272 results on '"David Quéré"'
Search Results
2. Goose‐bumpy materials
- Author
-
David Quéré
- Subjects
Descriptive and experimental mechanics ,QC120-168.85 - Published
- 2022
- Full Text
- View/download PDF
3. Two recipes for repelling hot water
- Author
-
Timothée Mouterde, Pierre Lecointre, Gaëlle Lehoucq, Antonio Checco, Christophe Clanet, and David Quéré
- Subjects
Science - Abstract
It has previously been reported that hot drops impacting on a colder surface can lead to loss of surface hydrophobicity unless the surface features are very small. Here the authors find that both small and large features but not intermediate ones are able to preserve hydrophobicity.
- Published
- 2019
- Full Text
- View/download PDF
4. Author Correction: Unique and universal dew-repellency of nanocones
- Author
-
Pierre Lecointre, Sophia Laney, Martyna Michalska, Tao Li, Alexandre Tanguy, Ioannis Papakonstantinou, and David Quéré
- Subjects
Science - Published
- 2021
- Full Text
- View/download PDF
5. Physics of knuckleballs
- Author
-
Baptiste Darbois Texier, Caroline Cohen, David Quéré, and Christophe Clanet
- Subjects
sport ballistics ,zigzag trajectory ,path instability ,drag crisis ,symmetry breaking ,Science ,Physics ,QC1-999 - Abstract
Zigzag paths in sports ball trajectories are exceptional events. They have been reported in baseball (from where the word knuckleball comes from), in volleyball and in soccer. Such trajectories are associated with intermittent breaking of the lateral symmetry in the surrounding flow. The different scenarios proposed in the literature (such as the effect of seams in baseball) are first discussed and compared to existing data. We then perform experiments on zigzag trajectories and propose a new explanation based on unsteady lift forces. In a second step, we exploit wind tunnel measurements of these unsteady lift forces to solve the equations of motion for various sports and deduce the characteristics of the zigzags, pointing out the role of the drag crisis. Finally, the conditions for the observation of such trajectories in sports are discussed.
- Published
- 2016
- Full Text
- View/download PDF
6. The physics of badminton
- Author
-
Caroline Cohen, Baptiste Darbois Texier, David Quéré, and Christophe Clanet
- Subjects
physics of badminton ,shuttlecock flight ,shuttlecock flip ,badminton trajectory ,Science ,Physics ,QC1-999 - Abstract
The conical shape of a shuttlecock allows it to flip on impact. As a light and extended particle, it flies with a pure drag trajectory. We first study the flip phenomenon and the dynamics of the flight and then discuss the implications on the game. Lastly, a possible classification of different shots is proposed.
- Published
- 2015
- Full Text
- View/download PDF
7. On the size of sports fields
- Author
-
Baptiste Darbois Texier, Caroline Cohen, Guillaume Dupeux, David Quéré, and Christophe Clanet
- Subjects
physics of sports ,aerodynamics ,ballistics ,ball trajectory ,ball sports ,Science ,Physics ,QC1-999 - Abstract
The size of sports fields considerably varies from a few meters for table tennis to hundreds of meters for golf. We first show that this size is mainly fixed by the range of the projectile, that is, by the aerodynamic properties of the ball (mass, surface, drag coefficient) and its maximal velocity in the game. This allows us to propose general classifications for sports played with a ball.
- Published
- 2014
- Full Text
- View/download PDF
8. Monostable Super Antiwettability
- Author
-
Yanshen, Li, Cunjing, Lv, David, Quere, and Quanshui, Zheng
- Subjects
Condensed Matter - Soft Condensed Matter - Abstract
Super-antiwettability is an extreme situation of wetting where liquids stay at the tops of rough surfaces, in the so-called Cassie state1. Owing to the dramatic reduction of solid/liquid contact, it has many applications, such as antifouling2,3, droplet manipulation4,5, and self-cleaning6-9. However, super-antiwettability is often destroyed by impalement transitions caused by environmental disturbances10-16 while inverse transitions without energy input have never been observed12,17-21. Here we show through controlled experiments that there is a "monostable" region in the phase space of the receding contact angle and roughness parameters where transitions between (impaled) Wenzel and Cassie states can be reversible. We describe the transition mechanism and establish a simple criterion that predicts the experimentally observed Wenzel-to-Cassie transitions for different liquids placed on micropost-patterned substrates. These results can guide for designing and engineering robust super-antiwetting surfaces., Comment: 12 pages, 4 figures
- Published
- 2016
9. When marbles challenge pearls
- Author
-
Panlin Jin, Kexin Zhao, Zoé Blin, Malou Allais, Timothée Mouterde, and David Quéré
- Subjects
General Physics and Astronomy ,Physical and Theoretical Chemistry - Abstract
The spectacular nature of non-wetting drops mainly arises from their extreme mobility, and quick-silver, for instance, was named after this property. There are two ways to make water non-wetting, and they both rely on texture: either we can roughen a hydrophobic solid, which makes drops looking like pearls, or we can texture the liquid with a hydrophobic powder that “isolates” the resulting marble from its substrate. We observe, here, races between pearls and marbles, and report two effects: (1) the static adhesion of the two objects is different in nature, which we interpret as a consequence of the way they meet their substrates; (2) when they move, pearls are generally quicker than marbles, which might arise from the dissimilarity of the liquid/air interface between these two kinds of globules.
- Published
- 2023
- Full Text
- View/download PDF
10. L' Extraordinaire Pierre-Gilles de Gennes
- Author
-
Françoise Brochard-Wyart, David Quéré, Madeleine Veyssié
- Published
- 2017
11. Some thoughts on style in science
- Author
-
David Quéré
- Subjects
Fluid Flow and Transfer Processes ,Modeling and Simulation ,Computational Mechanics - Published
- 2022
- Full Text
- View/download PDF
12. Thermal Marangoni bubbles
- Author
-
Saurabh Nath, Guillaume Ricard, Panlin Jin, Ambre Bouillant, and David Quéré
- Subjects
General Chemistry ,Condensed Matter Physics - Abstract
When air reaches the surface of a pool (or bath) of pure liquid, it does not form long-lasting bubbles, as opposed to when the bath contains surfactants. Here we describe what happens when the pool is pure (consisting of oil), yet hot. The bubbles dwelling at the surface can then live for minutes or even longer, which we interpret as a consequence of the gradients of temperature generated in this experiment. Indeed, oil is observed to be constantly drawn to the apex of the bubble, which opposes its gravitational drainage. Since their existence relies on ascending Marangoni flows, thermal bubbles are found to be dynamical in essence, which endows the oil film with remarkable stability and persistence.
