baseline miR-199a-5p expression was inversely correlated (r=-0.51;p, Background: Hypoxia in prostate tumours has been associated with disease progression and metastasis. MicroRNAs are short non-coding RNA molecules which are important in several cell processes, but their role in hypoxic signalling is still poorly understood. miR-210 has been linked with hypoxic mechanisms, but this relationship has not been extensively studied in a prostate cancer setting. Therefore, in this study, we investigate the link between hypoxia and miR-210 in prostate cancer cells. Methods: In this study we have used prostate cancer models of hypoxia to investigate the functionality of miR-210. Expression levels of miR-210 have been measured by qPCR in in vitro and in vivo samples. Functional bioassays were used to examine its effect on prostate cancer cell behaviour. Target genes have been identified and bioinformatic analysis has been employed to investigate a clinical significance for miR-210 in prostate cancer. Results: miR-210 is induced by hypoxia in prostate cancer cells. Over-expression of miR-210 impacts upon target genes which in turn may affect cell proliferation. Data-mining of online repositories of clinical prostate sample data shows that miR-210 is significantly correlated with Gleason grade and other clinical markers of prostate cancer progression. Further in silico analysis of miR-210 cellular networks reveal that miR-210 plays a key role in a number of important cell processes, the dysregulation of which can promote the development of prostate cancer. Conclusions: We propose that miR-210 is an important regulator of cell response to hypoxic stress and may play an important role in the pathogenesis of prostate cancer. Further study will focus on determining its function in prostate cancer and its potential as a biomarker in this disease.
- Published
- 2018
4. Knock out of P75NTR does not protect against NMDAR - mediated excitotoxic brain injury in newborn mice
- Author
-
Griesmiaer, E, Li, Y, Schlager, G, Urbanek, M, Simbruner, G, Dechant, G, and Keller, M
- Published
- 2008
5. A crucial role for neurotrophin-3 in oligodendrocyte development
- Author
-
Barres, B.A., Raff, M.C., Gaese, F., Bartke, I., Dechant, G., and Barde, Y.-A.
- Subjects
Nerve growth factor -- Research ,Platelet-derived growth factor -- Research ,Fibroblast growth factors -- Research ,Environmental issues ,Science and technology ,Zoology and wildlife conservation - Abstract
Neurotrophin-3 (NT-3) and platelet-derived growth factor (PDGF) promotes the clonal expansion of oligodendrocyte precursor cells and regulates the time of oligodendrocyte development. NT-3 stimulates the rapid proliferation of oligodendrocyte precursor cells and is crucial for normal oligodendrocyte development. Basic fibroblast growth factors possibly inhibit the proliferation of oligodendrocytes.
- Published
- 1994
6. IPAPÄD – Interprofessionelle Ausbildungsstation in der Pädiatrie: Grenzen überwinden – zusammen lernen und arbeiten
- Author
-
Straub, C, Wölke, S, Dechant, G, Dürkop, A, Fritz, K, Geweniger, A, Ringwald, B, Ukomadu, A, Walter, J, Heinzmann, A, and Bode, S
- Subjects
ddc: 610 ,610 Medical sciences ,Medicine - Abstract
Hintergrund: Für eine gute klinische Versorgung von PatientInnen ist die interprofessionelle Zusammenarbeit von Fachkräften aus unterschiedlichen Gesundheitsberufen erforderlich. Bisher findet in Deutschland noch keine ausreichende gemeinsame Ausbildung in den Gesundheitsberufen statt. [zum vollständigen Text gelangen Sie über die oben angegebene URL], Gemeinsame Jahrestagung der Gesellschaft für Medizinische Ausbildung (GMA) und des Arbeitskreises zur Weiterentwicklung der Lehre in der Zahnmedizin (AKWLZ)
- Published
- 2017
- Full Text
- View/download PDF
7. Peripheral Nerve Regeneration and NGF-Dependent Neurite Outgrowth of Adult Sensory Neurons Converge on STAT3 Phosphorylation Downstream of Neuropoietic Cytokine Receptor gp130
- Author
-
Quarta, S., primary, Baeumer, B. E., additional, Scherbakov, N., additional, Andratsch, M., additional, Rose-John, S., additional, Dechant, G., additional, Bandtlow, C. E., additional, and Kress, M., additional
- Published
- 2014
- Full Text
- View/download PDF
8. Effect of Transition Ration Energy and Fiber Levels on Subclinical Laminitis and Ruminal Acidosis in Holsteins Cows in Florida
- Author
-
DeChant, G. M., Risco, C. A., Donovan, G. A., Tran, T. Q., Van Horn, H. H., and Bray, D. R.
- Subjects
Subacute ruminal acidosis ,Animal science ,Subsolar abscess ,business.industry ,food and beverages ,Medicine ,Laminitis ,business ,Early postpartum ,Subclinical infection - Abstract
Subclinical laminitis (SL) has been identified to be a common problem in high producing dairy cows. The condition is characterized by solar hemorrhages in its early stages and a predisposition for sole ulcers and subsolar abscesses. Environmental as well as nutritional factors have been suggested as the most important causative agents in SL. Early postpartum cows undergoing acclimation from late dry to early lactating rations are thought to be the most susceptible to nutritional causes of subclinical laminitis due to repeated episodes of ruminal acidosis during this acclimation period. This research focused upon energy and fiber levels in pre- and postpartum (transition) rations to determine if various combinations of these nutrients would influence the subsequent rate of solar hemorrhages and ruminal acidosis in early lactating cows., American Association of Bovine Practitioners Proceedings of the Annual Conference, 1998
- Published
- 1998
- Full Text
- View/download PDF
9. Neurotrophins and their p75 receptor
- Author
-
Carter, B. D., Dechant, G., Frade, J. -M, Kaltschmidt, C., and Yves Barde
- Subjects
Iodine Radioisotopes ,Mice ,Cross-Linking Reagents ,L Cells ,Cell Death ,Animals ,Nerve Growth Factors ,Receptors, Nerve Growth Factor ,Receptor, Nerve Growth Factor - Published
- 1996
10. Identification of differentially expressed non-coding RNAs in embryonic stem cell neural differentiation
- Author
-
Skreka, K., primary, Schafferer, S., additional, Nat, I.-R., additional, Zywicki, M., additional, Salti, A., additional, Apostolova, G., additional, Griehl, M., additional, Rederstorff, M., additional, Dechant, G., additional, and Huttenhofer, A., additional
- Published
- 2012
- Full Text
- View/download PDF
11. Otitis Media in Dairy Calves
- Author
-
DeChant, G. M. and Donovan, G. A.
- Abstract
A large dairy herd in north-central Florida has observed otitis media in their pre-weaned heifer calves. The initial clinical sign of otitis media was facial paralysis, presenting as ear droop and epiphora. Affected calves sometimes developed ataxia and other severe neurologic signs indicating a progression of the infection to otitis interna and meningitis., American Association of Bovine Practitioners Proceedings of the Annual Conference, 1995
- Published
- 1995
- Full Text
- View/download PDF
12. p38 and p38 Mitogen-Activated Protein Kinases Determine Cholinergic Transdifferentiation of Sympathetic Neurons
- Author
-
Loy, B., primary, Apostolova, G., additional, Dorn, R., additional, McGuire, V. A., additional, Arthur, J. S. C., additional, and Dechant, G., additional
- Published
- 2011
- Full Text
- View/download PDF
13. Knock out of P75NTR does not protect against NMDAR – mediated excitotoxic brain injury in newborn mice
- Author
-
Griesmaier, E, primary, Li, Y, additional, Schlager, G, additional, Urbanek, M, additional, Simbruner, G, additional, Dechant, G, additional, and Keller, M, additional
- Published
- 2008
- Full Text
- View/download PDF
14. The zinc finger protein NRIF interacts with the neurotrophin receptor p75(NTR) and participates in programmed cell death
- Author
-
Casademunt, E., Carter, B.D., Benzel, I., Frade López, José María, Dechant, G., Barde, Yves Alain, Casademunt, E., Carter, B.D., Benzel, I., Frade López, José María, Dechant, G., and Barde, Yves Alain
- Abstract
NRIF (neurotrophin receptor interacting factor) is a ubiquitously expressed zinc finger protein of the Kruppel family which interacts with the neurotrophin receptor p75(NTR). The interaction was first detected in yeast and then biochemically confirmed using recombinant GST-NRIF fusions and p75(NTR) expressed by eukaryotic cells. Transgenic mice carrying a deletion in the exon encoding the p75(NTR)-binding domain of NRIF display a phenotype which is strongly dependent upon genetic background. While at the F2 generation there is only limited (20%) embryonic lethality, in a congenic BL6 strain nrif(-/-) mice cannot survive beyond E12, but are viable and healthy to adulthood in the Sv129 background. The involvement of NRIF in p75(NTR)/NGF-mediated developmental cell death was examined in the mouse embryonic neural retina. Disruption of the nrif gene leads to a reduction in cell death which is quantitatively indistinguishable from that observed in p75(NTR-/-) and ngf(-/-) mice. These results indicate that NRIF is an intracellular p75(NTR)-binding protein transducing cell death signals during development.
