21 results on '"Day JMD"'
Search Results
2. Melt Percolation, Melt-Rock Reaction and Oxygen Fugacity in Supra-Subduction Zone Mantle and Lower Crust from the Leka Ophiolite Complex, Norway
- Author
-
Davide Lenaz, Henrik Skogby, Julien Leuthold, Brian O'Driscoll, James M.D. Day, Jacob Adetunji, O'Driscoll, B., Leuthold, J., Lenaz, D., Skogby, H., Day, Jmd, and Adetunji, J
- Subjects
Subduction ,Leka Ophiolite Complex ,Melt rock reaction ,Melt percolation ,Oceanic mantle and lower crust ,Mantle oxygen fugacity ,Geochemistry ,mantle oxygen fugacity ,Crust ,Ophiolite ,Mantle (geology) ,Geophysics ,Geochemistry and Petrology ,Mineral redox buffer ,Percolation ,Geology - Abstract
Samples of peridotites and pyroxenites from the mantle and lower crustal sections of the Leka Ophiolite Complex (LOC; Norway) are examined to investigate the effects of melt-rock reaction and oxygen fugacity variations in the sub-arc oceanic lithosphere. The LOC is considered to represent supra-subduction zone (SSZ) oceanic lithosphere, but also preserves evidence of pre-SSZ magmatic processes. Here we combine field and microstructural observations with mineral chemical and structural analyses of different minerals from the major lithologies of the LOC. Wehrlite and websterite bodies in both the mantle and lower crust contain clinopyroxene likely formed at a pre-SSZ stage, characterised by high Al, high Cr, low Mg crystal cores. These clinopyroxenes also exhibit low Al, low Cr, high Mg outer rims and intracrystalline dissolution surfaces, indicative of reactive melt percolation during intrusion and disruption of these lithologies by later, SSZ-related, dunite-forming magmas. Chromian-spinel compositional variations correlate with lithology; dunite-chromitite Cr-spinels are characterised by relatively uniform and high TiO2 and Al2O3, indicating formation by melt-rock reaction associated with SSZ processes. Harzburgite Cr-spinel compositions are more variable but preserve a relatively high Al2O3, low TiO2 endmember that may reflect crystallisation in a pre-SSZ oceanic spreading centre setting. An important finding of this study is that the LOC potentially preserves the petrological signature of a transition between oceanic spreading centre processes and subsequent SSZ magmatism. Single crystal Cr-spinel Fe3+/ΣFe ratios calculated on the basis of stoichiometry (from electron microprobe [EPMA] and crystal structural [X-ray diffraction; XRD] measurements) correlate variably with those calculated by point-source (single crystal) Mössbauer spectroscopy. Average sample EPMA Fe3+/ΣFe ratios overestimate or underestimate the Mössbauer-derived values for harzburgites, and always overestimate the Mössbauer Fe3+/ΣFe ratios for dunites and chromitites. The highest Fe3+/ΣFe ratios, irrespective of method of measurement, are therefore generally associated with dunites and chromitites, and yield calculated log(fO2)FMQ values of up to ~ + 1.8. While this lends support to the formation of the dunites and chromitites during SSZ-related melt percolation in the lower part of the LOC, it also suggests that these melts were not highly oxidised, compared to typical arc basalts (fO2FMQ of > + 2). This may in turn reflect the early (forearc) stage of subduction zone activity preserved by the LOC and implies that some of the arc tholeiitic and boninitic lava compositions preserved in the upper portion of the ophiolite are not genetically related to the mantle and lower crustal rocks, against which they exhibit tectonic contacts. Our new data also have implications for the use of ophiolite chromitites as recorders of mantle oxidation state through time; a global comparison suggests that the Fe3+/ΣFe signatures of ophiolite chromitites are likely to have more to do with local environmental petrogenetic conditions in sub-arc systems than large length-scale mantle chemical evolution