- Published
- 2022
13. Spreading of water on a liquid-infused solid
- Author
-
Saurabh Nath and David Quéré
- Subjects
Fluid Flow and Transfer Processes ,Modeling and Simulation ,Computational Mechanics - Published
- 2022
- Full Text
- View/download PDF
14. Editorial: Five Years of Physical Review Fluids
- Author
-
Jacco H. Snoeijer, Brad Rubin, Roberto Zenit, Howard A. Stone, Michael Brenner, Petros Koumoutsakos, Sanjiva K. Lele, Eric S. G. Shaqfeh, Bruce R. Sutherland, Guowei He, David Quéré, Nicolas Hadjiconstantinou, Eckart Meiburg, Emmanuel Villermaux, Eric Lauga, Peter J. Schmid, Cecile Cottin-Bizonne, Guido Boffetta, Beverley McKeon, Luminita Danaila, MESA+ Institute, and Physics of Fluids
- Subjects
Fluid Flow and Transfer Processes ,Modeling and Simulation ,Computational Mechanics - Published
- 2021
- Full Text
- View/download PDF
15. Video: When Bubbles Don't Die
- Author
-
Ambre Bouillant, Guillaume Ricard, Saurabh Nath, David Quéré, and Christophe Clanet
- Subjects
media_common.quotation_subject ,Art ,Theology ,Die (integrated circuit) ,media_common - Published
- 2021
- Full Text
- View/download PDF
16. Video: Coalescence of Drops on Soft Solids - A Delay
- Author
-
Aditya Jha, Christophe Clanet, and David Quéré
- Subjects
Materials science ,Soft solids ,Mechanics ,Coalescence (chemistry) - Published
- 2021
- Full Text
- View/download PDF
17. Poster: Lubricated Stars
- Author
-
Saurabh Nath, Aditya Jha, and David Quéré
- Published
- 2021
- Full Text
- View/download PDF
18. Suck-Back Impact on Fluid Behavior at Filling Needle Tip
- Author
-
Jean-Rene Authelin, David Quéré, Maria Clara Novaes Silva, and Charlotte Pellet
- Subjects
Materials science ,Syringes ,Process (computing) ,Antibodies, Monoclonal ,Pharmaceutical Science ,Peristaltic pump ,02 engineering and technology ,Mechanics ,021001 nanoscience & nanotechnology ,030226 pharmacology & pharmacy ,Clogging ,03 medical and health sciences ,Viscosity ,0302 clinical medicine ,stomatognathic system ,Needles ,parasitic diseases ,Favorable outcome ,Wetting ,0210 nano-technology - Abstract
Needle clogging induces several issues during the filling step of injectable drugs, which makes essential to avoiding it to ensure a favorable outcome for the process. The suck-back function, present in peristaltic pumps, is often used empirically to that end. This study aims at describing and understanding the fluid behavior after suck-back application, which provides some quantitative specifications to prevent needle clogging.
- Published
- 2020
- Full Text
- View/download PDF
19. Self-excitation of Leidenfrost drops and consequences on their stability
- Author
-
Caroline Cohen, David Quéré, Christophe Clanet, and Ambre Bouillant
- Subjects
Physics ,Multidisciplinary ,Mechanics ,01 natural sciences ,Stability (probability) ,Leidenfrost effect ,010305 fluids & plasmas ,Physics::Fluid Dynamics ,Vibration ,Standing wave ,Stars ,Excited state ,Physical Sciences ,0103 physical sciences ,Levitation ,010306 general physics ,Excitation - Abstract
Significance A volatile liquid placed on a hot plate is known to levitate on a cushion of vapor. Such drops have unusual behaviors, among which is the ability to transform in pulsating stars that sporadically appear for a few seconds. We report that the vapor cushion of Leidenfrost drops spontaneously vibrates, which can trigger the pulsating modes via a Faraday instability. The mediating waves and subsequent peripheric undulations resonate at well-defined drop sizes, which explains their transient nature and the mode hierarchy. These effects illustrate the unique nature of a situation combining hydrodynamics, aerodynamics, and phase change. Beyond the light shed on the origin of Leidenfrost stars, levitating drops also provide toy models for the Faraday instability in open, globular, small-size systems.
- Published
- 2021
- Full Text
- View/download PDF
20. Unique and universal dew-repellency of nanocones
- Author
-
Tao Li, David Quéré, Alexandre Tanguy, Sophia K. Laney, Martyna Michalska, Pierre Lecointre, Ioannis Papakonstantinou, Laboratoire d'hydrodynamique (LadHyX), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Physique et mécanique des milieux hétérogenes (UMR 7636) (PMMH), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), University College of London [London] (UCL), Laboratoire de mécanique des solides (LMS), École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Surface (mathematics) ,Materials science ,genetic structures ,Science ,General Physics and Astronomy ,Mechanical properties ,02 engineering and technology ,Large range ,01 natural sciences ,General Biochemistry, Genetics and Molecular Biology ,Article ,[SPI]Engineering Sciences [physics] ,Comparable size ,0103 physical sciences ,010306 general physics ,[PHYS]Physics [physics] ,Range (particle radiation) ,Multidisciplinary ,General Chemistry ,021001 nanoscience & nanotechnology ,Mechanical engineering ,Chemical physics ,Dew ,sense organs ,0210 nano-technology - Abstract
Surface structuring provides a broad range of water-repellent materials known for their ability to reflect millimetre-sized raindrops. Dispelling water at the considerably reduced scale of fog or dew, however, constitutes a significant challenge, owing to the comparable size of droplets and structures. Nonetheless, a surface comprising nanocones was recently reported to exhibit strong anti-fogging behaviour, unlike pillars of the same size. To elucidate the origin of these differences, we systematically compare families of nanotexture that transition from pillars to sharp cones. Through environmental electron microscopy and modelling, we show that microdroplets condensing on sharp cones adopt a highly non-adhesive state, even at radii as low as 1.5 µm, contrasting with the behaviour on pillars where pinning results in impedance of droplet ejection. We establish the antifogging abilities to be universal over the range of our cone geometries, which speaks to the unique character of the nanocone geometry to repel dew. Truncated cones are finally shown to provide both pinning and a high degree of hydrophobicity, opposing characteristics that lead to a different, yet efficient, mechanism of dew ejection that relies on multiple coalescences., Spontaneous jumping of condensing droplets holds promise for antifogging, but is generally inhibited for microdroplets. Lecointre et al. show that antifogging ability of cone structures at nanoscales is universal over a large range of cone sizes, shapes, apex angles and even truncation.
