1. Caspase-3 regulation of diaphragm myonuclear domain during mechanical ventilation-induced atrophy.
- Author
-
McClung JM, Kavazis AN, DeRuisseau KC, Falk DJ, Deering MA, Lee Y, Sugiura T, Powers SK, McClung, Joseph M, Kavazis, Andreas N, DeRuisseau, Keith C, Falk, Darin J, Deering, Melissa A, Lee, Youngil, Sugiura, Takao, and Powers, Scott K
- Abstract
Rationale: Unloading the diaphragm via mechanical ventilation (MV) results in rapid diaphragmatic fiber atrophy. It is unknown whether the myonuclear domain (cytoplasmic myofiber volume/myonucleus) of diaphragm myofibers is altered during MV.Objective: We tested the hypothesis that MV-induced diaphragmatic atrophy is associated with a loss of myonuclei via a caspase-3-mediated, apoptotic-like mechanism resulting in a constant myonuclear domain.Methods: To test this postulate, Sprague-Dawley rats were randomly assigned to a control group or to experimental groups exposed to 6 or 12 h of MV with or without administration of a caspase-3 inhibitor.Measurements and Main Results: After 12 h of MV, type I and type IIa diaphragm myofiber areas were decreased by 17 and 23%, respectively, and caspase-3 inhibition attenuated this decrease. Diaphragmatic myonuclear content decreased after 12 h of MV and resulted in the maintenance of a constant myonuclear domain in all fiber types. Both 6 and 12 h of MV resulted in caspase-3-dependent increases in apoptotic markers in the diaphragm (e.g., number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling positive nuclei and DNA fragmentation). Caspase-3-dependent increases in apoptotic markers occurred after 6 h of MV, before the onset of myofiber atrophy.Conclusions: Collectively, these data support the hypothesis that the myonuclear domain of diaphragm myofibers is maintained during prolonged MV and that caspase-3-mediated myonuclear apoptosis contributes to this process. [ABSTRACT FROM AUTHOR]- Published
- 2007
- Full Text
- View/download PDF