- Published
- 1999
15. Urea enhances the nerve growth factor-induced neuroprotective effect on cholinergic neurons in organotypic rat brain slices
- Author
-
Zassler, B., primary, Dechant, G., additional, and Humpel, C., additional
- Published
- 2005
- Full Text
- View/download PDF
16. Conserved synteny between the chicken Z sex chromosome and human chromosome 9 includes the male regulatory gene DMRT1: a comparative (re)view on avian sex determination
- Author
-
Nanda, I., primary, Zend-Ajusch, E., additional, Shan, Z., additional, Grützner, F., additional, Schartl, M., additional, Burt, D.W., additional, Koehler, M., additional, Fowler, V.M., additional, Goodwin, G., additional, Schneider, W.J., additional, Mizuno, S., additional, Dechant, G., additional, Haaf, T., additional, and Schmid, M., additional
- Published
- 2000
- Full Text
- View/download PDF
17. Field method for detemining thorium-230 in soils
- Author
-
Dechant, G., primary
- Published
- 1989
- Full Text
- View/download PDF
18. Neurotrophins: structural relatedness and receptor interactions.
- Author
-
Rodríguez-Tebar, Alfredo, Dechant, G., Barde, Yves Alain, Rodríguez-Tebar, Alfredo, Dechant, G., and Barde, Yves Alain
- Abstract
Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) are structurally related proteins that allow the survival of specific populations of embryonic vertebrate neurons. The primary structure of these neurotrophins, deduced from their nucleotide sequences, indicates that all three are synthesized in the form of precursor proteins presumably allowing for appropriate folding, including the formation of disulphide bridges, cleavage and secretion. While no information is yet available on the 3-dimensional structures of the neurotrophins, results from binding studies using the three neurotrophins as ligands indicate that their receptors do recognize similarities, as well as differences, between them. High-affinity receptors, that presumably mediate the biological response, as well as low-affinity receptors are present on neurons responsive to the neurotrophins. Whereas a large excess of heterologous ligand is needed to reduce binding of a particular neurotrophin to its high-affinity receptor, the same concentration of homologous or heterologous ligand similarly reduce the binding of any of the three neurotrophins to the low-affinity receptor. For all three, the low-affinity receptor appears to be the already characterized NGF low-affinity receptor that seems to be an integral part of the high-affinity receptor complexes. These results suggest that the regulation of neuronal survival by target cells can, in part, be explained by the release from these cells of limiting quantities of the structurally related neurotrophins, each being recognized by a specific high-affinity receptor complex located on the nerve terminals of the responsive neurons.
- Published
- 1991
19. Effect of Transition Ration Energy and Fiber Levels on Subclinical Laminitis and Ruminal Acidosis in Holsteins Cows in Florida
- Author
-
DeChant, G. M., primary, Risco, C. A., additional, Donovan, G. A., additional, Tran, T. Q., additional, Van Horn, H. H., additional, and Bray, D. R., additional
- Published
- 1998
- Full Text
- View/download PDF
20. A splice variant of the neurotrophin receptor trkB with increased specificity for brain-derived neurotrophic factor.
- Author
-
Strohmaier, C., primary, Carter, B. D., additional, Urfer, R., additional, Barde, Y. A., additional, and Dechant, G., additional
- Published
- 1996
- Full Text
- View/download PDF
21. Otitis Media in Dairy Calves
- Author
-
DeChant, G. M., primary and Donovan, G. A., additional
- Published
- 1995
- Full Text
- View/download PDF
22. Expression and binding characteristics of the BDNF receptor chick trkB
- Author
-
Dechant, G., primary, Biffo, S., additional, Okazawa, H., additional, Kolbeck, R., additional, Pottgiesser, J., additional, and Barde, Y.A., additional
- Published
- 1993
- Full Text
- View/download PDF
23. Specific high-affinity receptors for neurotrophin-3 on sympathetic neurons
- Author
-
Dechant, G, primary, Rodriguez-Tebar, A, additional, Kolbeck, R, additional, and Barde, YA, additional
- Published
- 1993
- Full Text
- View/download PDF
24. Binding of neurotrophin-3 to its neuronal receptors and interactions with nerve growth factor and brain-derived neurotrophic factor.
- Author
-
Rodríguez-Tébar, A., primary, Dechant, G., additional, Götz, R., additional, and Barde, Y.A., additional
- Published
- 1992
- Full Text
- View/download PDF
25. Nerve Growth Factor Regulates Expression of the Nerve Growth Factor Receptor Gene in Adult Sensory Neurons
- Author
-
Lindsay, R. M., primary, Shooter, E. M., additional, Radeke, M. J., additional, Misko, T. P., additional, Dechant, G., additional, Thoenen, H., additional, and Lindholm, D., additional
- Published
- 1990
- Full Text
- View/download PDF
26. Conserved synteny between the chicken Z sex chromosome and human chromosome 9 includes the male regulatory gene <italic>DMRT1:</italic> a comparative (re)view on avian sex determination.
- Author
-
Nanda, I., Zend-ajusch, E., Shan, Z., Grützner, F., Schartl, M., Burt, D.W., Koehler, M., Fowler, V.M., Goodwin, G., Schneider, W.J., Mizuno, S., Dechant, G., Haaf, T., and Schmid, M.
- Published
- 2000
- Full Text
- View/download PDF
27. Conserved synteny between the chicken Z sex chromosome and human chromosome 9 includes the male regulatory gene DMRT1: a comparative (re)view on avian sex determination.
- Author
-
Nanda, I., Zend-Ajusch, E., Shan, Z., Grützner, F., Schartl, M., Burt, D. W., Koehler, M., Fowler, V. M., Goodwin, G., Schneider, W. J., Mizuno, S., Dechant, G., Haaf, T., and Schmid, M.