- Published
- 2021
- Full Text
- View/download PDF
21. Author Correction: Unique and universal dew-repellency of nanocones
- Author
-
Alexandre Tanguy, Martyna Michalska, David Quéré, Ioannis Papakonstantinou, Pierre Lecointre, Tao Li, and Sophia K. Laney
- Subjects
Multidisciplinary ,Meteorology ,Published Erratum ,Science ,General Physics and Astronomy ,Environmental science ,Dew ,Mechanical properties ,General Chemistry ,Author Correction ,General Biochemistry, Genetics and Molecular Biology ,Mechanical engineering - Abstract
Surface structuring provides a broad range of water-repellent materials known for their ability to reflect millimetre-sized raindrops. Dispelling water at the considerably reduced scale of fog or dew, however, constitutes a significant challenge, owing to the comparable size of droplets and structures. Nonetheless, a surface comprising nanocones was recently reported to exhibit strong anti-fogging behaviour, unlike pillars of the same size. To elucidate the origin of these differences, we systematically compare families of nanotexture that transition from pillars to sharp cones. Through environmental electron microscopy and modelling, we show that microdroplets condensing on sharp cones adopt a highly non-adhesive state, even at radii as low as 1.5 µm, contrasting with the behaviour on pillars where pinning results in impedance of droplet ejection. We establish the antifogging abilities to be universal over the range of our cone geometries, which speaks to the unique character of the nanocone geometry to repel dew. Truncated cones are finally shown to provide both pinning and a high degree of hydrophobicity, opposing characteristics that lead to a different, yet efficient, mechanism of dew ejection that relies on multiple coalescences.
- Published
- 2021
22. Acrobatics of non-stick droplets
- Author
-
David Quéré
- Published
- 2021
- Full Text
- View/download PDF
23. THE QUEST FOR WATER REPELLENCIES
- Author
-
Pierre Lecointre, David Quéré, and Timothée Mouterde
- Published
- 2021
- Full Text
- View/download PDF
24. Droplets impaling on a cone
- Author
-
Christophe Clanet, Quentin Magdelaine, Anaïs Gauthier, Guillaume Durey, David Quéré, Julien Mazet, Pierre Chantelot, Mathias Casiulis, Hoon Kwon, Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL), Conservatoire national supérieur de musique et de danse de Paris (CNSMDP), Physique et mécanique des milieux hétérogenes (UMR 7636) (PMMH), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire d'hydrodynamique (LadHyX), and École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.PHYS.PHYS-FLU-DYN]Physics [physics]/Physics [physics]/Fluid Dynamics [physics.flu-dyn] ,Fluid Flow and Transfer Processes ,Drop breakup ,Computational Mechanics ,Geometry ,Division (mathematics) ,01 natural sciences ,010305 fluids & plasmas ,Cone (topology) ,Modeling and Simulation ,0103 physical sciences ,Fluid dynamics ,Fluid motion ,Drop & bubble phenomena ,010306 general physics ,Geology - Abstract
International audience; This paper is associated with a video winner of a 2019 American Physical Society's Division of Fluid Dynamics (DFD) Milton van Dyke Award for work presented at the DFD Gallery of Fluid Motion. The original video is available online at the Gallery of Fluid Motion, https://doi.org/10.1103/APS.DFD.2019.GFM.V0013.
- Published
- 2020
- Full Text
- View/download PDF
25. Formation of vase-shaped drops
- Author
-
Pierre Chantelot, Martin Coux, Lucie Domino, Antonin Eddi, Christophe Clanet, and David Quéré
- Subjects
Fluid Flow and Transfer Processes ,business.product_category ,Materials science ,Computational Mechanics ,Substrate (electronics) ,Mechanics ,Impulse (physics) ,Vase ,01 natural sciences ,eye diseases ,010305 fluids & plasmas ,Physics::Fluid Dynamics ,Modeling and Simulation ,0103 physical sciences ,010306 general physics ,business - Abstract
Beautiful, elusive shapes are obtained when a water droplet deposited on a nonwetting substrate is subjected to a strong vertical impulse. Drops are highly reshaped to form truncated cones that eventually collapse. The evolution of the geometrical features of these so-called ``vase-shaped droplets'' is reported and discussed.
- Published
- 2020
- Full Text
- View/download PDF
26. Monostable superrepellent materials
- Author
-
David Quéré, Quanshui Zheng, Yanshen Li, and Cunjing Lv
- Subjects
Multivibrator ,Multidisciplinary ,Phase space ,Physical Sciences ,0103 physical sciences ,02 engineering and technology ,Slip (materials science) ,Surface finish ,Mechanics ,021001 nanoscience & nanotechnology ,010306 general physics ,0210 nano-technology ,01 natural sciences - Abstract
Superrepellency is an extreme situation where liquids stay at the tops of rough surfaces, in the so-called Cassie state. Owing to the dramatic reduction of solid/liquid contact, such states lead to many applications, such as antifouling, droplet manipulation, hydrodynamic slip, and self-cleaning. However, superrepellency is often destroyed by impalement transitions triggered by environmental disturbances whereas inverse transitions are not observed without energy input. Here we show through controlled experiments the existence of a "monostable" region in the phase space of surface chemistry and roughness, where transitions from Cassie to (impaled) Wenzel states become spontaneously reversible. We establish the condition for observing monostability, which might guide further design and engineering of robust superrepellent materials.