- Published
- 2021
3. Deep crustal assimilation during the 2021 Fagradalsfjall Fires, Iceland.
- Author
-
Day JMD, Kelly S, Troll VR, Moreland WM, Cook GW, and Thordarson T
- Abstract
Active basaltic eruptions enable time-series analysis of geochemical and geophysical properties, providing constraints on mantle composition and eruption processes
1-4 . The continuing Fagradalsfjall and Sundhnúkur fires on Iceland's Reykjanes Peninsula, beginning in 2021, enable such an approach5,6 . Earliest lavas of this volcanic episode have been interpreted to exclusively reflect a change from shallow to deeper mantle source processes7 . Here we show using osmium (Os) isotopes that the 2021 Fagradalsfjall lavas are both fractionally crystallized and strongly crustally contaminated, probably by mid-ocean-ridge gabbros and older basalts underlying the Reykjanes Peninsula. Earliest eruptive products (187 Os/188 Os ≤ 0.188, platinum (Pt)/iridium (Ir) ≤ 76) are highly anomalous for Icelandic lavas or global oceanic basalts and Os isotope ratios remain elevated throughout the 2021 eruption, indicating a continued but diluted presence of contaminants. The 2022 lavas show no evidence for contamination (187 Os/188 Os = 0.131, Pt/Ir = 30), being typical of Icelandic basalts (0.132 ± 0.007). Initiation of the Fagradalsfjall Fires in 2021 involved pre-eruptive stalling, fractional crystallization and crustal assimilation of earliest lavas. An established magmatic conduit system in 2022 enabled efficient magma transit to the surface without crustal assimilation., (© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)- Published
- 2024
- Full Text
- View/download PDF
4. A heterogeneous mantle and crustal structure formed during the early differentiation of Mars.
- Author
-
Day JMD, Paquet M, Udry A, and Moynier F
- Abstract
Highly siderophile element abundances and Os isotopes of nakhlite and chassignite meteorites demonstrate that they represent a comagmatic suite from Mars. Nakhlites experienced variable assimilation of >2-billion-year-old altered high Re/Os basaltic crust. This basaltic crust is distinct from the ancient crust represented by meteorites Allan Hills 84001 or impact-contaminated Northwest Africa 7034/7533. Nakhlites and chassignites that did not experience crustal assimilation reveal that they were extracted from a depleted lithospheric mantle distinct from the deep plume source of depleted shergottites. The comagmatic origin for nakhlites and chassignites demonstrates a layered martian interior comprising ancient enriched basaltic crust derived from trace element-rich shallow magma ocean cumulates, a variably metasomatized mantle lithosphere, and a trace element-depleted deep mantle sampled by plume magmatism.
- Published
- 2024
- Full Text
- View/download PDF
5. Reported ultra-low lava viscosities from the 2021 La Palma eruption are potentially biased.
- Author
-
Gisbert G, Troll VR, Day JMD, Geiger H, Perez-Torrado FJ, Aulinas M, Deegan FM, Albert H, and Carracedo JC
- Published
- 2023
- Full Text
- View/download PDF
6. A changing thermal regime revealed from shallow to deep basalt source melting in the Moon.
- Author
-
Srivastava Y, Basu Sarbadhikari A, Day JMD, Yamaguchi A, and Takenouchi A
- Abstract
Sample return missions have provided the basis for understanding the thermochemical evolution of the Moon. Mare basalt sources are likely to have originated from partial melting of lunar magma ocean cumulates after solidification from an initially molten state. Some of the Apollo mare basalts show evidence for the presence in their source of a late-stage radiogenic heat-producing incompatible element-rich layer, known for its enrichment in potassium, rare-earth elements, and phosphorus (KREEP). Here we show the most depleted lunar meteorite, Asuka-881757, and associated mare basalts, represent ancient (~3.9 Ga) partial melts of KREEP-free Fe-rich mantle. Petrological modeling demonstrates that these basalts were generated at lower temperatures and shallower depths than typical Apollo mare basalts. Calculated mantle potential temperatures of these rocks suggest a relatively cooler mantle source and lower surface heat flow than those associated with later-erupted mare basalts, suggesting a fundamental shift in melting regime in the Moon from ~3.9 to ~3.3 Ga., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