- Subjects
GENETIC sex determination ,SEX chromosomes ,HUMAN chromosomes ,GENE mapping ,BIRDS ,CHICKENS - Abstract
Sex-determination mechanisms in birds and mammals evolved independently for more than 300 million years. Unlike mammals, sex determination in birds operates through a ZZ/ZW sex chromosome system, in which the female is the heterogametic sex. However, the molecular mechanism remains to be elucidated. Comparative gene mapping revealed that several genes on human chromosome 9 (HSA 9) have homologs on the chicken Z chromosome (GGA Z), indicating the common ancestry of large parts of GGA Z and HSA 9. Based on chromosome homology maps, we isolated a Z-linked chicken ortholog of DMRT1, which has been implicated in XY sex reversal in humans. Its location on the avian Z and within the sex-reversal region on HSA 9p suggests that DMRT1 represents an ancestral dosage-sensitive gene for vertebrate sex-determination. Z dosage may be crucial for male sexual differentiation/determination in birds. Copyright © 2000 S. Karger AG, Basel [ABSTRACT FROM AUTHOR]
- Published
- 2000
- Full Text
- View/download PDF
28. Molecular control of neuronal survival in the chick embryo
- Author
-
Biffo, S., Dechant, G., Okazawa, H., and Yves Barde
- Subjects
Mammals ,Neurons ,Cell Survival ,Vertebrates ,Animals ,Cell Differentiation ,Receptors, Growth Factor ,Chick Embryo ,Nerve Growth Factors ,Receptor, Ciliary Neurotrophic Factor - Abstract
Neurotrophins are structurally related proteins which promote the survival and differentiation of specific neuronal populations during the development of vertebrate embryos. Like many growth factors, the neurotrophins mediate their actions by binding to membrane proteins that have a ligand-activated tyrosine kinase activity. The interactions of the neurophins with their neuronal receptors have been mostly studied using chick embryonic neurons. These neurons are also extensively used to characterise biological responses to neurotrophins in physiologically relevant systems. We have recently cloned and expressed the chick homologue of trkB (ctrkB), thought to be a receptor for BDNF, and examined by in situ hybridisation the pattern of expression of the ctrkB gene during development of the chick embryo. We found that whereas the sequence of ctrkB shows a high degree of conservation with the mammalian homologues in the intracellular tyrosine kinase domain, the extracellular binding domain is less well conserved. As in mammals, ctrkB mRNAs appear to exist in differentially spliced forms that result in a full length and a truncated receptor lacking the tyrosine kinase domain. These two forms are differentially expressed in neurons and non-neuronal cells respectively. The binding characteristics of ctrkB expressed in a transfected cell line are similar, but not identical to those of the BDNF binding sites on primary chick neurons, specially with regard to the affinity of BDNF.
29. Cell-type specialization is encoded by specific chromatin topologies
- Author
-
Winick-Ng, Warren, Kukalev, Alexander, Harabula, Izabela, Zea-Redondo, Luna, Szab��, Dominik, Meijer, Mandy, Serebreni, Leonid, Zhang, Yingnan, Bianco, Simona, Chiariello, Andrea M, Irastorza-Azcarate, Ibai, Thieme, Christoph J, Sparks, Thomas M, Carvalho, S��lvia, Fiorillo, Luca, Musella, Francesco, Irani, Ehsan, Triglia, Elena Torlai, Kolodziejczyk, Aleksandra A, Abentung, Andreas, Apostolova, Galina, Paul, Eleanor J, Franke, Vedran, Kempfer, Rieke, Akalin, Altuna, Teichmann, Sarah, Dechant, Georg, Ungless, Mark A, Nicodemi, Mario, Welch, Lonnie, Castelo-Branco, Gon��alo, Pombo, Ana, Winick-Ng, Warren [0000-0002-8716-5558], Meijer, Mandy [0000-0003-3314-1224], Bianco, Simona [0000-0001-5819-060X], Chiariello, Andrea M [0000-0002-6112-0167], Thieme, Christoph J [0000-0002-1566-0971], Fiorillo, Luca [0000-0003-2967-0123], Triglia, Elena Torlai [0000-0002-6059-0116], Paul, Eleanor J [0000-0003-1183-9285], Franke, Vedran [0000-0003-3606-6792], Akalin, Altuna [0000-0002-0468-0117], Teichmann, Sarah [0000-0002-6294-6366], Castelo-Branco, Gonçalo [0000-0003-2247-9393], Pombo, Ana [0000-0002-7493-6288], Apollo - University of Cambridge Repository, UCIBIO - Applied Molecular Biosciences Unit, DCV - Departamento de Ciências da Vida, Winick-Ng, W., Kukalev, A., Harabula, I., Zea-Redondo, L., Szabo, D., Meijer, M., Serebreni, L., Zhang, Y., Bianco, S., Chiariello, A. M., Irastorza-Azcarate, I., Thieme, C. J., Sparks, T. M., Carvalho, S., Fiorillo, L., Musella, F., Irani, E., Triglia, E. T., Kolodziejczyk, A. A., Abentung, A., Apostolova, G., Paul, E. J., Franke, V., Kempfer, R., Akalin, A., Teichmann, S. A., Dechant, G., Ungless, M. A., Nicodemi, M., Welch, L., Castelo-Branco, G., Pombo, A., Torlai Triglia, Elena [0000-0002-6059-0116], and Teichmann, Sarah A [0000-0002-6294-6366]
- Subjects
Male ,Genetics of the nervous system ,Cells ,Molecular Conformation ,45/22 ,Nucleic Acid Denaturation ,Chromosomes ,38/91 ,14/32 ,Mice ,14/56 ,13/100 ,38/23 ,631/208/200 ,Animals ,14/19 ,General ,Neurons ,Nuclear organization ,Binding Sites ,45 ,article ,Brain ,polymer physics ,Chromatin Assembly and Disassembly ,Regulatory networks ,Chromatin ,Chromatin architecture ,Gene regulation ,Computer models of chromosome ,13/31 ,Gene Expression Regulation ,Genes ,631/553/2711 ,Cardiovascular and Metabolic Diseases ,Multigene Family ,14/63 ,631/114/2401 ,38/77 ,Data integration ,631/337/386 ,64/60 ,Technology Platforms ,119 ,631/378/2583 ,Transcription Factors - Abstract
The three-dimensional (3D) structure of chromatin is intrinsically associated with gene regulation and cell function1–3. Methods based on chromatin conformation capture have mapped chromatin structures in neuronal systems such as in vitro differentiated neurons, neurons isolated through fluorescence-activated cell sorting from cortical tissues pooled from different animals and from dissociated whole hippocampi4–6. However, changes in chromatin organization captured by imaging, such as the relocation of Bdnf away from the nuclear periphery after activation7, are invisible with such approaches8. Here we developed immunoGAM, an extension of genome architecture mapping (GAM)2,9, to map 3D chromatin topology genome-wide in specific brain cell types, without tissue disruption, from single animals. GAM is a ligation-free technology that maps genome topology by sequencing the DNA content from thin (about 220 nm) nuclear cryosections. Chromatin interactions are identified from the increased probability of co-segregation of contacting loci across a collection of nuclear slices. ImmunoGAM expands the scope of GAM to enable the selection of specific cell types using low cell numbers (approximately 1,000 cells) within a complex tissue and avoids tissue dissociation2,10. We report cell-type specialized 3D chromatin structures at multiple genomic scales that relate to patterns of gene expression. We discover extensive ‘melting’ of long genes when they are highly expressed and/or have high chromatin accessibility. The contacts most specific of neuron subtypes contain genes associated with specialized processes, such as addiction and synaptic plasticity, which harbour putative binding sites for neuronal transcription factors within accessible chromatin regions. Moreover, sensory receptor genes are preferentially found in heterochromatic compartments in brain cells, which establish strong contacts across tens of megabases. Our results demonstrate that highly specific chromatin conformations in brain cells are tightly related to gene regulation mechanisms and specialized functions., A new technique called immunoGAM, which combines genome architecture mapping (GAM) with immunoselection, enabled the discovery of specialized chromatin conformations linked to gene expression in specific cell populations from mouse brain tissues.