- Published
- 2017
- Full Text
- View/download PDF
27. Universality of friction laws on liquid-infused materials
- Author
-
David Quéré, Doris Vollmer, Philipp Baumli, and Armelle Keiser
- Subjects
Fluid Flow and Transfer Processes ,Scaling law ,Materials science ,Drop (liquid) ,Computational Mechanics ,02 engineering and technology ,Mechanics ,021001 nanoscience & nanotechnology ,01 natural sciences ,Universality (dynamical systems) ,Condensed Matter::Soft Condensed Matter ,Physics::Fluid Dynamics ,Viscous resistance ,Modeling and Simulation ,0103 physical sciences ,010306 general physics ,0210 nano-technology - Abstract
The friction opposing drops moving on liquid-infused surfaces is experimentally characterized in various configurations (drops sliding down an incline, drops confined in Hele-Shaw cells, bubbles rising on immersed materials). It is found that viscous resistance mainly takes place in the oil meniscus surrounding the drop, which leads to a universal scaling law for the friction, in agreement with the observations.
- Published
- 2020
- Full Text
- View/download PDF
28. Video: Impaled droplets: On the breakup of drops impacting singularities
- Author
-
Guillaume Durey, Hoon Kwon, Mathias Kasiulis, Julien Mazet, Christophe Clanet, Anaïs Gauthier, Pierre Chantelot, David Quéré, and Quentin Magdelaine
- Subjects
Physics ,Gravitational singularity ,Mechanics ,Breakup - Published
- 2019
- Full Text
- View/download PDF
29. Self-propelling droplets on fibres subject to a crosswind
- Author
-
Pierre-Brice Bintein, Christophe Clanet, David Quéré, Hadrien Bense, Physique et mécanique des milieux hétérogenes (UMR 7636) (PMMH), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire d'hydrodynamique (LadHyX), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Physique et mécanique des milieux hétérogenes (PMMH), Centre National de la Recherche Scientifique (CNRS)-ESPCI ParisTech-Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC), Physique et mécanique des milieux hétérogenes (PMMH (UMR_7636)), Université Paris Diderot - Paris 7 (UPD7)-ESPCI ParisTech-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Laboratoire de Physique et Mécanique des Milieux Hétérogènes (LPMMH), and Université Pierre et Marie Curie - Paris 6 (UPMC)-ESPCI ParisTech-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,[PHYS]Physics [physics] ,[SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environment ,General Physics and Astronomy ,Perturbation (astronomy) ,Glass wool ,Mechanics ,Wake ,01 natural sciences ,010305 fluids & plasmas ,Transverse plane ,[SPI]Engineering Sciences [physics] ,0103 physical sciences ,010306 general physics ,ComputingMilieux_MISCELLANEOUS ,Crosswind - Abstract
In many situations in which droplets wet fibres, wind is present. Large nets are used to harvest fog transported by coastal breezes from the ocean1,2 and noxious aerosols are contained in chemical plants by driving them across fibrous filters3,4. In glass wool factories, thin fibres are subjected to airflows as they are simultaneously sprayed with resin to glue them together5,6. The control and reconfiguration of the liquid in these situations is essential. It can be set geometrically, as is the case for assemblies of non-parallel fibres6,7 or tapered cylinders8–11, but the wind itself may also be exploited for this purpose4,12,13. Here, we show that a transverse wind can induce directional motion of droplets along horizontal fibres—even upwind if the fibre is tilted—and generate strong repulsive interactions between droplets. All of these effects are interpreted as consequences of asymmetric wakes behind the liquid. A transverse wind is shown to be capable of inciting a droplet to move along a horizontal fibre due to the presence of an asymmetric wake behind the droplet. Such a perturbation can even induce repulsive interactions between droplets.
- Published
- 2019
- Full Text
- View/download PDF
30. Path instabilities of streamlined bodies
- Author
-
David Quéré, Christophe Clanet, Martin Coux, Thibault Guillet, Laboratoire d'hydrodynamique (LadHyX), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Physique et mécanique des milieux hétérogenes (UMR 7636) (PMMH), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
- Subjects
Physics ,[PHYS]Physics [physics] ,Leading edge ,Projectile ,Mechanical Engineering ,[SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environment ,Rotational symmetry ,Equations of motion ,Aerodynamics ,Mechanics ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas ,[SPI]Engineering Sciences [physics] ,Mechanics of Materials ,0103 physical sciences ,Path (graph theory) ,Trajectory ,Underwater ,010306 general physics ,ComputingMilieux_MISCELLANEOUS - Abstract
We study the trajectory and the maximum diving depth of floating axisymmetric streamlined bodies impacting water with a vertical velocity. Three different types of underwater trajectory can be observed. For a centre of mass of the projectile located close to its leading edge, the trajectory is either straight at low velocity or y-shaped at high velocity. When the centre of mass is far from the leading edge, the trajectory has a U-shape, independent of the initial velocity. We first characterize experimentally the aerodynamic properties of the projectile and then solve the equations of motion to recover the three types of trajectories. We finally discuss the transitions between the different regimes.
- Published
- 2019
- Full Text
- View/download PDF
31. Two recipes for repelling hot water
- Author
-
Antonio Checco, Pierre Lecointre, Christophe Clanet, Gaëlle Lehoucq, Timothée Mouterde, David Quéré, Laboratoire de Physique Statistique de l'ENS (LPS), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Micromegas : Nano-Fluidique, Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Université Paris Diderot - Paris 7 (UPD7)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Université Paris Diderot - Paris 7 (UPD7), Thales Research and Technology [Palaiseau], THALES, Brookhaven National Laboratory [Upton, NY] (BNL), U.S. Department of Energy [Washington] (DOE)-UT-Battelle, LLC-Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY), Laboratoire d'hydrodynamique (LadHyX), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Physique et mécanique des milieux hétérogenes (UMR 7636) (PMMH), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
- Subjects
0301 basic medicine ,Materials science ,Science ,FOS: Physical sciences ,General Physics and Astronomy ,02 engineering and technology ,Condensed Matter - Soft Condensed Matter ,Article ,General Biochemistry, Genetics and Molecular Biology ,03 medical and health sciences ,[SPI]Engineering Sciences [physics] ,lcsh:Science ,ComputingMilieux_MISCELLANEOUS ,[PHYS]Physics [physics] ,Multidisciplinary ,Solid surface ,Drop (liquid) ,[SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environment ,Fluid Dynamics (physics.flu-dyn) ,Physics - Fluid Dynamics ,General Chemistry ,021001 nanoscience & nanotechnology ,6. Clean water ,030104 developmental biology ,Chemical physics ,Soft Condensed Matter (cond-mat.soft) ,lcsh:Q ,0210 nano-technology - Abstract
Although a hydrophobic microtexture at a solid surface most often reflects rain owing to the presence of entrapped air within the texture, it is much more challenging to repel hot water. As it contacts a colder material, hot water generates condensation within the cavities at the solid surface, which eventually builds bridges between the substrate and the water, and thus destroys repellency. Here we show that both “small” (~100 nm) and “large” (~10 µm) model features do reflect hot drops at any drop temperature and in the whole range of explored impact velocities. Hence, we can define two structural recipes for repelling hot water: drops on nanometric features hardly stick owing to the miniaturization of water bridges, whereas kinetics of condensation in large features is too slow to connect the liquid to the solid at impact., It has previously been reported that hot drops impacting on a colder surface can lead to loss of surface hydrophobicity unless the surface features are very small. Here the authors find that both small and large features but not intermediate ones are able to preserve hydrophobicity.
