4 results on '"Debski-Antoniak O"'
Search Results
2. Exploiting the Affimer platform against influenza A virus.
- Author
-
Debski-Antoniak O, Flynn A, Klebl DP, Rojas Rechy MH, Tiede C, Wilson IA, Muench SP, Tomlinson D, and Fontana J
- Subjects
- Humans, Animals, Antiviral Agents pharmacology, Recombinant Fusion Proteins genetics, Recombinant Fusion Proteins immunology, Recombinant Fusion Proteins chemistry, Dogs, Influenza, Human virology, Madin Darby Canine Kidney Cells, Hemagglutinin Glycoproteins, Influenza Virus genetics, Hemagglutinin Glycoproteins, Influenza Virus immunology, Hemagglutinin Glycoproteins, Influenza Virus metabolism, Influenza A virus drug effects, Influenza A virus genetics, Cryoelectron Microscopy
- Abstract
Influenza A virus (IAV) is well known for its pandemic potential. While current surveillance and vaccination strategies are highly effective, therapeutic approaches are often short-lived due to the high mutation rates of IAV. Recently, monoclonal antibodies (mAbs) have emerged as a promising therapeutic approach, both against current strains and future IAV pandemics. In addition to mAbs, several antibody-like alternatives exist, which aim to improve upon mAbs. Among these, Affimers stand out for their short development time, high expression levels in Escherichia coli , and animal-free production. In this study, we utilized the Affimer platform to isolate and produce specific and potent inhibitors of IAV. Using a monomeric version of the IAV trimeric hemagglutinin (HA) fusion protein, we isolated 12 Affimers that inhibit IAV infection in vitro . Two of these Affimers were characterized in detail and exhibited nanomolar-binding affinities to the target H3 HA protein, specifically binding to the HA1 head domain. Cryo-electron microscopy (cryo-EM), employing a novel spray approach to prepare cryo-grids, allowed us to image HA-Affimer complexes. Combined with functional assays, we determined that these Affimers inhibit IAV by blocking the interaction of HA with the host-cell receptor, sialic acid. Furthermore, these Affimers inhibited IAV strains closely related to the one used for their isolation. Overall, our results support the use of Affimers as a viable alternative to existing targeted therapies for IAV and highlight their potential as diagnostic reagents., Importance: Influenza A virus is one of the few viruses that can cause devastating pandemics. Due to the high mutation rates of this virus, annual vaccination is required, and antivirals are short-lived. Monoclonal antibodies present a promising approach to tackle influenza virus infections but are associated with some limitations. To improve on this strategy, we explored the Affimer platform, which are antibody-like proteins made in bacteria. By performing phage-display against a monomeric version of influenza virus fusion protein, an established viral target, we were able to isolate Affimers that inhibit influenza virus infection in vitro . We characterized the mechanism of inhibition of the Affimers by using assays targeting different stages of the viral replication cycle. We additionally characterized HA-Affimer complex structure, using a novel approach to prepare samples for cryo-electron microscopy. Overall, these results show that Affimers are a promising tool against influenza virus infection., Competing Interests: The authors declare no conflict of interest.
- Published
- 2024
- Full Text
- View/download PDF
3. Unraveling dynamics of paramyxovirus-receptor interactions using nanoparticles displaying hemagglutinin-neuraminidase.
- Author
-
Wu X, Goebbels M, Debski-Antoniak O, Marougka K, Chao L, Smits T, Wennekes T, Kuppeveld FJMV, Vries E, and de Haan CAM
- Subjects
- Animals, Humans, N-Acetylneuraminic Acid metabolism, HN Protein metabolism, HN Protein genetics, Nanoparticles, Newcastle disease virus metabolism, Newcastle disease virus physiology, Newcastle disease virus genetics, Receptors, Virus metabolism
- Abstract
Sialoglycan-binding enveloped viruses often possess receptor-destroying activity to avoid being immobilized by non-functional decoy receptors. Sialic acid (Sia)-binding paramyxoviruses contain a hemagglutinin-neuraminidase (HN) protein that possesses both Sia-binding and -cleavage activities. The multivalent, dynamic receptor interactions of paramyxovirus particles provide virion motility and are a key determinant of host tropism. However, such multivalent interactions have not been exhaustively analyzed, because such studies are complicated by the low affinity of the individual interactions and the requirement of high titer virus stocks. Moreover, the dynamics of multivalent particle-receptor interactions are difficult to predict from Michaelis-Menten enzyme kinetics. Therefore, we here developed Ni-NTA nanoparticles that multivalently display recombinant soluble HN tetramers via their His tags (HN-NPs). Applying this HN-NP platform to Newcastle disease virus (NDV), we investigated using biolayer interferometry (BLI) the role of important HN residues in receptor-interactions and analyzed long-range effects between the catalytic site and the second Sia binding site (2SBS). The HN-NP system was also applicable to other paramyxoviruses. Comparative analysis of HN-NPs revealed and confirmed differences in dynamic receptor-interactions between type 1 human and murine parainfluenza viruses as well as of lab-adapted and clinical isolates of human parainfluenza virus type 3, which are likely to contribute to differences in tropism of these viruses. We propose this novel platform to be applicable to elucidate the dynamics of multivalent-receptor interactions important for host tropism and pathogenesis, particularly for difficult to grow sialoglycan-binding (paramyxo)viruses., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2024 Wu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2024
- Full Text
- View/download PDF
4. Neutralizing antibodies reveal cryptic vulnerabilities and interdomain crosstalk in the porcine deltacoronavirus spike protein.
- Author
-
Du W, Debski-Antoniak O, Drabek D, van Haperen R, van Dortmondt M, van der Lee J, Drulyte I, van Kuppeveld FJM, Grosveld F, Hurdiss DL, and Bosch BJ
- Subjects
- Animals, Swine, Humans, CD13 Antigens metabolism, CD13 Antigens immunology, Coronavirus Infections immunology, Coronavirus Infections virology, Protein Domains, Protein Binding, Swine Diseases virology, Swine Diseases immunology, HEK293 Cells, Spike Glycoprotein, Coronavirus immunology, Spike Glycoprotein, Coronavirus metabolism, Spike Glycoprotein, Coronavirus chemistry, Antibodies, Neutralizing immunology, Antibodies, Viral immunology, Epitopes immunology, Deltacoronavirus immunology, Deltacoronavirus metabolism
- Abstract
Porcine deltacoronavirus (PDCoV) is an emerging enteric pathogen that has recently been detected in humans. Despite this zoonotic concern, the antigenic structure of PDCoV remains unknown. The virus relies on its spike (S) protein for cell entry, making it a prime target for neutralizing antibodies. Here, we generate and characterize a set of neutralizing antibodies targeting the S protein, shedding light on PDCoV S interdomain crosstalk and its vulnerable sites. Among the four identified antibodies, one targets the S1A domain, causing local and long-range conformational changes, resulting in partial exposure of the S1B domain. The other antibodies bind the S1B domain, disrupting binding to aminopeptidase N (APN), the entry receptor for PDCoV. Notably, the epitopes of these S1B-targeting antibodies are concealed in the prefusion S trimer conformation, highlighting the necessity for conformational changes for effective antibody binding. The binding footprint of one S1B binder entirely overlaps with APN-interacting residues and thus targets a highly conserved epitope. These findings provide structural insights into the humoral immune response against the PDCoV S protein, potentially guiding vaccine and therapeutic development for this zoonotic pathogen., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.