- Published
- 2021
30. Field method for detemining thorium-230 in soils
- Author
-
Dechant, G
- Published
- 1989
31. SATB2 organizes the 3D genome architecture of cognition in cortical neurons.
- Author
-
Wahl N, Espeso-Gil S, Chietera P, Nagel A, Laighneach A, Morris DW, Rajarajan P, Akbarian S, Dechant G, and Apostolova G
- Subjects
- Humans, Neurons metabolism, CCCTC-Binding Factor metabolism, Chromatin genetics, Chromatin metabolism, Genome, Cognition, Transcription Factors genetics, Transcription Factors metabolism, Matrix Attachment Region Binding Proteins genetics, Matrix Attachment Region Binding Proteins metabolism
- Abstract
The DNA-binding protein SATB2 is genetically linked to human intelligence. We studied its influence on the three-dimensional (3D) epigenome by mapping chromatin interactions and accessibility in control versus SATB2-deficient cortical neurons. We find that SATB2 affects the chromatin looping between enhancers and promoters of neuronal-activity-regulated genes, thus influencing their expression. It also alters A/B compartments, topologically associating domains, and frequently interacting regions. Genes linked to SATB2-dependent 3D genome changes are implicated in highly specialized neuronal functions and contribute to cognitive ability and risk for neuropsychiatric and neurodevelopmental disorders. Non-coding DNA regions with a SATB2-dependent structure are enriched for common variants associated with educational attainment, intelligence, and schizophrenia. Our data establish SATB2 as a cell-type-specific 3D genome modulator, which operates both independently and in cooperation with CCCTC-binding factor (CTCF) to set up the chromatin landscape of pyramidal neurons for cognitive processes., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
32. Chromatin Reorganization during Myoblast Differentiation Involves the Caspase-Dependent Removal of SATB2.
- Author
-
Bell RAV, Al-Khalaf MH, Brunette S, Alsowaida D, Chu A, Bandukwala H, Dechant G, Apostolova G, Dilworth FJ, and Megeney LA
- Subjects
- Caspases, Chromatin, Myoblasts metabolism, Transcription Factors metabolism, Matrix Attachment Region Binding Proteins genetics, Matrix Attachment Region Binding Proteins metabolism
- Abstract
The induction of lineage-specific gene programs are strongly influenced by alterations in local chromatin architecture. However, key players that impact this genome reorganization remain largely unknown. Here, we report that the removal of the special AT-rich binding protein 2 (SATB2), a nuclear protein known to bind matrix attachment regions, is a key event in initiating myogenic differentiation. The deletion of myoblast SATB2 in vitro initiates chromatin remodeling and accelerates differentiation, which is dependent on the caspase 7-mediated cleavage of SATB2. A genome-wide analysis indicates that SATB2 binding within chromatin loops and near anchor points influences both loop and sub-TAD domain formation. Consequently, the chromatin changes that occur with the removal of SATB2 lead to the derepression of differentiation-inducing factors while also limiting the expression of genes that inhibit this cell fate change. Taken together, this study demonstrates that the temporal control of the SATB2 protein is critical in shaping the chromatin environment and coordinating the myogenic differentiation program.
- Published
- 2022
- Full Text
- View/download PDF
33. Cell-type specialization is encoded by specific chromatin topologies.
- Author
-
Winick-Ng W, Kukalev A, Harabula I, Zea-Redondo L, Szabó D, Meijer M, Serebreni L, Zhang Y, Bianco S, Chiariello AM, Irastorza-Azcarate I, Thieme CJ, Sparks TM, Carvalho S, Fiorillo L, Musella F, Irani E, Torlai Triglia E, Kolodziejczyk AA, Abentung A, Apostolova G, Paul EJ, Franke V, Kempfer R, Akalin A, Teichmann SA, Dechant G, Ungless MA, Nicodemi M, Welch L, Castelo-Branco G, and Pombo A
- Subjects
- Animals, Binding Sites, Cells metabolism, Chromatin metabolism, Gene Expression Regulation, Male, Mice, Multigene Family genetics, Neurons classification, Neurons metabolism, Nucleic Acid Denaturation, Transcription Factors metabolism, Brain cytology, Cells classification, Chromatin chemistry, Chromatin genetics, Chromatin Assembly and Disassembly, Genes, Molecular Conformation
- Abstract
The three-dimensional (3D) structure of chromatin is intrinsically associated with gene regulation and cell function
1-3 . Methods based on chromatin conformation capture have mapped chromatin structures in neuronal systems such as in vitro differentiated neurons, neurons isolated through fluorescence-activated cell sorting from cortical tissues pooled from different animals and from dissociated whole hippocampi4-6 . However, changes in chromatin organization captured by imaging, such as the relocation of Bdnf away from the nuclear periphery after activation7 , are invisible with such approaches8 . Here we developed immunoGAM, an extension of genome architecture mapping (GAM)2,9 , to map 3D chromatin topology genome-wide in specific brain cell types, without tissue disruption, from single animals. GAM is a ligation-free technology that maps genome topology by sequencing the DNA content from thin (about 220 nm) nuclear cryosections. Chromatin interactions are identified from the increased probability of co-segregation of contacting loci across a collection of nuclear slices. ImmunoGAM expands the scope of GAM to enable the selection of specific cell types using low cell numbers (approximately 1,000 cells) within a complex tissue and avoids tissue dissociation2,10 . We report cell-type specialized 3D chromatin structures at multiple genomic scales that relate to patterns of gene expression. We discover extensive 'melting' of long genes when they are highly expressed and/or have high chromatin accessibility. The contacts most specific of neuron subtypes contain genes associated with specialized processes, such as addiction and synaptic plasticity, which harbour putative binding sites for neuronal transcription factors within accessible chromatin regions. Moreover, sensory receptor genes are preferentially found in heterochromatic compartments in brain cells, which establish strong contacts across tens of megabases. Our results demonstrate that highly specific chromatin conformations in brain cells are tightly related to gene regulation mechanisms and specialized functions., (© 2021. The Author(s).)- Published
- 2021
- Full Text
- View/download PDF
34. SATB2-LEMD2 interaction links nuclear shape plasticity to regulation of cognition-related genes.
- Author
-
Feurle P, Abentung A, Cera I, Wahl N, Ablinger C, Bucher M, Stefan E, Sprenger S, Teis D, Fischer A, Laighneach A, Whitton L, Morris DW, Apostolova G, and Dechant G
- Subjects
- ATPases Associated with Diverse Cellular Activities metabolism, Animals, Cell Nucleus metabolism, Cell Plasticity, Cells, Cultured, Cognition, Endosomal Sorting Complexes Required for Transport metabolism, HeLa Cells, Hippocampus metabolism, Humans, Intellectual Disability metabolism, Male, Matrix Attachment Region Binding Proteins chemistry, Matrix Attachment Region Binding Proteins genetics, Membrane Proteins chemistry, Membrane Proteins genetics, Mice, Neurons cytology, Neurons metabolism, Nuclear Envelope metabolism, Nuclear Proteins chemistry, Nuclear Proteins genetics, Schizophrenia metabolism, Transcription Factors chemistry, Transcription Factors genetics, Vacuolar Proton-Translocating ATPases metabolism, Gene Regulatory Networks, Hippocampus cytology, Intellectual Disability genetics, Matrix Attachment Region Binding Proteins metabolism, Membrane Proteins metabolism, Mutation, Nuclear Proteins metabolism, Schizophrenia genetics, Transcription Factors metabolism
- Abstract
SATB2 is a schizophrenia risk gene and is genetically associated with human intelligence. How it affects cognition at molecular level is currently unknown. Here, we show that interactions between SATB2, a chromosomal scaffolding protein, and the inner nuclear membrane protein LEMD2 orchestrate the response of pyramidal neurons to neuronal activation. Exposure to novel environment in vivo causes changes in nuclear shape of CA1 hippocampal neurons via a SATB2-dependent mechanism. The activity-driven plasticity of the nuclear envelope requires not only SATB2, but also its protein interactor LEMD2 and the ESCRT-III/VPS4 membrane-remodeling complex. Furthermore, LEMD2 depletion in cortical neurons, similar to SATB2 ablation, affects neuronal activity-dependent regulation of multiple rapid and delayed primary response genes. In human genetic data, LEMD2-regulated genes are enriched for de novo mutations reported in intellectual disability and schizophrenia and are, like SATB2-regulated genes, enriched for common variants associated with schizophrenia and cognitive function. Hence, interactions between SATB2 and the inner nuclear membrane protein LEMD2 influence gene expression programs in pyramidal neurons that are linked to cognitive ability and psychiatric disorder etiology., (© 2020 The Authors. Published under the terms of the CC BY 4.0 license.)