- Published
- 2019
- Full Text
- View/download PDF
32. Leidenfrost reinvents the wheel
- Author
-
David Quéré and Ambre Bouillant
- Subjects
Leidenfrost effect - Published
- 2019
- Full Text
- View/download PDF
33. Droplet hurdles race
- Author
-
David Quéré, Hélène de Maleprade, Christophe Clanet, Rafid Bendimerad, Physique et mécanique des milieux hétérogenes (UMR 7636) (PMMH), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire d'hydrodynamique (LadHyX), and École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS]Physics [physics] ,010302 applied physics ,Physics ,Surface (mathematics) ,Inertial frame of reference ,Physics and Astronomy (miscellaneous) ,02 engineering and technology ,Mechanics ,021001 nanoscience & nanotechnology ,01 natural sciences ,Physics::Fluid Dynamics ,0103 physical sciences ,Jump ,0210 nano-technology - Abstract
International audience; Water is extremely mobile on non-wetting surfaces, on which it glides at high velocities. We discuss how a few indentations placed on the surface markedly slow down drops forced to hit and jump above these hurdles. The corresponding "friction" is characterized and shown to be inertial in nature, which we interpret as the result of the successive soft shocks of the drops against obstacles.
- Published
- 2021
- Full Text
- View/download PDF
34. Air-levitated platelets: from take off to motion
- Author
-
Christophe Clanet, Hélène de Maleprade, David Quéré, Dan Soto, Physique et mécanique des milieux hétérogenes (UMR 7636) (PMMH), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire d'hydrodynamique (LadHyX), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Physique et mécanique des milieux hétérogenes (PMMH), Centre National de la Recherche Scientifique (CNRS)-ESPCI ParisTech-Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC), Physique et mécanique des milieux hétérogenes (PMMH (UMR_7636)), Université Paris Diderot - Paris 7 (UPD7)-ESPCI ParisTech-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Laboratoire de Physique et Mécanique des Milieux Hétérogènes (LPMMH), and Université Pierre et Marie Curie - Paris 6 (UPMC)-ESPCI ParisTech-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,[SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environment ,Mechanical Engineering ,Flow (psychology) ,Airflow ,Mechanics ,Aerodynamics ,Condensed Matter Physics ,Rotation ,Translation (geometry) ,01 natural sciences ,010305 fluids & plasmas ,[SPI]Engineering Sciences [physics] ,Hele-Shaw flow ,Mechanics of Materials ,0103 physical sciences ,Levitation ,Texture (crystalline) ,010306 general physics ,ComputingMilieux_MISCELLANEOUS - Abstract
A plate placed above a porous substrate through which air is blown can levitate if the airflow is strong enough. We first model the flow needed for taking off, and then examine how an asymmetric texture etched on the porous surface induces directional motion of the hovercraft. We discuss how the texture design impacts the propelling efficiency, and how it can be used to manipulate these frictionless objects both in translation and in rotation.
- Published
- 2017
- Full Text
- View/download PDF
35. The dual role of viscosity in capillary rise
- Author
-
Yukina Koga, Etienne Reyssat, Joachim Delannoy, Suzanne Lafon, David Quéré, Physique et mécanique des milieux hétérogenes (UMR 7636) (PMMH), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Physique et mécanique des milieux hétérogenes (PMMH (UMR_7636)), and Université Paris Diderot - Paris 7 (UPD7)-ESPCI ParisTech-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Mechanics of the fluids [physics.class-ph] ,Capillary action ,Dynamics (mechanics) ,Front (oceanography) ,02 engineering and technology ,General Chemistry ,Mechanics ,Viscous liquid ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,0104 chemical sciences ,Condensed Matter::Soft Condensed Matter ,Physics::Fluid Dynamics ,Viscosity ,Meniscus ,Tube (fluid conveyance) ,Wetting ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,0210 nano-technology ,[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft] - Abstract
International audience; The spontaneous rise of a wetting liquid in a capillary tube is classically described by Washburn's law: the meniscus height increases as the square root of time, a law singular at short time, where the velocity diverges. We focus here on the early dynamics of the rise of viscous liquids, and report an initial regime of constant velocity contrasting with Washburn's prediction. This is explained by considering the contact line friction at the liquid front, and confirmed by the influence of prewetting films on the tube walls, whose presence is found to speed up the rise and more generally to provide an ideal framework for quantifying the friction at contact lines.
- Published
- 2019
- Full Text
- View/download PDF
36. Ballistics of self-jumping microdroplets
- Author
-
Atikur Rahman, Pierre Lecointre, Timothée Mouterde, David Quéré, Charles T. Black, Antonio Checco, Christophe Clanet, Laboratoire de Physique Statistique de l'ENS (LPS), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Micromegas : Nano-Fluidique, Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Université Paris Diderot - Paris 7 (UPD7)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Université Paris Diderot - Paris 7 (UPD7), Brookhaven National Laboratory [Upton, NY] (BNL), U.S. Department of Energy [Washington] (DOE)-UT-Battelle, LLC-Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY), Center for Functional Nanomaterials, State University of New York (SUNY)-State University of New York (SUNY)-U.S. Department of Energy [Washington] (DOE)-UT-Battelle, LLC-Stony Brook University [SUNY] (SBU), Laboratoire d'hydrodynamique (LadHyX), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Physique et mécanique des milieux hétérogenes (UMR 7636) (PMMH), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
- Subjects
[PHYS]Physics [physics] ,Fluid Flow and Transfer Processes ,Materials science ,media_common.quotation_subject ,Computational Mechanics ,Ballistics ,02 engineering and technology ,Mechanics ,021001 nanoscience & nanotechnology ,Inertia ,01 natural sciences ,Slow flight ,010305 fluids & plasmas ,Physics::Fluid Dynamics ,Lift (force) ,Viscosity ,Modeling and Simulation ,0103 physical sciences ,Jump ,Takeoff ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS ,Microscale chemistry ,media_common - Abstract
Droplets merging on hydrophobic nanocones jump off, and the takeoff speed is found to be maximum at microscale, below and above which viscosity and inertia, respectively, cap this speed. Microdroplets successively experience strong lift off, slow flight, and smooth landing, which impedes bouncing.