7. Elemental, fatty acid, and protein composition of appendicoliths.
- Author
-
Prieto JM, Wang AW, Halbach J, Cauvi DM, Day JMD, Gembicky M, Ghassemian M, Quehenberger O, Kling K, Ignacio R, DeMaio A, and Bickler SW
- Subjects
- Humans, Stearates, Appendectomy, Chromatography, Gas, Fatty Acids, Appendix
- Abstract
Appendicoliths are commonly found obstructing the lumen of the appendix at the time of appendectomy. To identify factors that might contribute to their formation we investigated the composition of appendicoliths using laser ablation inductively coupled plasma mass spectroscopy, gas chromatography, polarized light microscopy, X-ray crystallography and protein mass spectroscopy. Forty-eight elements, 32 fatty acids and 109 human proteins were identified within the appendicoliths. The most common elements found in appendicoliths are calcium and phosphorus, 11.0 ± 6.0 and 8.2 ± 4.2% weight, respectively. Palmitic acid (29.7%) and stearate (21.3%) are the most common fatty acids. Some stearate is found in crystalline form-identifiable by polarized light microscopy and confirmable by X-ray crystallography. Appendicoliths have an increased ratio of omega-6 to omega-3 fatty acids (ratio 22:1). Analysis of 16 proteins common to the appendicoliths analyzed showed antioxidant activity and neutrophil functions (e.g. activation and degranulation) to be the most highly enriched pathways. Considered together, these preliminary findings suggest oxidative stress may have a role in appendicolith formation. Further research is needed to determine how dietary factors such as omega-6 fatty acids and food additives, redox-active metals and the intestinal microbiome interact with genetic factors to predispose to appendicolith formation., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
8. Author Correction: Olivine-rich achondrites from Vesta and the missing mantle problem.
- Author
-
Vaci Z, Day JMD, Paquet M, Ziegler K, Yin QZ, Dey S, Miller A, Agee C, Bartoschewitz R, and Pack A
- Published
- 2021
- Full Text
- View/download PDF
9. Potassium isotope composition of Mars reveals a mechanism of planetary volatile retention.
- Author
-
Tian Z, Magna T, Day JMD, Mezger K, Scherer EE, Lodders K, Hin RC, Koefoed P, Bloom H, and Wang K
- Abstract
The abundances of water and highly to moderately volatile elements in planets are considered critical to mantle convection, surface evolution processes, and habitability. From the first flyby space probes to the more recent "Perseverance" and "Tianwen-1" missions, "follow the water," and, more broadly, "volatiles," has been one of the key themes of martian exploration. Ratios of volatiles relative to refractory elements (e.g., K/Th, Rb/Sr) are consistent with a higher volatile content for Mars than for Earth, despite the contrasting present-day surface conditions of those bodies. This study presents K isotope data from a spectrum of martian lithologies as an isotopic tracer for comparing the inventories of highly and moderately volatile elements and compounds of planetary bodies. Here, we show that meteorites from Mars have systematically heavier K isotopic compositions than the bulk silicate Earth, implying a greater loss of K from Mars than from Earth. The average "bulk silicate" δ
41 K values of Earth, Moon, Mars, and the asteroid 4-Vesta correlate with surface gravity, the Mn/Na "volatility" ratio, and most notably, bulk planet H2 O abundance. These relationships indicate that planetary volatile abundances result from variable volatile loss during accretionary growth in which larger mass bodies preferentially retain volatile elements over lower mass objects. There is likely a threshold on the size requirements of rocky (exo)planets to retain enough H2 O to enable habitability and plate tectonics, with mass exceeding that of Mars., Competing Interests: The authors declare no competing interest.- Published