- Published
- 2021
- Full Text
- View/download PDF
35. Social interaction reward in rats has anti-stress effects.
- Author
-
Lemos C, Salti A, Amaral IM, Fontebasso V, Singewald N, Dechant G, Hofer A, and El Rawas R
- Subjects
- Animals, Behavior, Animal drug effects, Cocaine pharmacology, Conditioning, Classical drug effects, Corticotropin-Releasing Hormone metabolism, Dopamine Uptake Inhibitors pharmacology, Male, Nucleus Accumbens drug effects, Rats, Receptors, Corticotropin-Releasing Hormone metabolism, Reward, Social Interaction, Stress, Psychological metabolism
- Abstract
Social interaction in an alternative context can be beneficial against drugs of abuse. Stress is known to be a risk factor that can exacerbate the effects of addictive drugs. In this study, we investigated whether the positive effects of social interaction are mediated through a decrease in stress levels. For that purpose, rats were trained to express cocaine or social interaction conditioned place preference (CPP). Behavioural, hormonal, and molecular stress markers were evaluated. We found that social CPP decreased the percentage of incorrect transitions of grooming and corticosterone to the level of naïve untreated rats. In addition, corticotropin-releasing factor (CRF) was increased in the bed nucleus of stria terminalis after cocaine CPP. In order to study the modulation of social CPP by the CRF system, rats received intracerebroventricular CRF or alpha-helical CRF, a nonselective antagonist of CRF receptors. The subsequent effects on CPP to cocaine or social interaction were observed. CRF injections increased cocaine CPP, whereas alpha-helical CRF injections decreased cocaine CPP. However, alpha-helical CRF injections potentiated social CPP. When social interaction was made available in an alternative context, CRF-induced increase of cocaine preference was reversed completely to the level of rats receiving cocaine paired with alpha-helical CRF. This reversal of cocaine preference was also paralleled by a reversal in CRF-induced increase of p38 MAPK expression in the nucleus accumbens shell. These findings suggest that social interaction could contribute as a valuable component in treatment of substance use disorders by reducing stress levels., (© 2020 The Authors. Addiction Biology published by John Wiley & Sons Ltd on behalf of Society for the Study of Addiction.)
- Published
- 2021
- Full Text
- View/download PDF
36. Involvement of cAMP-Dependent Protein Kinase in the Nucleus Accumbens in Cocaine Versus Social Interaction Reward.
- Author
-
Amaral IM, Lemos C, Cera I, Dechant G, Hofer A, and El Rawas R
- Subjects
- Animals, Central Nervous System Stimulants pharmacology, Cyclic AMP metabolism, Male, Nucleus Accumbens metabolism, Rats, Rats, Sprague-Dawley, Cocaine pharmacology, Conditioning, Operant drug effects, Cyclic AMP-Dependent Protein Kinases metabolism, Nucleus Accumbens drug effects, Reward, Social Interaction
- Abstract
Evidence suggests that PKA activity in the nucleus accumbens (NAc) plays an essential role in reward-related learning. In this study, we investigated whether PKA is differentially involved in the expression of learning produced by either natural reinforcers or psychostimulants. For that purpose, we inhibited PKA through a bilateral infusion of Rp-cAMPS, a specific PKA inhibitor, directly into the NAc. The effects of PKA inhibition in the NAc on the expression of concurrent conditioned place preference (CPP) for cocaine (drug) and social interaction (natural reward) in rats were evaluated. We found that PKA inhibition increased the expression of cocaine preference. This effect was not due to altered stress levels or decreased social reward. PKA inhibition did not affect the expression of natural reward as intra-NAc Rp-cAMPS infusion did not affect expression of social preference. When rats were trained to express cocaine or social interaction CPP and tested for eventual persisting preference 7 and 14 days after CPP expression, cocaine preference was persistent, but social preference was abolished after the first test. These results suggest that PKA in the NAc is involved in drug reward learning that might lead to addiction and that only drug, but not natural, reward is persistent.
- Published
- 2020
- Full Text
- View/download PDF
37. Genes encoding SATB2-interacting proteins in adult cerebral cortex contribute to human cognitive ability.
- Author
-
Cera I, Whitton L, Donohoe G, Morris DW, Dechant G, and Apostolova G
- Subjects
- Adult, Animals, Humans, Memory, Long-Term physiology, Mice, Mice, Inbred C57BL, Neurons physiology, Polymorphism, Single Nucleotide genetics, Transcription, Genetic genetics, Cognition physiology, Matrix Attachment Region Binding Proteins genetics, Neocortex physiology, Transcription Factors genetics
- Abstract
During CNS development, the nuclear protein SATB2 is expressed in superficial cortical layers and determines projection neuron identity. In the adult CNS, SATB2 is expressed in pyramidal neurons of all cortical layers and is a regulator of synaptic plasticity and long-term memory. Common variation in SATB2 locus confers risk of schizophrenia, whereas rare, de novo structural and single nucleotide variants cause severe intellectual disability and absent or limited speech. To characterize differences in SATB2 molecular function in developing vs adult neocortex, we isolated SATB2 protein interactomes at the two ontogenetic stages and identified multiple novel SATB2 interactors. SATB2 interactomes are highly enriched for proteins that stabilize de novo chromatin loops. The comparison between the neonatal and adult SATB2 protein complexes indicates a developmental shift in SATB2 molecular function, from transcriptional repression towards organization of chromosomal superstructure. Accordingly, gene sets regulated by SATB2 in the neocortex of neonatal and adult mice show limited overlap. Genes encoding SATB2 protein interactors were grouped for gene set analysis of human GWAS data. Common variants associated with human cognitive ability are enriched within the genes encoding adult but not neonatal SATB2 interactors. Our data support a shift in the function of SATB2 in cortex over lifetime and indicate that regulation of spatial chromatin architecture by the SATB2 interactome contributes to cognitive function in the general population., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2019
- Full Text
- View/download PDF
38. Cocaine Paired Environment Increases SATB2 Levels in the Rat Paraventricular Thalamus.
- Author
-
Salti A, Apostolova G, Kummer KK, Lemos C, Dechant G, and El Rawas R
- Abstract
SATB2 is a DNA binding protein that specifically binds the nuclear matrix attachment region and functions as a regulator of the transcription of large chromatin domains. Unlike its well addressed role during brain development, the role of SATB2 in adult brain is under-investigated. It has been shown that deletion of SATB2 from the forebrain of adult mice significantly impaired long-term memory for contextual fear and object recognition memory. The aim of the present study was to investigate the effects of appetitive stimuli such as cocaine and social interaction (SI) on SATB2 expression in the adult rat brain. For that, we performed conditioned place preference (CPP) to cocaine (15 mg/kg) and to SI, then assessed SATB2 expression in the brain 1 h (24 h after the last conditioning) and 24 h (48 h after the last conditioning) after the CPP test. We found that SATB2 expression in the paraventricular thalamus of rats was increased 1 h after the cocaine CPP test. This increase was selective for the cocaine-paired environment since the SI-paired environment did not increase SATB2 expression in the paraventricular thalamus. Also, the cocaine paired environment-induced increase of SATB2 levels in the paraventricular thalamus was due to cocaine conditioning as the unpaired cocaine group did not show an increase of SATB2 in the paraventricular thalamus. These results suggest that SATB2 in the paraventricular thalamus appears to be involved in the association between cocaine effects and environmental context. Further studies are needed to address the functional role of SATB2 in cocaine conditioning.