- Published
- 2019
- Full Text
- View/download PDF
37. Tightrope bubbles
- Author
-
Hélène de Maleprade, Matthias Pautard, Christophe Clanet, David Quéré, Physique et mécanique des milieux hétérogenes (PMMH (UMR_7636)), Université Paris Diderot - Paris 7 (UPD7)-ESPCI ParisTech-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'hydrodynamique (LadHyX), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Laboratoire de Physique et Mécanique des Milieux Hétérogènes (LPMMH), Université Pierre et Marie Curie - Paris 6 (UPMC)-ESPCI ParisTech-Centre National de la Recherche Scientifique (CNRS), Physique et mécanique des milieux hétérogenes (UMR 7636) (PMMH), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), and École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS]Physics [physics] ,Laws of friction ,Physics and Astronomy (miscellaneous) ,[SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environment ,Interface dynamics ,02 engineering and technology ,Flow boundary effects ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Bubble dynamics ,Fluid drag ,0104 chemical sciences ,Physics::Fluid Dynamics ,[SPI]Engineering Sciences [physics] ,0210 nano-technology ,Air-water interface ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience; Droplets moving along fibers have a mobility limited by viscous dissipation. Here, we discuss the opposite situation of bubbles moving on threads immersed in water. Contrasting with drops, the mobility is generally fixed by a visco-inertial skin friction, which allows them to move at much larger velocity than reported in the dual situation. We conclude by establishing how the friction becomes purely viscous when increasing the bath viscosity.
- Published
- 2019
- Full Text
- View/download PDF
38. The cold Leidenfrost regime
- Author
-
David Quéré, Philippe Bourrianne, Cunjing Lv, Physique et mécanique des milieux hétérogenes (PMMH (UMR_7636)), Université Paris Diderot - Paris 7 (UPD7)-ESPCI ParisTech-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Physique et mécanique des milieux hétérogenes (UMR 7636) (PMMH), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
- Subjects
Multidisciplinary ,Materials science ,Solid surface ,Materials Science ,SciAdv r-articles ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Leidenfrost effect ,13. Climate action ,Chemical physics ,0103 physical sciences ,Levitation ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,010306 general physics ,0210 nano-technology ,Research Articles ,Research Article - Abstract
Leidenfrost drops, known to levitate on very hot solids, exhibit a “cold” regime on superhydrophobic solids., Superhydrophobicity (observed at room temperature) and Leidenfrost phenomenon (observed on very hot solids) are classical examples of nonwetting surfaces. It was found that combining the two effects by heating water-repellent materials leads to a marked yet unexplained decrease of the Leidenfrost temperature of water. We discuss here how heat enhances superhydrophobicity by favoring a “cold Leidenfrost regime” where water adhesion becomes nonmeasurable even at moderate substrate temperature. Heat is found to induce contradictory effects (sticking due to vapor condensation, and lift due to the spreading of vapor patches), which is eventually shown to be controllable by the solid surface texture. The transition to the levitating Leidenfrost regime is observed to be continuous as a function of temperature, contrasting with the transition on common solids.
- Published
- 2019
- Full Text
- View/download PDF
39. Publisher Correction: Leidenfrost wheels
- Author
-
Timothée Mouterde, Ambre Bouillant, David Quéré, Christophe Clanet, Philippe Bourrianne, Antoine Lagarde, Laboratoire de Physique Statistique de l'ENS (LPS), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Physique et mécanique des milieux hétérogenes (PMMH (UMR_7636)), Université Paris Diderot - Paris 7 (UPD7)-ESPCI ParisTech-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Fluides Complexes et Instabilités Hydrodynamiques (IJLRDA-FCIH), Institut Jean Le Rond d'Alembert (DALEMBERT), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'hydrodynamique (LadHyX), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Laboratoire de Physique et Mécanique des Milieux Hétérogènes (LPMMH), Université Pierre et Marie Curie - Paris 6 (UPMC)-ESPCI ParisTech-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Physique et mécanique des milieux hétérogenes (UMR 7636) (PMMH), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), and École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,[PHYS]Physics [physics] ,Computer graphics (images) ,0103 physical sciences ,General Physics and Astronomy ,010306 general physics ,01 natural sciences ,Leidenfrost effect ,ComputingMilieux_MISCELLANEOUS ,010305 fluids & plasmas - Abstract
In the version of this Letter originally published, the Supplementary Videos were incorrectly labelled; the descriptions of 1–4 should have gone with the videos of 6–9, and the descriptions of 5–9 should have gone with the videos of 1–5. This has now been corrected.