- 2021
- Full Text
- View/download PDF
10. Olivine-rich achondrites from Vesta and the missing mantle problem.
- Author
-
Vaci Z, Day JMD, Paquet M, Ziegler K, Yin QZ, Dey S, Miller A, Agee C, Bartoschewitz R, and Pack A
- Abstract
Mantles of rocky planets are dominantly composed of olivine and its high-pressure polymorphs, according to seismic data of Earth's interior, the mineralogy of natural samples, and modelling results. The missing mantle problem represents the paucity of olivine-rich material among meteorite samples and remote observation of asteroids, given how common differentiated planetesimals were in the early Solar System. Here we report the discovery of new olivine-rich meteorites that have asteroidal origins and are related to V-type asteroids or vestoids. Northwest Africa 12217, 12319, and 12562 are dunites and lherzolite cumulates that have siderophile element abundances consistent with origins on highly differentiated asteroidal bodies that experienced core formation, and with trace element and oxygen and chromium isotopic compositions associated with the howardite-eucrite-diogenite meteorites. These meteorites represent a step towards the end of the shortage of olivine-rich material, allowing for full examination of differentiation processes acting on planetesimals in the earliest epoch of the Solar System., (© 2021. The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
11. Reconciling metal-silicate partitioning and late accretion in the Earth.
- Author
-
Suer TA, Siebert J, Remusat L, Day JMD, Borensztajn S, Doisneau B, and Fiquet G
- Abstract
Highly siderophile elements (HSE), including platinum, provide powerful geochemical tools for studying planet formation. Late accretion of chondritic components to Earth after core formation has been invoked as the main source of mantle HSE. However, core formation could also have contributed to the mantle's HSE content. Here we present measurements of platinum metal-silicate partitioning coefficients, obtained from laser-heated diamond anvil cell experiments, which demonstrate that platinum partitioning into metal is lower at high pressures and temperatures. Consequently, the mantle was likely enriched in platinum immediately following core-mantle differentiation. Core formation models that incorporate these results and simultaneously account for collateral geochemical constraints, lead to excess platinum in the mantle. A subsequent process such as iron exsolution or sulfide segregation is therefore required to remove excess platinum and to explain the mantle's modern HSE signature. A vestige of this platinum-enriched mantle can potentially account for
186 Os-enriched ocean island basalt lavas.- Published
- 2021
- Full Text
- View/download PDF
12. Calcium isotopic evidence for the mantle sources of carbonatites.
- Author
-
Amsellem E, Moynier F, Bertrand H, Bouyon A, Mata J, Tappe S, and Day JMD
- Abstract
The origin of carbonatites-igneous rocks with more than 50% of carbonate minerals-and whether they originate from a primary mantle source or from recycling of surface materials are still debated. Calcium isotopes have the potential to resolve the origin of carbonatites, since marine carbonates are enriched in the lighter isotopes of Ca compared to the mantle. Here, we report the Ca isotopic compositions for 74 carbonatites and associated silicate rocks from continental and oceanic settings, spanning from 3 billion years ago to the present day, together with O and C isotopic ratios for 37 samples. Calcium-, Mg-, and Fe-rich carbonatites have isotopically lighter Ca than mantle-derived rocks such as basalts and fall within the range of isotopically light Ca from ancient marine carbonates. This signature reflects the composition of the source, which is isotopically light and is consistent with recycling of surface carbonate materials into the mantle., (Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).)