- Published
- 2018
- Full Text
- View/download PDF
39. Genes regulated by SATB2 during neurodevelopment contribute to schizophrenia and educational attainment.
- Author
-
Whitton L, Apostolova G, Rieder D, Dechant G, Rea S, Donohoe G, and Morris DW
- Subjects
- Academic Success, Animals, Axon Guidance genetics, Corpus Callosum growth & development, Corpus Callosum metabolism, Datasets as Topic, Disease Models, Animal, Female, Genetic Predisposition to Disease, Genomics methods, Hippocampus growth & development, Hippocampus metabolism, Humans, Matrix Attachment Region Binding Proteins genetics, Mice, Mutation, Neurodevelopmental Disorders pathology, Schizophrenia pathology, Synaptic Transmission genetics, Transcription Factors genetics, Cognition, Gene Expression Regulation, Developmental, Matrix Attachment Region Binding Proteins metabolism, Neurodevelopmental Disorders genetics, Schizophrenia genetics, Transcription Factors metabolism
- Abstract
SATB2 is associated with schizophrenia and is an important transcription factor regulating neocortical organization and circuitry. Rare mutations in SATB2 cause a syndrome that includes developmental delay, and mouse studies identify an important role for SATB2 in learning and memory. Interacting partners BCL11B and GATAD2A are also schizophrenia risk genes indicating that other genes interacting with or are regulated by SATB2 are making a contribution to schizophrenia and cognition. We used data from Satb2 mouse models to generate three gene-sets that contain genes either functionally related to SATB2 or targeted by SATB2 at different stages of development. Each was tested for enrichment using the largest available genome-wide association studies (GWAS) datasets for schizophrenia and educational attainment (EA) and enrichment analysis was also performed for schizophrenia and other neurodevelopmental disorders using data from rare variant sequencing studies. These SATB2 gene-sets were enriched for genes containing common variants associated with schizophrenia and EA, and were enriched for genes containing rare variants reported in studies of schizophrenia, autism and intellectual disability. In the developing cortex, genes targeted by SATB2 based on ChIP-seq data, and functionally affected when SATB2 is not expressed based on differential expression analysis using RNA-seq data, show strong enrichment for genes associated with EA. For genes expressed in the hippocampus or at the synapse, those targeted by SATB2 are more strongly enriched for genes associated EA than gene-sets not targeted by SATB2. This study demonstrates that single gene findings from GWAS can provide important insights to pathobiological processes. In this case we find evidence that genes influenced by SATB2 and involved in synaptic transmission, axon guidance and formation of the corpus callosum are contributing to schizophrenia and cognition., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2018
- Full Text
- View/download PDF
40. Bicistronic CACNA1A Gene Expression in Neurons Derived from Spinocerebellar Ataxia Type 6 Patient-Induced Pluripotent Stem Cells.
- Author
-
Bavassano C, Eigentler A, Stanika R, Obermair GJ, Boesch S, Dechant G, and Nat R
- Subjects
- Gene Expression Regulation physiology, Humans, Transcription Factors metabolism, Trinucleotide Repeat Expansion physiology, Calcium Channels metabolism, Induced Pluripotent Stem Cells metabolism, Neurons metabolism, Spinocerebellar Ataxias metabolism
- Abstract
Spinocerebellar ataxia type 6 (SCA6) is an autosomal-dominant neurodegenerative disorder that is caused by a CAG trinucleotide repeat expansion in the CACNA1A gene. As one of the few bicistronic genes discovered in the human genome, CACNA1A encodes not only the α1A subunit of the P/Q type voltage-gated Ca
2+ channel CaV 2.1 but also the α1ACT protein, a 75 kDa transcription factor sharing the sequence of the cytoplasmic C-terminal tail of the α1A subunit. Isoforms of both proteins contain the polyglutamine (polyQ) domain that is expanded in SCA6 patients. Although certain SCA6 phenotypes appear to be specific for Purkinje neurons, other pathogenic effects of the SCA6 polyQ mutation can affect a broad spectrum of central nervous system (CNS) neuronal subtypes. We investigated the expression and function of CACNA1A gene products in human neurons derived from induced pluripotent stem cells from two SCA6 patients. Expression levels of CACNA1A encoding α1A subunit were similar between SCA6 and control neurons, and no differences were found in the subcellular distribution of CaV 2.1 channel protein. The α1ACT immunoreactivity was detected in the majority of cell nuclei of SCA6 and control neurons. Although no SCA6 genotype-dependent differences in CaV 2.1 channel function were observed, they were found in the expression levels of the α1ACT target gene Granulin (GRN) and in glutamate-induced cell vulnerability.- Published
- 2017
- Full Text
- View/download PDF
41. Satb2 determines miRNA expression and long-term memory in the adult central nervous system.
- Author
-
Jaitner C, Reddy C, Abentung A, Whittle N, Rieder D, Delekate A, Korte M, Jain G, Fischer A, Sananbenesi F, Cera I, Singewald N, Dechant G, and Apostolova G
- Subjects
- Animals, Gene Knockout Techniques, Matrix Attachment Region Binding Proteins genetics, Mice, Mice, Knockout, Transcription Factors genetics, Gene Expression Regulation, Hippocampus physiology, Matrix Attachment Region Binding Proteins metabolism, Memory, Long-Term, MicroRNAs biosynthesis, Transcription Factors metabolism
- Abstract
SATB2 is a risk locus for schizophrenia and encodes a DNA-binding protein that regulates higher-order chromatin configuration. In the adult brain Satb2 is almost exclusively expressed in pyramidal neurons of two brain regions important for memory formation, the cerebral cortex and the CA1-hippocampal field. Here we show that Satb2 is required for key hippocampal functions since deletion of Satb2 from the adult mouse forebrain prevents the stabilization of synaptic long-term potentiation and markedly impairs long-term fear and object discrimination memory. At the molecular level, we find that synaptic activity and BDNF up-regulate Satb2, which itself binds to the promoters of coding and non-coding genes. Satb2 controls the hippocampal levels of a large cohort of miRNAs, many of which are implicated in synaptic plasticity and memory formation. Together, our findings demonstrate that Satb2 is critically involved in long-term plasticity processes in the adult forebrain that underlie the consolidation and stabilization of context-linked memory., Competing Interests: The authors declare that no competing interests exist.
- Published
- 2016
- Full Text
- View/download PDF
42. Reduced Anxiety-Like Behavior and Altered Hippocampal Morphology in Female p75NTR(exon IV-/-) Mice.
- Author
-
Puschban Z, Sah A, Grutsch I, Singewald N, and Dechant G
- Abstract
The presence of the p75 neurotrophin receptor (p75NTR) in adult basal forebrain cholinergic neurons, precursor cells in the subventricular cell layer and the subgranular cell layer of the hippocampus has been linked to alterations in learning as well as anxiety- and depression- related behaviors. In contrast to previous studies performed in a p75NTR(exon III-/-) model still expressing the short isoform of the p75NTR, we focused on locomotor and anxiety-associated behavior in p75NTR(exon IV-/-) mice lacking both p75NTR isoforms. Comparing p75NTR(exon IV-/-) and wildtype mice for both male and female animals showed an anxiolytic-like behavior as evidenced by increased central activities in the open field paradigm and flex field activity system as well as higher numbers of open arm entries in the elevated plus maze test in female p75NTR knockout mice. Morphometrical analyses of dorsal and ventral hippocampus revealed a reduction of width of the dentate gyrus and the granular cell layer in the dorsal but not ventral hippocampus in male and female p75NTR(exon IV-/-) mice. We conclude that germ-line deletion of p75NTR seems to differentially affect morphometry of dorsal and ventral dentate gyrus and that p75NTR may play a role in anxiety-like behavior, specifically in female mice.