- Published
- 2018
- Full Text
- View/download PDF
40. Leidenfrost wheels
- Author
-
Ambre Bouillant, Timothée Mouterde, Philippe Bourrianne, Antoine Lagarde, Christophe Clanet, David Quéré, Laboratoire de Physique Statistique de l'ENS (LPS), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Physique et mécanique des milieux hétérogenes (PMMH (UMR_7636)), Université Paris Diderot - Paris 7 (UPD7)-ESPCI ParisTech-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Fluides Complexes et Instabilités Hydrodynamiques (IJLRDA-FCIH), Institut Jean Le Rond d'Alembert (DALEMBERT), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'hydrodynamique (LadHyX), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Laboratoire de Physique et Mécanique des Milieux Hétérogènes (LPMMH), Université Pierre et Marie Curie - Paris 6 (UPMC)-ESPCI ParisTech-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Physique et mécanique des milieux hétérogenes (UMR 7636) (PMMH), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), and École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS]Physics [physics] ,0103 physical sciences ,General Physics and Astronomy ,010306 general physics ,01 natural sciences ,ComputingMilieux_MISCELLANEOUS ,010305 fluids & plasmas - Abstract
International audience
- Published
- 2018
- Full Text
- View/download PDF
41. Air-propelled, herringbone-textured platelets
- Author
-
Steffen Hardt, David Quéré, Tobias Baier, Maximilian T. Schür, Hélène de Maleprade, Dan Soto, and E. John Hinch
- Subjects
Fluid Flow and Transfer Processes ,Materials science ,Modeling and Simulation ,0103 physical sciences ,Computational Mechanics ,010306 general physics ,01 natural sciences ,010305 fluids & plasmas - Published
- 2018
- Full Text
- View/download PDF
42. Symmetry breaking in Leidenfrost flows
- Author
-
Philippe Bourrianne, Timothée Mouterde, David Quéré, Christophe Clanet, Ambre Bouillant, Laboratoire de Physique Statistique de l'ENS (LPS), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Physique et mécanique des milieux hétérogenes (UMR 7636) (PMMH), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire d'hydrodynamique (LadHyX), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Physique et mécanique des milieux hétérogenes (PMMH (UMR_7636)), Université Paris Diderot - Paris 7 (UPD7)-ESPCI ParisTech-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Laboratoire de Physique et Mécanique des Milieux Hétérogènes (LPMMH), and Université Pierre et Marie Curie - Paris 6 (UPMC)-ESPCI ParisTech-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Fluid Flow and Transfer Processes ,Physics ,[PHYS]Physics [physics] ,Van Dyke beard ,Computational Mechanics ,01 natural sciences ,Leidenfrost effect ,010305 fluids & plasmas ,symbols.namesake ,Classical mechanics ,Modeling and Simulation ,0103 physical sciences ,symbols ,Fluid motion ,Symmetry breaking ,010306 general physics ,ComputingMilieux_MISCELLANEOUS - Abstract
This paper is associated with a video winner of a 2017 APS/DFD Milton van Dyke Award for work presented at the DFD Gallery of Fluid Motion. The original video is available from the Gallery of Fluid Motion, https://doi.org/10.1103/APS.DFD.2017.GFM.V0052
- Published
- 2018
- Full Text
- View/download PDF
43. Droplet fragmentation using a mesh
- Author
-
Thomas Binder, Kripa K. Varanasi, Antoine Le Helloco, Dan Soto, Henri-Louis Girard, and David Quéré
- Subjects
Fluid Flow and Transfer Processes ,Materials science ,Computational Mechanics ,Mechanics ,Kinetic energy ,01 natural sciences ,010305 fluids & plasmas ,Physics::Fluid Dynamics ,Fragmentation (mass spectrometry) ,Modeling and Simulation ,0103 physical sciences ,Single hole ,Physics::Atomic and Molecular Clusters ,010306 general physics - Abstract
Factors governing atomization of droplets impacting a mesh, starting with the elementary unit of a single hole, are investigated. It is shown how this process can be used to generate finely controlled sprays with micrometric droplet sizes and low kinetic energy, as is critical for agricultural applications.
- Published
- 2018
- Full Text
- View/download PDF
44. Aerodynamic repellency of impacting liquids
- Author
-
Anaïs Gauthier, Ambre Bouillant, David Quéré, Christophe Clanet, Physique et mécanique des milieux hétérogenes (UMR 7636) (PMMH), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire d'hydrodynamique (LadHyX), and École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Fluid Flow and Transfer Processes ,Surface (mathematics) ,Materials science ,[SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environment ,Computational Mechanics ,Oblique case ,Aerodynamics ,Mechanics ,01 natural sciences ,010305 fluids & plasmas ,Physics::Fluid Dynamics ,Surface tension ,Aerodynamic force ,[SPI]Engineering Sciences [physics] ,Impact velocity ,Modeling and Simulation ,0103 physical sciences ,010306 general physics - Abstract
International audience; Impacting liquids can be reflected by moving solid plates, provided the surface is fast enough. We describe and model here the threshold speed of bouncing, in particular as a function of the impact velocity of the incoming liquid. We also demonstrate that the aerodynamic force responsible for the nonwetting behavior induces an oblique rebound, which contributes to the liquid removal. In summary, this situation repels viscous, low surface tension drops of any size, all kinds of cases where repellency is impossible to achieve by other means.
- Published
- 2018
- Full Text
- View/download PDF
45. Water ring-bouncing on repellent singularities
- Author
-
Pierre Chantelot, Ilya V. Karlin, Anaïs Gauthier, Christophe Clanet, David Quéré, Ali Mazloomi Moqaddam, Shyam S. Chikatamarla, Laboratoire d'hydrodynamique (LadHyX), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Physique et mécanique des milieux hétérogenes (UMR 7636) (PMMH), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
- Subjects
Materials science ,Contact time ,Drop (liquid) ,[SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environment ,02 engineering and technology ,General Chemistry ,Mechanics ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,0104 chemical sciences ,[SPI]Engineering Sciences [physics] ,Gravitational singularity ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
Texturing a flat superhydrophobic substrate with point-like superhydrophobic macrotextures of the same repellency makes impacting water droplets take off as rings, which leads to shorter bouncing times than on a flat substrate. We investigate the contact time reduction on such elementary macrotextures through experiment and simulations. We understand the observations by decomposing the impacting drop reshaped by the defect into sub-units (or blobs) whose size is fixed by the liquid ring width. We test the blob picture by looking at the reduction of contact time for off-centered impacts and for impacts in grooves that produce liquid ribbons where the blob size is fixed by the width of the channel.
- Published
- 2018
- Full Text
- View/download PDF
46. Self-removal of condensed water on the legs of water striders
- Author
-
Xi Yao, Lei Jiang, Qianbin Wang, David Quéré, and Huan Liu
- Subjects
Video recording ,Multidisciplinary ,Surface Properties ,Chemistry ,Microfluidics ,Video Recording ,Water ,Femtoliter ,Extremities ,Nanotechnology ,Condensed water ,Heteroptera ,Motion ,Tomography x ray computed ,Self propulsion ,Physical Sciences ,Microscopy, Electron, Scanning ,Animals ,Texture (crystalline) ,Tomography, X-Ray Computed ,Hydrophobic and Hydrophilic Interactions ,Leg surface - Abstract
The ability to control drops and their movements on phobic surfaces is important in printing or patterning, microfluidic devices, and water-repellent materials. These materials are always micro-/nanotextured, and a natural limitation of repellency occurs when drops are small enough (as in a dew) to get trapped in the texture. This leads to sticky Wenzel states and destroys the superhydrophobicity of the material. Here, we show that droplets of volume ranging from femtoliter (fL) to microliter (μL) can be self-removed from the legs of water striders. These legs consist of arrays of inclined tapered setae decorated by quasi-helical nanogrooves. The different characteristics of this unique texture are successively exploited as water condenses, starting from self-penetration and sweeping effect along individual cones, to elastic expulsion between flexible setae, followed by removal at the anisotropic leg surface. We envision that this antifogging effect at a very small scale could inspire the design of novel applicable robust water-repellent materials for many practical applications.