- Published
- 2020
- Full Text
- View/download PDF
13. Multiple early-formed water reservoirs in the interior of Mars.
- Author
-
Barnes JJ, McCubbin FM, Santos AR, Day JMD, Boyce JW, Schwenzer SP, Ott U, Franchi IA, Messenger S, Anand M, and Agee CB
- Abstract
The abundance and distribution of water within Mars through time plays a fundamental role in constraining its geological evolution and habitability. The isotopic composition of martian hydrogen provides insights into the interplay between different water reservoirs on Mars. However, D/H (deuterium/hydrogen) ratios of martian rocks and of the martian atmosphere span a wide range of values. This has complicated identification of distinct water reservoirs in and on Mars within the confines of existing models that assume an isotopically homogenous mantle. Here we present D/H data collected by secondary ion mass spectrometry for two martian meteorites. These data indicate that the martian crust has been characterized by a constant D/H ratio over the last 3.9 billion years. The crust represents a reservoir with a D/H ratio that is intermediate between at least two isotopically distinct primordial water reservoirs within the martian mantle, sampled by partial melts from geochemically depleted and enriched mantle sources. From mixing calculations, we find that a subset of depleted martian basalts are consistent with isotopically light hydrogen (low D/H) in their mantle source, whereas enriched shergottites sampled a mantle source containing heavy hydrogen (high D/H). We propose that the martian mantle is chemically heterogeneous with multiple water reservoirs, indicating poor mixing within the mantle after accretion, differentiation, and its subsequent thermochemical evolution., Competing Interests: Financial/Non-financial Competing Interests We declare no financial or non-financial competing interests related to this work.
- Published
- 2020
- Full Text
- View/download PDF
14. Low retention of impact material by the Moon.
- Author
-
Day JMD
- Subjects
- Extraterrestrial Environment, Astronomy, Moon
- Published
- 2019
- Full Text
- View/download PDF
15. Martian magmatism from plume metasomatized mantle.
- Author
-
Day JMD, Tait KT, Udry A, Moynier F, Liu Y, and Neal CR
- Abstract
Direct analysis of the composition of Mars is possible through delivery of meteorites to Earth. Martian meteorites include ∼165 to 2400 Ma shergottites, originating from depleted to enriched mantle sources, and ∼1340 Ma nakhlites and chassignites, formed by low degree partial melting of a depleted mantle source. To date, no unified model has been proposed to explain the petrogenesis of these distinct rock types, despite their importance for understanding the formation and evolution of Mars. Here we report a coherent geochemical dataset for shergottites, nakhlites and chassignites revealing fundamental differences in sources. Shergottites have lower Nb/Y at a given Zr/Y than nakhlites or chassignites, a relationship nearly identical to terrestrial Hawaiian main shield and rejuvenated volcanism. Nakhlite and chassignite compositions are consistent with melting of hydrated and metasomatized depleted mantle lithosphere, whereas shergottite melts originate from deep mantle sources. Generation of martian magmas can be explained by temporally distinct melting episodes within and below dynamically supported and variably metasomatized lithosphere, by long-lived, static mantle plumes.
- Published
- 2018
- Full Text
- View/download PDF
16. Hadean silicate differentiation preserved by anomalous 142 Nd/ 144 Nd ratios in the Réunion hotspot source.
- Author
-
Peters BJ, Carlson RW, Day JMD, and Horan MF
- Abstract
Active volcanic hotspots can tap into domains in Earth's deep interior that were formed more than two billion years ago. High-precision data on variability in tungsten isotopes have shown that some of these domains resulted from differentiation events that occurred within the first fifty million years of Earth history. However, it has not proved easy to resolve analogous variability in neodymium isotope compositions that would track regions of Earth's interior whose composition was established by events occurring within roughly the first five hundred million years of Earth history. Here we report
142 Nd/144 Nd ratios for Réunion Island igneous rocks, some of which are resolvably either higher or lower than the ratios in modern upper-mantle domains. We also find that Réunion142 Nd/144 Nd ratios correlate with helium-isotope ratios (3 He/4 He), suggesting parallel behaviour of these isotopic systems during very early silicate differentiation, perhaps as early as 4.39 billion years ago. The range of142 Nd/144 Nd ratios in Réunion basalts is inconsistent with a single-stage differentiation process, and instead requires mixing of a conjugate melt and residue formed in at least one melting event during the Hadean eon, 4.56 billion to 4 billion years ago. Efficient post-Hadean mixing nearly erased the ancient, anomalous142 Nd/144 Nd signatures, and produced the relatively homogeneous143 Nd/144 Nd composition that is characteristic of Réunion basalts. Our results show that Réunion magmas tap into a particularly ancient, primitive source compared with other volcanic hotspots, offering insight into the formation and preservation of ancient heterogeneities in Earth's interior.- Published