- Published
- 2016
- Full Text
- View/download PDF
43. Social interaction reward decreases p38 activation in the nucleus accumbens shell of rats.
- Author
-
Salti A, Kummer KK, Sadangi C, Dechant G, Saria A, and El Rawas R
- Subjects
- Animals, Conditioning, Psychological drug effects, Conditioning, Psychological physiology, Fluorescent Antibody Technique, Male, Neurons drug effects, Neurons enzymology, Nucleus Accumbens drug effects, Psychological Tests, Random Allocation, Rats, Sprague-Dawley, Receptors, Dopamine D2 metabolism, Spatial Behavior drug effects, Spatial Behavior physiology, Stress, Psychological enzymology, Time Factors, Cocaine pharmacology, Dopamine Uptake Inhibitors pharmacology, Nucleus Accumbens enzymology, Reward, Social Behavior, p38 Mitogen-Activated Protein Kinases metabolism
- Abstract
We have previously shown that animals acquired robust conditioned place preference (CPP) to either social interaction alone or cocaine alone. Recently it has been reported that drugs of abuse abnormally activated p38, a member of mitogen-activated protein kinase family, in the nucleus accumbens. In this study, we aimed to investigate the expression of the activated form of p38 (pp38) in the nucleus accumbens shell and core of rats expressing either cocaine CPP or social interaction CPP 1 h, 2 h and 24 h after the CPP test. We hypothesized that cocaine CPP will increase pp38 in the nucleus accumbens shell/core as compared to social interaction CPP. Surprisingly, we found that 24 h after social interaction CPP, pp38 neuronal levels were decreased in the nucleus accumbens shell to the level of naïve rats. Control saline rats that received saline in both compartments of the CPP apparatus and cocaine CPP rats showed similar enhanced p38 activation as compared to naïve and social interaction CPP rats. We also found that the percentage of neurons expressing dopaminergic receptor D2R and pp38 was also decreased in the shell of the nucleus accumbens of social interaction CPP rats as compared to controls. Given the emerging role of p38 in stress/anxiety behaviors, these results suggest that (1) social interaction reward has anti-stress effects; (2) cocaine conditioning per se does not affect p38 activation and that (3) marginal stress is sufficient to induce p38 activation in the shell of the nucleus accumbens., Competing Interests: None., (Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
44. Alternative generation of CNS neural stem cells and PNS derivatives from neural crest-derived peripheral stem cells.
- Author
-
Weber M, Apostolova G, Widera D, Mittelbronn M, Dechant G, Kaltschmidt B, and Rohrer H
- Subjects
- Animals, Cell Differentiation physiology, Cells, Cultured, Embryo, Mammalian cytology, Embryo, Mammalian embryology, Kruppel-Like Factor 4, Mice, Neural Crest cytology, Neural Crest embryology, Neural Stem Cells cytology, Pluripotent Stem Cells cytology, Spinal Cord cytology, Spinal Cord embryology, Antigens, Differentiation metabolism, Embryo, Mammalian metabolism, Neural Crest metabolism, Neural Stem Cells metabolism, Pluripotent Stem Cells metabolism, Spinal Cord metabolism
- Abstract
Neural crest-derived stem cells (NCSCs) from the embryonic peripheral nervous system (PNS) can be reprogrammed in neurosphere (NS) culture to rNCSCs that produce central nervous system (CNS) progeny, including myelinating oligodendrocytes. Using global gene expression analysis we now demonstrate that rNCSCs completely lose their previous PNS characteristics and acquire the identity of neural stem cells derived from embryonic spinal cord. Reprogramming proceeds rapidly and results in a homogenous population of Olig2-, Sox3-, and Lex-positive CNS stem cells. Low-level expression of pluripotency inducing genes Oct4, Nanog, and Klf4 argues against a transient pluripotent state during reprogramming. The acquisition of CNS properties is prevented in the presence of BMP4 (BMP NCSCs) as shown by marker gene expression and the potential to produce PNS neurons and glia. In addition, genes characteristic for mesenchymal and perivascular progenitors are expressed, which suggests that BMP NCSCs are directed toward a pericyte progenitor/mesenchymal stem cell (MSC) fate. Adult NCSCs from mouse palate, an easily accessible source of adult NCSCs, display strikingly similar properties. They do not generate cells with CNS characteristics but lose the neural crest markers Sox10 and p75 and produce MSC-like cells. These findings show that embryonic NCSCs acquire a full CNS identity in NS culture. In contrast, MSC-like cells are generated from BMP NCSCs and pNCSCs, which reveals that postmigratory NCSCs are a source for MSC-like cells up to the adult stage., (© 2014 AlphaMed Press.)
- Published
- 2015
- Full Text
- View/download PDF
45. Reacquisition of cocaine conditioned place preference and its inhibition by previous social interaction preferentially affect D1-medium spiny neurons in the accumbens corridor.
- Author
-
Prast JM, Schardl A, Schwarzer C, Dechant G, Saria A, and Zernig G
- Abstract
We investigated if counterconditioning with dyadic (i.e., one-to-one) social interaction, a strong inhibitor of the subsequent reacquisition of cocaine conditioned place preference (CPP), differentially modulates the activity of the diverse brain regions oriented along a mediolateral corridor reaching from the interhemispheric sulcus to the anterior commissure, i.e., the nucleus of the vertical limb of the diagonal band, the medial septal nucleus, the major island of Calleja, the intermediate part of the lateral septal nucleus, and the medial accumbens shell and core. We also investigated the involvement of the lateral accumbens core and the dorsal caudate putamen. The anterior cingulate 1 (Cg1) region served as a negative control. Contrary to our expectations, we found that all regions of the accumbens corridor showed increased expression of the early growth response protein 1 (EGR1, Zif268) in rats 2 h after reacquisition of CPP for cocaine after a history of cocaine CPP acquisition and extinction. Previous counterconditioning with dyadic social interaction inhibited both the reacquisition of cocaine CPP and the activation of the whole accumbens corridor. EGR1 activation was predominantly found in dynorphin-labeled cells, i.e., presumably D1 receptor-expressing medium spiny neurons (D1-MSNs), with D2-MSNs (immunolabeled with an anti-DRD2 antibody) being less affected. Cholinergic interneurons or GABAergic interneurons positive for parvalbumin, neuropeptide Y or calretinin were not involved in these CPP-related EGR1 changes. Glial cells did not show any EGR1 expression either. The present findings could be of relevance for the therapy of impaired social interaction in substance use disorders, depression, psychosis, and autism spectrum disorders.
- Published
- 2014
- Full Text
- View/download PDF
46. Induced pluripotent stem cells from friedreich ataxia patients fail to upregulate frataxin during in vitro differentiation to peripheral sensory neurons.
- Author
-
Eigentler A, Boesch S, Schneider R, Dechant G, and Nat R
- Subjects
- Friedreich Ataxia genetics, Friedreich Ataxia pathology, Gene Expression Regulation, Humans, Induced Pluripotent Stem Cells pathology, Sensory Receptor Cells metabolism, Frataxin, Cell Differentiation, Friedreich Ataxia metabolism, Induced Pluripotent Stem Cells metabolism, Iron-Binding Proteins biosynthesis
- Abstract
The value of human disease models, which are based on induced pluripotent stem cells (iPSCs), depends on the capacity to generate specifically those cell types affected by pathology. We describe a new iPSC-based model of Friedreich ataxia (FRDA), an autosomal recessive neurodegenerative disorder with an intronic GAA repeat expansion in the frataxin gene. As the peripheral sensory neurons are particularly susceptible to neurodegeneration in FRDA, we applied a development-based differentiation protocol to generate specifically these cells. FRDA and control iPSC lines were efficiently differentiated toward neural crest progenitors and peripheral sensory neurons. The progress of the cell lines through discrete steps of in vitro differentiation was closely monitored by expression levels of key markers for peripheral neural development. Since it had been suggested that FRDA pathology might start early during ontogenesis, we investigated frataxin expression in our development-related model. A pronounced frataxin deficit was found in FRDA iPSCs and neural crest cells compared to controls. Whereas we identified an upregulation of frataxin expression during sensory specification for control cells, this increase was not observed for FRDA peripheral sensory neurons. This early failure, aggravating frataxin deficiency in a specifically vulnerable human cell population, indicates a developmental component in FRDA.
- Published
- 2013
- Full Text
- View/download PDF
47. Expression of early developmental markers predicts the efficiency of embryonic stem cell differentiation into midbrain dopaminergic neurons.