- Published
- 2015
- Full Text
- View/download PDF
47. Soft Interfaces : Lecture Notes of the Les Houches Summer School: Volume 98, July 2012
- Author
-
Lydéric Bocquet, David Quéré, Thomas A. Witten, Leticia F. Cugliandolo, Lydéric Bocquet, David Quéré, Thomas A. Witten, and Leticia F. Cugliandolo
- Subjects
- Interfaces (Physical sciences)--Congresses, Soft condensed matter--Congresses
- Abstract
Many of the distinctive and useful phenomena of soft matter come from its interaction with interfaces. Examples are the peeling of a strip of adhesive tape, the coating of a surface, the curling of a fiber via capillary forces, or the collapse of a porous sponge. These interfacial phenomena are distinct from the intrinsic behavior of a soft material like a gel or a microemulsion. Yet many forms of interfacial phenomena can be understood via common principles valid for many forms of soft matter. Our goal in organizing this school was to give students a grasp of these common principles and their many ramifications and possibilities. The Les Houches Summer School comprised over fifty 90-minute lectures over four weeks. Four four-lecture courses by Howard Stone, Michael Cates, David Nelson and L. Mahadevan served as an anchor for the program. A number of shorter courses and seminars rounded out the school. This volume collects the lecture notes of the school.
- Published
- 2017
48. Kicked drops
- Author
-
Pierre Chantelot, Martin Coux, Lucie Domino, Benoît Pype, Christophe Clanet, Antonin Eddi, David Quéré, Laboratoire d'hydrodynamique (LadHyX), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Physique et mécanique des milieux hétérogenes (UMR 7636) (PMMH), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Physique et mécanique des milieux hétérogenes (PMMH (UMR_7636)), Université Paris Diderot - Paris 7 (UPD7)-ESPCI ParisTech-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et Mécanique des Milieux Hétérogènes (LPMMH), and Université Pierre et Marie Curie - Paris 6 (UPMC)-ESPCI ParisTech-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Fluid Flow and Transfer Processes ,[PHYS]Physics [physics] ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Mechanics of the fluids [physics.class-ph] ,Modeling and Simulation ,0103 physical sciences ,Computational Mechanics ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,010306 general physics ,01 natural sciences ,ComputingMilieux_MISCELLANEOUS ,010305 fluids & plasmas - Abstract
This paper is associated with a video winner of a 2017 APS/DFD Milton van Dyke Award for work presented at the DFD Gallery of Fluid Motion. The original video is available from the Gallery of Fluid Motion, https://doi.org/10.1103/APS.DFD.2017.GFM.V0080; International audience; Vibrating their substrate is an efficient way to manipulate drops and even to sculpt them, as recently discussed in the literature: (1) drops on a shaken inclined plate can surprisingly climb the slope [1]; (2) a puddle on a horizontal vibrating material deforms with asymmetric shapes [2]; (3) an impulsive motion of the substrate generates superpropulsion, that is, an enhanced takeoff of the deposited liquid [3]. Here we report the striking shapes obtained when subjecting water pearls to a strong, quick, vertical impulse.
- Published
- 2018
- Full Text
- View/download PDF
49. Capillary descent
- Author
-
Joachim Delannoy, Hélène de Maleprade, Christophe Clanet, David Quéré, Physique et mécanique des milieux hétérogenes (UMR 7636) (PMMH), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire d'hydrodynamique (LadHyX), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Physique et mécanique des milieux hétérogenes (PMMH (UMR_7636)), Université Paris Diderot - Paris 7 (UPD7)-ESPCI ParisTech-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Laboratoire de Physique et Mécanique des Milieux Hétérogènes (LPMMH), and Université Pierre et Marie Curie - Paris 6 (UPMC)-ESPCI ParisTech-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SPI]Engineering Sciences [physics] ,[SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environment ,0103 physical sciences ,General Chemistry ,010306 general physics ,Condensed Matter Physics ,01 natural sciences ,ComputingMilieux_MISCELLANEOUS ,010305 fluids & plasmas - Abstract
A superhydrophobic capillary tube immersed in water and brought in contact with the bath surface will be invaded by air, owing to its aerophilicity. We discuss this phenomenon where the ingredients of classical capillary rise are inverted, which leads to noticeable dynamical features. (1) The main regime of air invasion is linear in time, due to the viscous resistance of water. (2) Menisci in tubes with millimetre-size radii strongly oscillate before reaching their equilibrium depth, a consequence of inertia. On the whole, capillary descent provides a broad variety of dynamics where capillary effects, viscous friction and liquid inertia all play a role.
- Published
- 2018
- Full Text
- View/download PDF
50. From coffee rings to coffee eyes
- Author
-
Zhaohan Li, Cunjing Lv, Quanshui Zheng, Yanshen Li, and David Quéré
- Subjects
Marangoni effect ,Morphology (linguistics) ,Chemistry ,business.industry ,Evaporation ,Coffee ring effect ,General Chemistry ,Substrate (printing) ,Condensed Matter Physics ,Stain ,Suspension (chemistry) ,Optics ,Relative Volume ,Composite material ,business - Abstract
We discuss how the stain left after evaporation of a suspension evolves with heating of the glass or plastic on which the liquid has been deposited. Upon increasing the substrate temperature, it is found that the stain gradually changes from the usually observed ring to an "eye" shape, that is, a combination of the thick central stain and the thin outer ring. Both the size and the relative volume of the central stain increase with the substrate temperature. The main mechanism for this phenomenon is proposed to be an enhanced Marangoni recirculation flow on hot substrates. These findings can be exploited to continuously tune the morphology of coffee stains, with potential applications in self-assembly and ink-jet printing.
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.