- 2018
- Full Text
- View/download PDF
17. Halogens in chondritic meteorites and terrestrial accretion.
- Author
-
Clay PL, Burgess R, Busemann H, Ruzié-Hamilton L, Joachim B, Day JMD, and Ballentine CJ
- Abstract
Volatile element delivery and retention played a fundamental part in Earth's formation and subsequent chemical differentiation. The heavy halogens-chlorine (Cl), bromine (Br) and iodine (I)-are key tracers of accretionary processes owing to their high volatility and incompatibility, but have low abundances in most geological and planetary materials. However, noble gas proxy isotopes produced during neutron irradiation provide a high-sensitivity tool for the determination of heavy halogen abundances. Using such isotopes, here we show that Cl, Br and I abundances in carbonaceous, enstatite, Rumuruti and primitive ordinary chondrites are about 6 times, 9 times and 15-37 times lower, respectively, than previously reported and usually accepted estimates. This is independent of the oxidation state or petrological type of the chondrites. The ratios Br/Cl and I/Cl in all studied chondrites show a limited range, indistinguishable from bulk silicate Earth estimates. Our results demonstrate that the halogen depletion of bulk silicate Earth relative to primitive meteorites is consistent with the depletion of lithophile elements of similar volatility. These results for carbonaceous chondrites reveal that late accretion, constrained to a maximum of 0.5 ± 0.2 per cent of Earth's silicate mass, cannot solely account for present-day terrestrial halogen inventories. It is estimated that 80-90 per cent of heavy halogens are concentrated in Earth's surface reservoirs and have not undergone the extreme early loss observed in atmosphere-forming elements. Therefore, in addition to late-stage terrestrial accretion of halogens and mantle degassing, which has removed less than half of Earth's dissolved mantle gases, the efficient extraction of halogen-rich fluids from the solid Earth during the earliest stages of terrestrial differentiation is also required to explain the presence of these heavy halogens at the surface. The hydropilic nature of halogens, whereby they track with water, supports this requirement, and is consistent with volatile-rich or water-rich late-stage terrestrial accretion.
- Published
- 2017
- Full Text
- View/download PDF
18. Late-stage magmatic outgassing from a volatile-depleted Moon.
- Author
-
Day JMD, Moynier F, and Shearer CK
- Abstract
The abundance of volatile elements and compounds, such as zinc, potassium, chlorine, and water, provide key evidence for how Earth and the Moon formed and evolved. Currently, evidence exists for a Moon depleted in volatile elements, as well as reservoirs within the Moon with volatile abundances like Earth's depleted upper mantle. Volatile depletion is consistent with catastrophic formation, such as a giant impact, whereas a Moon with Earth-like volatile abundances suggests preservation of these volatiles, or addition through late accretion. We show, using the "Rusty Rock" impact melt breccia, 66095, that volatile enrichment on the lunar surface occurred through vapor condensation. Isotopically light Zn (δ
66 Zn = -13.7‰), heavy Cl (δ37 Cl = +15‰), and high U/Pb supports the origin of condensates from a volatile-poor internal source formed during thermomagmatic evolution of the Moon, with long-term depletion in incompatible Cl and Pb, and lesser depletion of more-compatible Zn. Leaching experiments on mare basalt 14053 demonstrate that isotopically light Zn condensates also occur on some mare basalts after their crystallization, confirming a volatile-depleted lunar interior source with homogeneous δ66 Zn ≈ +1.4‰. Our results show that much of the lunar interior must be significantly depleted in volatile elements and compounds and that volatile-rich rocks on the lunar surface formed through vapor condensation. Volatiles detected by remote sensing on the surface of the Moon likely have a partially condensate origin from its interior., Competing Interests: The authors declare no conflict of interest.- Published