- Author
-
Salti A, Nat R, Neto S, Puschban Z, Wenning G, and Dechant G
- Subjects
- Animals, Antigens, Differentiation genetics, Antigens, Differentiation metabolism, Cells, Cultured, Dopaminergic Neurons physiology, Dopaminergic Neurons transplantation, Embryonic Stem Cells physiology, Gene Expression, Genes, Developmental, Intracellular Signaling Peptides and Proteins genetics, Intracellular Signaling Peptides and Proteins metabolism, Male, Mesencephalon pathology, Mice, Mice, Inbred C57BL, Mice, Transgenic, Neural Stem Cells physiology, Neural Stem Cells transplantation, Parkinson Disease, Secondary pathology, Parkinson Disease, Secondary therapy, Rats, Rats, Wistar, Signal Transduction, Transcriptome, Cell Differentiation, Dopaminergic Neurons metabolism, Embryonic Stem Cells metabolism, Mesencephalon metabolism, Neural Stem Cells metabolism
- Abstract
Dopaminergic neurons derived from pluripotent stem cells are among the best investigated products of in vitro stem cell differentiation owing to their potential use for neurorestorative therapy of Parkinson's disease. However, the classical differentiation protocols for both mouse and human pluripotent stem cells generate a limited percentage of dopaminergic neurons and yield a considerable cellular heterogeneity comprising numerous scarcely characterized cell populations. To improve pluripotent stem cell differentiation protocols for midbrain dopaminergic neurons, we established extensive and strictly quantitative gene expression profiles, including markers for pluripotent cells, neural progenitors, non-neural cells, pan-neuronal and glial cells, neurotransmitter phenotypes, midbrain and nonmidbrain populations, floor plate and basal plate populations, as well as for Hedgehog, Fgf, and Wnt signaling pathways. The profiles were applied to discrete stages of in vitro differentiation of mouse embryonic stem cells toward the dopaminergic lineage and after transplantation into the striatum of 6-hydroxy-dopamine-lesioned rats. The comparison of gene expression in vitro with stages in the developing ventral midbrain between embryonic day 11.5 and 13.5 ex vivo revealed dynamic changes in the expression of transcription factors and signaling molecules. Based on these profiles, we propose quantitative gene expression milestones that predict the efficiency of dopaminergic differentiation achieved at the end point of the protocol, already at earlier stages of differentiation.
- Published
- 2013
- Full Text
- View/download PDF
48. Brain regions associated with the acquisition of conditioned place preference for cocaine vs. social interaction.
- Author
-
El Rawas R, Klement S, Kummer KK, Fritz M, Dechant G, Saria A, and Zernig G
- Abstract
Positive social interaction could play an essential role in switching the preference of the substance dependent individual away from drug related activities. We have previously shown that conditioned place preference (CPP) for cocaine at the dose of 15 mg/kg and CPP for four 15-min episodes of social interaction were equally strong when rats were concurrently conditioned for place preference by pairing cocaine with one compartment and social interaction with the other. The aim of the present study was to investigate the differential activation of brain regions related to the reward circuitry after acquisition/expression of cocaine CPP or social interaction CPP. Our findings indicate that cocaine CPP and social interaction CPP activated almost the same brain regions. However, the granular insular cortex and the dorsal part of the agranular insular cortex were more activated after cocaine CPP, whereas the prelimbic cortex and the core subregion of the nucleus accumbens were more activated after social interaction CPP. These results suggest that the insular cortex appears to be potently activated after drug conditioning learning while activation of the prelimbic cortex-nucleus accumbens core projection seems to be preferentially involved in the conditioning to non-drug stimuli such as social interaction.
- Published
- 2012
- Full Text
- View/download PDF
49. Pharmacological modulation of the Hedgehog pathway differentially affects dorsal/ventral patterning in mouse and human embryonic stem cell models of telencephalic development.
- Author
-
Nat R, Salti A, Suciu L, Ström S, and Dechant G
- Subjects
- Animals, Antigens, Differentiation genetics, Antigens, Differentiation metabolism, Cells, Cultured, Embryonic Stem Cells metabolism, Gene Expression drug effects, Gene Expression Profiling, Gene Expression Regulation, Developmental, Hedgehog Proteins genetics, Humans, Mice, Neurogenesis, Receptors, G-Protein-Coupled agonists, Receptors, G-Protein-Coupled antagonists & inhibitors, Signal Transduction, Smoothened Receptor, Transcription Factors genetics, Transcription Factors metabolism, Body Patterning, Embryonic Stem Cells physiology, Hedgehog Proteins metabolism, Morpholines pharmacology, Purines pharmacology, Telencephalon cytology, Veratrum Alkaloids pharmacology
- Abstract
A complex set of extrinsic and intrinsic signals acts in specific temporal and spatial orders to enable neural differentiation during development. These processes have been extensively studied in animal models, but human neural development remains much less understood. This lack of detailed information about human early neurogenesis is a hindrance for the differentiation of pluripotent stem cell lines into specific neuronal phenotypes. Therefore, it is important to strengthen the interspecies comparative approaches. We describe a novel model system in which in vitro differentiation of human and mouse embryonic stem (ES) cells are temporally aligned to each other and compared with mouse telencephalic neurogenesis in vivo. In this comparative model system, we tested the in vitro role of Hedgehog (Hh) signaling for ES cell-derived telencephalic differentiation. In vivo, Hh signaling mediates dorsal/ventral patterning during early stages of telencephalic development. We monitored the effect of pharmacological modulators of the Hh signaling pathway, purmorphamine-an agonist and cyclopamine-an antagonist of the Smoothened receptor (Smo), on the expression of region-specific transcription factors and signaling molecules relevant for telencephalic development in vivo. Purmorphamine strongly upregulated the expression of telencephalic ventral markers Nkx2.1, Nkx6.2, Lhx6, and Lhx8 in mouse and human cells, thus reflecting the in vivo process of the medial ganglionic eminence patterning and specification. Cyclopamine upregulated the expression of telencephalic dorsal markers, but at lower levels in human compared with mouse cells. Modulation of Smo in vitro differentially affected, in mouse and human cells, the expression of molecules of the Hh pathway, especially the Gli1 and Gli3 effectors, Sonic Hh ligand and Ptch receptors. These results provide evidence for the different default differentiation of mouse and human ES cells and prove the utility of the comparative system for optimizing the directed differentiation of human pluripotent stem cells.
- Published
- 2012
- Full Text
- View/download PDF
50. Preventive role of social interaction for cocaine conditioned place preference: correlation with FosB/DeltaFosB and pCREB expression in rat mesocorticolimbic areas.
- Author
-
El Rawas R, Klement S, Salti A, Fritz M, Dechant G, Saria A, and Zernig G
- Abstract
The worsening of drug abuse by drug-associated social interaction is a well-studied phenomenon. In contrast, the molecular mechanisms of the beneficial effect of social interaction, if offered as a mutually exclusive choice to drugs of abuse, are under-investigated. In a rat place preference conditioning (CPP) paradigm, four 15 min episodes of social interaction with a gender- and weight-matched male early-adult conspecific inhibited cocaine-induced reinstatement of cocaine CPP, a model of relapse. These protective effects of social interaction were paralleled by a reduced activation, as assessed by Zif268 expression, in brain areas known to play pivotal roles in drug-seeking behavior. Here we show that social interaction during extinction of cocaine CPP also reduced cocaine-CPP-stimulated FosB expression in the nucleus accumbens shell and core. In addition, social interaction during cocaine CPP extinction increased pCREB (cAMP response element binding protein) expression in the nucleus accumbens shell and the cingulate cortex area 1 (Cg1). Our results show that FosB and pCREB may be implicated in the protective effect of social interaction against cocaine-induced reinstatement of CPP. Thus, social interaction, if offered in a context that is clearly distinct from the previously drug-associated one, may profoundly inhibit relapse to cocaine addiction.
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.