- 2017
- Full Text
- View/download PDF
19. Highly Siderophile Elements in Earth, Mars, the Moon, and Asteroids.
- Author
-
Day JMD, Brandon AD, and Walker RJ
- Published
- 2016
- Full Text
- View/download PDF
20. Highly siderophile element depletion in the Moon.
- Author
-
Day JMD and Walker RJ
- Abstract
Coupled
187 Os/188 Os and highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, Re) abundance data are reported for Apollo 12 (12005, 12009, 12019, 12022, 12038, 12039, 12040), Apollo 15 (15555) and Apollo 17 (70135) mare basalts, along with mare basalt meteorites La Paz icefield (LAP) 04841 and Miller Range (MIL) 05035. The most magnesian samples have chondrite-relative HSE abundances and chondritic measured and calculated initial187 Os/188 Os, with mare basalts having consistently low HSE abundances at ~2 ×10-5 to 2 ×10-7 the chondritic abundance. The lower and more fractionated HSE compositions of evolved mare basalts can be reproduced with bulk-partition coefficients of ~2 for Os, Ir, Ru, Pt and Pd and ~1.5 for Re. Lunar mare basalt bulk-partition coefficients are probably higher than for terrestrial melts as a result of more reducing conditions, leading to increased HSE compatibility. The chondritic-relative abundances and chondritic187 Os/188 Os of the most primitive high-MgO mare basalts cannot be explained through regolith contamination during emplacement at the lunar surface. Instead, mare basalt compositions can be modelled as representing ~5-11% partial melting of metal-free sources with low Os, Ir, Ru, Pd (~0.1 ng g-1 ), Pt (~0.2 ng g-1 ) Re (~0.01 ng g-1 ) and S, with sulphide-melt partitioning between 1000 and 10000. Apollo 12 olivine-, pigeonite- and ilmenite normative mare basalts define an imprecise187 Re-187 Os age of 3.0 ±0.6 Ga. This age is within uncertainty of147 Sm-143 Nd ages for the same samples and the isochron yields an initial187 Os/188 Os of 0.109 ±0.008. The Os isotopic composition of the Apollo 12 source indicates that the lunar mantle source of these rocks evolved with Re/Os within ~10% of chondrite meteorites from the time that the mantle source became a system closed to siderophile additions to the time that the basalts erupted. The similarity in absolute HSE abundances between mare basalts from the Apollo 12, 15 and 17 sites, and from unknown regions of the Moon (La Paz mare basalts, MIL 05035) indicates relatively homogeneous and low HSE abundances within the lunar interior. Low absolute HSE abundances and chondritic Re/Os of mare basalts are consistent with ~0.02% late accretion addition that was added prior to the formation of the lunar crust and significantly prior to cessation of lunar mantle differentiation (>4.4 Ga) to enable efficient mixing and homogenization. The HSE abundances are also consistent with the observed, small182 W excess (20 ppm) in the bulk silicate Moon relative to the bulk silicate Earth.- Published
- 2015
- Full Text
- View/download PDF
21. Extensive volatile loss during formation and differentiation of the Moon.
- Author
-
Kato C, Moynier F, Valdes MC, Dhaliwal JK, and Day JMD
- Abstract
Low estimated lunar volatile contents, compared with Earth, are a fundamental observation for Earth-Moon system formation and lunar evolution. Here we present zinc isotope and abundance data for lunar crustal rocks to constrain the abundance of volatiles during the final stages of lunar differentiation. We find that ferroan anorthosites are isotopically heterogeneous, with some samples exhibiting high δ(66)Zn, along with alkali and magnesian suite samples. Since the plutonic samples were formed in the lunar crust, they were not subjected to degassing into vacuum. Instead, their compositions are consistent with enrichment of the silicate portions of the Moon in the heavier Zn isotopes. Because of the difference in δ(66)Zn between bulk silicate Earth and lunar basalts and crustal rocks, the volatile loss likely occurred in two stages: during the proto-lunar disk stage, where a fraction of lunar volatiles accreted onto Earth, and from degassing of a differentiating lunar magma ocean, implying the possibility of isolated, volatile-rich regions in the Moon's interior.
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.